Epithelial and Stromal Characteristics of Primary Tumors Predict the Bone Metastatic Subtype of Prostate Cancer and Patient Survival after Androgen-Deprivation Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Morphology
2.3. Classification of the Metastasis Subtypes MetA-C
2.4. Statistics
3. Results
3.1. Epithelial and Stroma Cell Markers in paired Primary Tumors and Metastases
3.1.1. Tumor Epithelial Cell Markers
3.1.2. Stromal Cell Markers
3.1.3. Morphological Similarities between Paired Primary Tumors and Metastases Diverse with Time
3.2. Epithelial and Stromal Markers in Primary Tumors, in Relation to Patient Outcome and to Metastasis Subtypes
3.2.1. Tumor Epithelial and Stromal Markers in Primary Tumors Predict Prognosis
3.2.2. Tumor Epithelial and Stromal Markers of Primary Tumors Associated with the Metastasis Morphology and Transcriptomic Subtype
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hornberg, E.; Ylitalo, E.B.; Crnalic, S.; Antti, H.; Stattin, P.; Widmark, A.; Bergh, A.; Wikstrom, P. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS ONE 2011, 6, e19059. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-Gato, D.; Thysell, E.; Tyanova, S.; Crnalic, S.; Santos, A.; Lima, T.S.; Geiger, T.; Cox, J.; Widmark, A.; Bergh, A.; et al. The proteome of prostate cancer bone metastasis reveals heterogeneity with prognostic implications. Clin. Cancer Res. 2018, 24, 5433–5444. [Google Scholar] [CrossRef] [Green Version]
- Nordstrand, A.; Ylitalo, E.B.; Thysell, E.; Jernberg, E.; Crnalic, S.; Widmark, A.; Bergh, A.; Lerner, U.H.; Wikstrom, P. Bone cell activity in clinical prostate cancer bone metastasis and its inverse relation to tumor cell androgen receptor activity. Int. J. Mol. Sci. 2018, 19, 1223. [Google Scholar] [CrossRef] [Green Version]
- Thysell, E.; Kohn, L.; Semenas, J.; Jaremo, H.; Freyhult, E.; Lundholm, M.; Karlsson, C.T.; Damber, J.E.; Widmark, A.; Crnalic, S.; et al. Clinical and biological relevance of the transcriptomic-based prostate cancer metastasis subtypes meta-c. Mol. Oncol. 2022, 16, 846–859. [Google Scholar] [CrossRef]
- Thysell, E.; Vidman, L.; Ylitalo, E.B.; Jernberg, E.; Crnalic, S.; Iglesias-Gato, D.; Flores-Morales, A.; Stattin, P.; Egevad, L.; Widmark, A.; et al. Gene expression profiles define molecular subtypes of prostate cancer bone metastases with different outcomes and morphology traceable back to the primary tumor. Mol. Oncol. 2019, 13, 1763–1777. [Google Scholar] [CrossRef] [Green Version]
- Thysell, E.; Ylitalo, E.B.; Jernberg, E.; Bergh, A.; Wikstrom, P. A systems approach to prostate cancer classification-letter. Cancer Res. 2017, 77, 7131–7132. [Google Scholar] [CrossRef] [Green Version]
- Ylitalo, E.B.; Thysell, E.; Jernberg, E.; Lundholm, M.; Crnalic, S.; Egevad, L.; Stattin, P.; Widmark, A.; Bergh, A.; Wikstrom, P. Subgroups of castration-resistant prostate cancer bone metastases defined through an inverse relationship between androgen receptor activity and immune response. Eur. Urol. 2017, 71, 776–787. [Google Scholar] [CrossRef] [Green Version]
- Ylitalo, E.B.; Thysell, E.; Landfors, M.; Brattsand, M.; Jernberg, E.; Crnalic, S.; Widmark, A.; Hultdin, M.; Bergh, A.; Degerman, S.; et al. A novel DNA methylation signature is associated with androgen receptor activity and patient prognosis in bone metastatic prostate cancer. Clin. Epigenet. 2021, 13, 133. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, S.H.; Rudolfsson, S.H.; Bergh, A. Rat prostate tumor cells progress in the bone microenvironment to a highly aggressive phenotype. Neoplasia 2016, 18, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Schlicker, A.; Ellappalayam, A.; Beumer, I.J.; Snel, M.H.J.; Mittempergher, L.; Diosdado, B.; Dreezen, C.; Tian, S.; Salazar, R.; Loupakis, F.; et al. Investigating the concordance in molecular subtypes of primary colorectal tumors and their matched synchronous liver metastasis. Int. J. Cancer 2020, 147, 2303–2315. [Google Scholar] [CrossRef]
- Vecchi, M.; Confalonieri, S.; Nuciforo, P.; Vigano, M.A.; Capra, M.; Bianchi, M.; Nicosia, D.; Bianchi, F.; Galimberti, V.; Viale, G.; et al. Breast cancer metastases are molecularly distinct from their primary tumors. Oncogene 2008, 27, 2148–2158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammarsten, P.; Josefsson, A.; Thysell, E.; Lundholm, M.; Hagglof, C.; Iglesias-Gato, D.; Flores-Morales, A.; Stattin, P.; Egevad, L.; Granfors, T.; et al. Immunoreactivity for prostate specific antigen and ki67 differentiates subgroups of prostate cancer related to outcome. Mod. Pathol. 2019, 32, 1310–1319. [Google Scholar] [CrossRef] [Green Version]
- Jernberg, E.; Bergh, A.; Wikstrom, P. Clinical relevance of androgen receptor alterations in prostate cancer. Endocr. Connect. 2017, 6, R146–R161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crnalic, S.; Hornberg, E.; Wikstrom, P.; Lerner, U.H.; Tieva, A.; Svensson, O.; Widmark, A.; Bergh, A. Nuclear androgen receptor staining in bone metastases is related to a poor outcome in prostate cancer patients. Endocr.-Relat. Cancer 2010, 17, 885–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagglof, C.; Hammarsten, P.; Josefsson, A.; Stattin, P.; Paulsson, J.; Bergh, A.; Ostman, A. Stromal pdgfrbeta expression in prostate tumors and non-malignant prostate tissue predicts prostate cancer survival. PLoS ONE 2010, 5, e10747. [Google Scholar] [CrossRef] [PubMed]
- Hagglof, C.; Hammarsten, P.; Stromvall, K.; Egevad, L.; Josefsson, A.; Stattin, P.; Granfors, T.; Bergh, A. Tmprss2-erg expression predicts prostate cancer survival and associates with stromal biomarkers. PLoS ONE 2014, 9, e86824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barron, D.A.; Rowley, D.R. The reactive stroma microenvironment and prostate cancer progression. Endocr.-Relat. Cancer 2012, 19, R187–R204. [Google Scholar] [CrossRef] [Green Version]
- Hagglof, C.; Bergh, A. The stroma-a key regulator in prostate function and malignancy. Cancers 2012, 4, 531–548. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.Y.; Huang, H.C.; Spratt, D.E.; Zhao, S.; Sandler, H.M.; Simko, J.P.; Davicioni, E.; Nguyen, P.L.; Pollack, A.; Efstathiou, J.A.; et al. Validation of a 22-gene genomic classifier in patients with recurrent prostate cancer: An ancillary study of the nrg/rtog 9601 randomized clinical trial (vol 7, pg 544, 2021). JAMA Oncol. 2021, 7, 639. [Google Scholar] [CrossRef]
- Jairath, N.K.; Dal Pra, A.; Vince, R.; Dess, R.T.; Jackson, W.C.; Tosoian, J.J.; McBride, S.M.; Zhao, S.G.; Berlin, A.; Mahal, B.A.; et al. A systematic review of the evidence for the decipher genomic classifier in prostate cancer. Eur. Urol. 2021, 79, 374–383. [Google Scholar] [CrossRef]
- Levesque, C.; Nelson, P.S. Cellular constituents of the prostate stroma: Key contributors to prostate cancer progression and therapy resistance. Cold Spring Harb. Perspect. Med. 2018, 8, a030510. [Google Scholar] [CrossRef] [PubMed]
- Blom, S.; Erickson, A.; Östman, A.; Rannikko, A.; Mirtti, T.; Kallioniemi, O.; Pellinen, T. Fibroblast as a critical stromal cell type determining prognosis in prostate cancer. Prostate 2019, 79, 1505–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordby, Y.; Richardsen, E.; Rakaee, M.; Ness, N.; Donnem, T.; Patel, H.R.H.; Busund, L.T.; Bremnes, R.M.; Andersen, S. High expression of pdgfr-beta in prostate cancer stroma is independently associated with clinical and biochemical prostate cancer recurrence. Sci. Rep. 2017, 7, 43378. [Google Scholar] [CrossRef] [PubMed]
- Parol-Kulczyk, M.; Gzil, A.; Ligmanowska, J.; Grzanka, D. Prognostic significance of sdf-1 chemokine and its receptors cxcr4 and cxcr7 involved in emt of prostate cancer. Cytokine 2022, 150, 155778. [Google Scholar] [CrossRef]
Median (25th; 75th Percentiles) | |
---|---|
Age diagnosis (yrs.) | 69 (65; 75) |
Age metastasis surgery (yrs.) | 73 (68; 78) |
Serum PSA diagnosis (ng/mL) | 78 (30; 440) |
Serum PSA metastasis surgery (ng/mL) | 140 (32; 470) |
Time btw sampling of primary tumor and metastasis tissue biopsies (yrs.) | 1.9 (0.75; 4.6) |
ISUP grade at diagnosis: | N |
2 | 3 (3%) |
3 | 31 (32%) |
4 | 34 (35%) |
5 | 30 (31%) |
Castration therapy a: | N |
None (hormone-naïve) | 13 (13%) |
Short-term b | 4 (4%) |
CRPC c | 81 (83%) |
Treatment for CRPC: | N |
Bicalutamide | 46 (49%) |
Chemotherapy | 20 (20%) |
Abiraterone acetate | 10 (10%) |
Enzalutamide | 4 (4%) |
Ra223 | 3 (3%) |
Zoledronic acid/Denosumab | 2 (2%) |
Primary Tumor | Metastases | RS (n) | |
---|---|---|---|
Epithelial markers | |||
ERG (pos./total) Epithelial markers | 30/80 | 21/80 ** | 0.71 *** |
Ki67 (%), n = 98 | 13 (7.5; 20) | 16 (9.3; 25) * | 0.38 *** |
PSA (score), n = 98 | 8 (6; 12) | 6 (4; 9) * | 0.37 *** |
AR (score), n = 92 | 12 (8; 12) | 8 (4; 12) *** | 0.22 * |
Stromal markers | |||
Ki67 (%), n = 75 | 1.5 (0.95; 2.9) | 5.0 (3.0; 7.0) *** | 0.074 |
AR (%), n = 68 | 19 (13; 28) | 2.7 (1.5; 4.0) *** | 0.27 * |
SMA density (%), n = 50 | 16 (12; 18) | 5.3 (3.5; 8.3) *** | 0.097 |
SDF-1 density (%), n = 51 | 3.1 (2.1; 4.1) | 4.3 (3.4; 6.1) *** | −0.27 |
PDGFRβ density (%), n = 37 | 9.1 (5.0; 13) | 10 (8.3; 13) * | 0.26 |
ERG, endothelium density (%), n = 69 | 1.0 (0.66; 1.5) | 1.0 (0.62; 1.4) | 0.44 |
Clinical Variables | HR (95% CI) | P |
---|---|---|
Age at diagnosis (yrs.) | 1.0 (1.0–1.1) | 0.066 |
Serum PSA at diagnosis (ng/mL) | 1.1 (1.0–1.2) | 0.026 |
ISUP grade at diagnosis | 1.0 (0.78–1.4) | 0.78 |
Combinatory Ki67, PSA score a | ||
Low Ki67, high PSA, n = 26 | ref. | |
Others, n = 35 | 2.9 (1.6–5.3) | 0.00028 |
High Ki67, low PSA, n = 31 | 2.5 (1.3–4.8) | 0.0065 |
AR in stroma cells b | ||
Q1, n = 23 | ref. | |
Q2–3, n = 47 | 0.46 (0.25–0.86) | 0.014 |
Q4, n = 22 | 0.37 (0.18–0.74) | 0.0050 |
Ki67 Low, PSA High a | Ki67 High, PSA Low a | Others a | |
---|---|---|---|
n = 26 | n = 34 | n = 38 | |
Age at diagnosis (yrs.), n = 97 | 71 (65; 78) | 70 (65; 76) | 68 (64; 73) |
Serum PSA at diagnosis (ng/mL), n = 96 | 110 (41; 940) | 44 (26; 96) | 97 (49; 590) |
ISUP, n = 98 | 4 (3; 5) | 4 (4; 5) | 4 (3; 4) |
Primary tumors | |||
Ki67 epithelium (%), n = 98 | 7.5 (6; 10) | 22 (18; 37) *** | 12 (7.0; 16) * |
PSA epithelium (score), n = 98 | 12 (9; 12) | 6 (3; 7) *** | 8 (6; 10) *** |
AR epithelium (score), n = 97 | 12 (8; 12) | 12 (8; 12) | 12 (9; 12) |
ERG epithelium (pos./total), n = 86 | 5/22 | 11/30 | 16/34 |
Ki67 stroma (%), n = 95 | 1 (0.5; 1.5) | 2.8 (1.1; 4.0) *** | 1.2 (0.63; 2.0) |
AR stroma (%), n = 97 | 23 (16; 34) | 9.5 (6.0; 18) *** | 20 (14; 28) |
SMA stroma density (%), n = 69 | 16 (13; 18) | 15 (11; 18) | 16 (12; 18) |
SDF-1 stroma density (%), n = 67 | 2.9 (1.6; 4.2) | 3.4 (2.3; 4.1) | 3.1 (1.7; 3.9) |
PDGFRβ stroma density (%), n = 61 | 6.1 (3.6; 10) | 4.9 (3.8; 7.9) | 9.0 (5.8; 13) |
ERG endothelium density (%), n = 84 | 1.2 (0.83; 1.5) | 0.83 (0.63; 1.5) | 0.89 (0.66; 1.3) |
Metastases | |||
Ki67 epithelium (%), n = 98 | 12 (6.0; 18) | 19 (11; 35) ** | 18 (10; 25) * |
PSA epithelium (score), n = 98 | 9 (6; 12) | 4 (1; 6) *** | 8 (6; 10) |
AR epithelium (score), n = 93 | 9 (4; 12) | 8 (3; 12) | 8 (4; 12) |
ERG epithelium (pos./total), n = 92 | 4/25 | 6/32 | 15/35 * |
Ki67 stroma (%), n = 78 | 3.5 (2.0; 6.5) | 6.0 (4.0; 8.0) * | 4.0 (2.0; 7.5) |
AR stroma (%), n = 69 | 2.7 (1.6; 6.0) | 2 (1.3; 4.0) | 3.4 (2.0; 4.0) |
SMA stroma density (%), n = 72 | 4.7 (3.2; 6.8) | 5.2 (4.2; 8.5) | 5.3 (3.0; 6.3) |
SDF-1 stroma density (%), n = 76 | 5.4 (4.1; 6.6) | 4.4 (3.0; 5.6) | 4.5 (3.4; 6.3) |
PDGFRβ stroma density (%), n = 60 | 10 (8.3, 12) | 9.6 (5.4; 13) | 9.0 (6.4; 12) |
ERG endothelium density (%), n = 82 | 0.87 (0.55; 1.2) | 1.3 (0.95; 2.0) ** | 0.92 (0.80; 1.4) |
MetA b (%), n = 70 | 78 (62; 86) | 37 (9; 60) *** | 70 (46; 84) |
MetB b (%), n = 70 | 10 (1; 18) | 31 (5; 65) * | 14 (7; 26) |
MetC b (%), n = 70 | 11 (0; 26) | 11 (0; 54) | 4 (0; 19) |
Ki67 Low, PSA High a | Ki67 High, PSA Low a | Others a | |
---|---|---|---|
n = 22 (%) | n = 22 | n = 26 | |
MetA b, n = 48 | 20 (91) | 8 (36) | 20 (77) |
MetB b, n = 11 | 0 (0) | 8 (36) | 3 (12) |
MetC b, n = 11 | 2 (9) | 6 (27) | 3 (12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wikström, P.; Bergström, S.H.; Josefsson, A.; Semenas, J.; Nordstrand, A.; Thysell, E.; Crnalic, S.; Widmark, A.; Karlsson, C.T.; Bergh, A. Epithelial and Stromal Characteristics of Primary Tumors Predict the Bone Metastatic Subtype of Prostate Cancer and Patient Survival after Androgen-Deprivation Therapy. Cancers 2022, 14, 5195. https://doi.org/10.3390/cancers14215195
Wikström P, Bergström SH, Josefsson A, Semenas J, Nordstrand A, Thysell E, Crnalic S, Widmark A, Karlsson CT, Bergh A. Epithelial and Stromal Characteristics of Primary Tumors Predict the Bone Metastatic Subtype of Prostate Cancer and Patient Survival after Androgen-Deprivation Therapy. Cancers. 2022; 14(21):5195. https://doi.org/10.3390/cancers14215195
Chicago/Turabian StyleWikström, Pernilla, Sofia Halin Bergström, Andreas Josefsson, Julius Semenas, Annika Nordstrand, Elin Thysell, Sead Crnalic, Anders Widmark, Camilla Thellenberg Karlsson, and Anders Bergh. 2022. "Epithelial and Stromal Characteristics of Primary Tumors Predict the Bone Metastatic Subtype of Prostate Cancer and Patient Survival after Androgen-Deprivation Therapy" Cancers 14, no. 21: 5195. https://doi.org/10.3390/cancers14215195
APA StyleWikström, P., Bergström, S. H., Josefsson, A., Semenas, J., Nordstrand, A., Thysell, E., Crnalic, S., Widmark, A., Karlsson, C. T., & Bergh, A. (2022). Epithelial and Stromal Characteristics of Primary Tumors Predict the Bone Metastatic Subtype of Prostate Cancer and Patient Survival after Androgen-Deprivation Therapy. Cancers, 14(21), 5195. https://doi.org/10.3390/cancers14215195