The Association of Tumor Immune Microenvironment of the Primary Lesion with Time to Metastasis in Patients with Renal Cell Carcinoma: A Retrospective Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Outcomes
2.2. Patients
2.3. Assessment of Histology and Immune Status
2.4. Time to Metastasis
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients with Synchronous and Metachronous mRCC
3.2. Multivariable Logistic Regression Analysis of Metachronous/Synchronous Metastasis
3.3. TIME and Time to Metastasis
3.4. Pathological Features and Time from Initial Diagnosis to Metastasis
3.5. Clinical Characteristics at the Time of 1L Treatment
4. Discussion
4.1. The Difference in Baseline Characteristics between SG and MG
4.2. Association between TIME and Time to Metastasis
4.3. Clinical Importance of Time to Metastasis and TIME
4.4. Clinical Importance of TIME in the Current IO Era
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dabestani, S.; Thorstenson, A.; Lindblad, P.; Harmenberg, U.; Ljungberg, B.; Lundstam, S. Renal cell carcinoma recurrences and metastasis in primary non-metastatic patients: A population-based study. World J. Urol. 2016, 34, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Donskov, F.; Xie, W.; Overby, A.; Wells, J.C.; Fraccon, A.P.; Sacco, C.S.; Porta, C.; Stukalin, I.; Lee, J.L.; Koutsoukos, K.; et al. Synchronous versus metachronous metastatic disease: Impact of time to metastasis on patient outcome-Results from the International Metastatic Renal Cell Carcinoma Database Consortium. Eur. Urol. Oncol. 2020, 3, 530–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motzer, R.J.; Mazumdar, M.; Bacik, J.; Berg, W.; Amsterdam, A.; Ferrara, J. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J. Clin. Oncol. 1999, 17, 2530–2540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, D.Y.; Xie, W.; Regan, M.M.; Harshman, L.C.; Bjarnason, G.A.; Vaishampayan, U.N.; Mackenzie, M.; Wood, L.; Donskov, F.; Tan, M.H.; et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: A population-based study. Lancet Oncol. 2013, 14, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Kammerer-Jacquet, S.F.; Brunot, A.; Pladys, A.; Bouzille, G.; Dagher, J.; Medane, S.; Peyronnet, B.; Mathieu, R.; Verhoest, G.; Bensalah, K.; et al. Synchronous metastatic clear-cell renal cell carcinoma: A distinct morphologic, immunohistochemical, and molecular phenotype. Clin. Genitourin. Cancer 2017, 15, e1–e7. [Google Scholar] [CrossRef]
- Turajlic, S.; Xu, H.; Litchfield, K.; Rowan, A.; Chambers, T.; Lopez, J.I.; Nicol, D.; O’Brien, T.; Larkin, J.; Horswell, S.; et al. Tracking cancer evolution reveals constrained routes to metastasis: TRACERx Renal. Cell 2018, 173, 581–594.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Larkin, J.; Pal, S.; Motzer, R.J.; Rini, B.I.; Venugopal, B.; Alekseev, B.; Miyake, H.; Gravis, G.; Bilen, M.A.; et al. Efficacy and correlative analyses of avelumab plus axitinib versus sunitinib in sarcomatoid renal cell carcinoma: Post hoc analysis of a randomized clinical trial. ESMO Open 2021, 6, 100101. [Google Scholar] [CrossRef]
- Tran, J.; Ornstein, M.C. Clinical Review on the management of metastatic renal cell carcinoma. JCO Oncol. Pract. 2022, 18, 187–196. [Google Scholar] [CrossRef]
- Yu, E.M.; Linville, L.; Rosenthal, M.; Aragon-Ching, J.B. A Contemporary Review of Immune Checkpoint Inhibitors in Advanced Clear Cell Renal Cell Carcinoma. Vaccines 2021, 9, 919. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Chang, Y.H.; Hajek, J.; Symeonides, S.N.; Lee, J.L.; Powles, T. KEYNOTE-564 Investigators. Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 385, 683–694. [Google Scholar] [CrossRef]
- Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 2020, 18, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Montero, C.M.; Rini, B.I.; Finke, J.H. The immunology of renal cell carcinoma. Nat. Rev. Nephrol. 2020, 16, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Uemura, M.; Nakaigawa, N.; Sassa, N.; Tatsugami, K.; Harada, K.; Yamasaki, T.; Matsubara, N.; Yoshimoto, T.; Nakagawa, Y.; Fukuyama, T.; et al. Prognostic value of programmed death-ligand 1 status in Japanese patients with renal cell carcinoma. Int J. Clin. Oncol. 2021, 26, 2073–2084. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018, 554, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Yoo, S.; You, D.; Jeong, I.G.; Song, C.; Hong, B.; Hong, J.H.; Ahn, H.; Kim, C.S. Prognostic factors for survival of patients with synchronous or metachronous brain metastasis of renal cell carcinoma. Clin. Genitourin. Cancer 2017, 15, 717–723. [Google Scholar] [CrossRef]
- Kawashima, A.; Kanazawa, T.; Kidani, Y.; Yoshida, T.; Hirata, M.; Nishida, K.; Nojima, S.; Yamamoto, Y.; Kato, T.; Hatano, K.; et al. Tumour grade significantly correlates with total dysfunction of tumour tissue-infiltrating lymphocytes in renal cell carcinoma. Sci. Rep. 2020, 10, 6220. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, F.; Sircar, K.; Rodriguez-Canales, J.; Fellman, B.M.; Urbauer, D.L.; Tamboli, P.; Tannir, N.M.; Jonasch, E.; Wistuba, I.I.; Wood, C.G.; et al. Programmed cell death ligand 1 and tumor-infiltrating lymphocyte status in patients with renal cell carcinoma and sarcomatoid dedifferentiation. Cancer 2017, 123, 4823–4831. [Google Scholar] [CrossRef] [Green Version]
- Giraldo, N.A.; Becht, E.; Pagès, F.; Skliris, G.; Verkarre, V.; Vano, Y.; Mejean, A.; Saint-Aubert, N.; Lacroix, L.; Natario, I.; et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin. Cancer Res. 2015, 21, 3031–3040. [Google Scholar] [CrossRef]
- McDermott, D.F.; Huseni, M.A.; Atkins, M.B.; Motzer, R.J.; Rini, B.I.; Escudier, B.; Fong, L.; Joseph, R.W.; Pal, S.K.; Reeves, J.A.; et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 2018, 24, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Chen, G.; Xie, Q.; Li, X.; Xu, H.; Wang, H.; Zhao, S. Association between PD-L1 expression and the prognosis and clinicopathologic features of renal cell carcinoma: A systematic review and meta-analysis. Urol. Int. 2020, 104, 533–541. [Google Scholar] [CrossRef]
- Giraldo, N.A.; Becht, E.; Vano, Y.; Petitprez, F.; Lacroix, L.; Validire, P.; Sanchez-Salas, R.; Ingels, A.; Oudard, S.; Moatti, A.; et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin. Cancer Res. 2017, 23, 4416–4428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer 2012, 12, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Barnes, T.A.; Amir, E. HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br. J. Cancer 2017, 117, 451–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudier, B.; Motzer, R.J.; Tannir, N.M.; Porta, C.; Tomita, Y.; Maurer, M.A.; McHenry, M.B.; Rini, B.I. Efficacy of nivolumab plus ipilimumab according to number of IMDC risk factors in CheckMate 214. Eur. Urol. 2020, 77, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Tannir, N.M.; Signoretti, S.; Choueiri, T.K.; McDermott, D.F.; Motzer, R.J.; Flaifel, A.; Pignon, J.C.; Ficial, M.; Frontera, O.A.; George, S.; et al. Efficacy and safety of nivolumab plus ipilimumab versus sunitinib in first-line treatment of patients with advanced sarcomatoid renal cell carcinoma. Clin. Cancer Res. 2021, 27, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Alekseev, B.Y.; Lee, J.L.; Suarez, C.; Stroyakovskiy, D.; de Giorgi, U.; et al. Final overall survival and molecular analysis in IMmotion151, a phase 3 trial comparing atezolizumab plus bevacizumab vs. sunitinib in patients with previously untreated metastatic renal cell carcinoma. JAMA Oncol. 2022, 8, 275–280. [Google Scholar] [CrossRef]
- Motzer, R.J.; Choueiri, T.K.; McDermott, D.F.; Powles, T.; Vano, Y.A.; Gupta, S.; Yao, J.; Han, C.; Ammar, R.; Papillon-Cavanagh, S.; et al. Biomarker analysis from CheckMate 214: Nivolumab plus ipilimumab versus sunitinib in renal cell carcinoma. J. Immunother. Cancer 2022, 10, e004316. [Google Scholar] [CrossRef]
- Méjean, A.; Ravaud, A.; Thezenas, S.; Colas, S.; Beauval, J.B.; Bensalah, K.; Geoffrois, L.; Thiery-Vuillemin, A.; Cormier, L.; Escudier, B. Sunitinib Alone or after Nephrectomy in Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 417–427. [Google Scholar] [CrossRef]
- Roldán, F.L.; Izquierdo, L.; Ingelmo-Torres, M.; Lozano, J.J.; Carrasco, R.; Cuñado, A.; Reig, O.; Mengual, L.; Alcaraz, A. Prognostic Gene Expression-Based Signature in Clear-Cell Renal Cell Carcinoma. Cancers 2022, 14, 3754. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Zheng, J.; Liang, Q.; Liu, Y.; Yang, Y.; Wang, R.; Wang, M.; Zhang, Q.; Xuan, Z.; Sun, H.; et al. Identification and Validation of a Novel Ferroptotic Prognostic Genes-Based Signature of Clear Cell Renal Cell Carcinoma. Cancers 2022, 14, 4690. [Google Scholar] [CrossRef] [PubMed]
Characteristic, n (%) | Synchronous a (N = 307) | Metachronous b (N = 261) | Total (N = 568) | p-Value c | Standardized Difference |
---|---|---|---|---|---|
Sex d | |||||
Male | 238 (77.5) | 196 (75.1) | 434 (76.4) | 0.497 | 0.1 |
Female | 69 (22.5) | 65 (24.9) | 134 (23.6) | −0.1 | |
Age | |||||
Mean (standard deviation) | 63.2 (10.9) | 62.8 (10.3) | 63.0 (10.6) | 0.623 | 0.0 |
Median [range] | 64.0 [23, 87] | 64.0 [30, 85] | 64.0 [23, 87] | ||
Age category d | |||||
<65 y | 164 (53.4) | 140 (53.6) | 304 (53.5) | 0.473 | 0.0 |
≥65 and <75 y | 94 (30.6) | 88 (33.7) | 182 (32.0) | −0.1 | |
≥75 y | 49 (16.0) | 33 (12.6) | 82 (14.4) | 0.1 | |
Histology d | |||||
Clear cell | 286 (93.2) | 241 (92.3) | 527 (92.8) | 0.706 | 0.0 |
Non–clear cell | 21 (6.8) | 20 (7.7) | 41 (7.2) | 0.0 | |
Sarcomatoid component d | |||||
Absent | 257 (83.7) | 247 (94.6) | 504 (88.7) | <0.0001 | −0.4 |
Present | 50 (16.3) | 14 (5.4) | 64 (11.3) | 0.4 | |
Growth pattern d | |||||
Expansive | 97 (31.6) | 110 (42.1) | 207 (36.4) | 0.021 | −0.2 |
Infiltrative | 87 (28.3) | 55 (21.1) | 142 (25.0) | 0.2 | |
Indeterminable | 123 (40.1) | 96 (36.8) | 219 (38.6) | 0.1 | |
Fuhrman grade d | |||||
Grade 1/2 | 78 (25.4) | 107 (41.0) | 185 (32.6) | <0.0001 | −0.3 |
Grade 3 | 154 (50.2) | 126 (48.3) | 280 (49.3) | 0.0 | |
Grade 4 | 75 (24.4) | 28 (10.7) | 103 (18.1) | 0.4 | |
WHO/ISUP grade d | |||||
Grade 1/2 | 91 (29.6) | 124 (47.5) | 215 (37.9) | <0.0001 | −0.4 |
Grade 3 | 117 (38.1) | 98 (37.5) | 215 (37.9) | 0.0 | |
Grade 4 | 99 (32.2) | 39 (14.9) | 138 (24.3) | 0.4 | |
Necrosis d | |||||
Absent | 150 (48.9) | 169 (64.8) | 319 (56.2) | 0.0007 | −0.3 |
Present | 156 (50.8) | 91 (34.9) | 247 (43.5) | 0.3 | |
Indeterminable | 1 (0.3) | 1 (0.4) | 2 (0.4) | 0.0 | |
Lymphovascular invasion d | |||||
Absent | 195 (63.5) | 194 (74.3) | 389 (68.5) | 0.0074 | −0.2 |
Present | 94 (30.6) | 50 (19.2) | 144 (25.4) | 0.3 | |
Indeterminable | 18 (5.9) | 17 (6.5) | 35 (6.2) | 0.0 | |
TIME | |||||
PD-L1 expression | |||||
IC0 | 153 (49.8) | 181 (69.3) | 334 (58.8) | <0.0001 | −0.4 |
IC1 | 88 (28.7) | 56 (21.5) | 144 (25.4) | 0.2 | |
IC2 | 38 (12.4) | 16 (6.1) | 54 (9.5) | 0.2 | |
IC3 | 28 (9.1) | 8 (3.1) | 36 (6.3) | 0.3 | |
PD-L1 expression d | |||||
Negative e | 153 (49.8) | 181 (69.3) | 334 (58.8) | <0.0001 | −0.4 |
Positive f | 154 (50.2) | 80 (30.7) | 234 (41.2) | 0.4 | |
Immunophenotype d | |||||
Desert | 109 (35.5) | 133 (51.0) | 242 (42.6) | 0.0001 | −0.3 |
Excluded | 169 (55.0) | 119 (45.6) | 288 (50.7) | 0.2 | |
Inflamed | 29 (9.4) | 9 (3.4) | 38 (6.7) | 0.2 |
Selected Variable a | Definition of OR b | Adjusted OR b [95% CI] | p-Value c |
---|---|---|---|
PD-L1 expression | Positive/Negative | 1.76 [1.22, 2.55] | 0.0026 |
WHO/ISUP grade | Grade 3/Grades 1, 2 | 1.38 [0.93, 2.05] | 0.110 |
Grade 4/Grades 1, 2 | 2.58 [1.59, 4.20] | 0.0001 | |
Lymphovascular invasion | Present/Absent | 1.60 [1.06, 2.40] | 0.024 |
Characteristic, n (%) | Time from Initial Diagnosis to Metastasis | Total (N = 568) | p-Value a | ||||
---|---|---|---|---|---|---|---|
≤3 mo (N = 307) | >3–12 mo (N = 81) | >12–24 mo (N = 52) | >24 mo–5 y (N = 86) | >5 y (N = 42) | |||
Sex | |||||||
Male | 238 (77.5) | 60 (74.1) | 39 (75.0) | 63 (73.3) | 34 (81.0) | 434 (76.4) | 0.832 |
Female | 69 (22.5) | 21 (25.9) | 13 (25.0) | 23 (26.7) | 8 (19.0) | 134 (23.6) | |
Age | |||||||
Mean (standard deviation) | 63.2 (10.9) | 63.2 (11.4) | 62.9 (10.0) | 63.7 (9.8) | 60.2 (9.5) | 63.0 (10.6) | 0.281 |
Median [range] | 64.0 [23, 87] | 65.0 [30, 85] | 63.0 [32, 81] | 66.0 [35, 81] | 61.0 [38, 84] | 64.0 [23, 87] | |
Age category | |||||||
<65 y | 164 (53.4) | 39 (48.1) | 31 (59.6) | 41 (47.7) | 29 (69.0) | 304 (53.5) | 0.179 |
≥65 and <75 y | 94 (30.6) | 27 (33.3) | 15 (28.8) | 34 (39.5) | 12 (28.6) | 182 (32.0) | |
≥75 y | 49 (16.0) | 15 (18.5) | 6 (11.5) | 11 (12.8) | 1 (2.4) | 82 (14.4) | |
Histology | |||||||
Clear cell | 286 (93.2) | 74 (91.4) | 46 (88.5) | 79 (91.9) | 42 (100.0) | 527 (92.8) | 0.274 |
Non–clear cell | 21 (6.8) | 7 (8.6) | 6 (11.5) | 7 (8.1) | 0 (0.0) | 41 (7.2) | |
Sarcomatoid component | |||||||
Absent | 257 (83.7) | 74 (91.4) | 46 (88.5) | 85 (98.8) | 42 (100.0) | 504 (88.7) | 0.0002 |
Present | 50 (16.3) | 7 (8.6) | 6 (11.5) | 1 (1.2) | 0 (0.0) | 64 (11.3) | |
Growth pattern | |||||||
Expansive | 97 (31.6) | 23 (28.4) | 23 (44.2) | 45 (52.3) | 19 (45.2) | 207 (36.4) | 0.0044 |
Infiltrative | 87 (28.3) | 27 (33.3) | 10 (19.2) | 11 (12.8) | 7 (16.7) | 142 (25.0) | |
Indeterminable | 123 (40.1) | 31 (38.3) | 19 (36.5) | 30 (34.9) | 16 (38.1) | 219 (38.6) | |
Fuhrman grade | |||||||
Grade 1/2 | 78 (25.4) | 21 (25.9) | 20 (38.5) | 42 (48.8) | 24 (57.1) | 185 (32.6) | <0.0001 |
Grade 3 | 154 (50.2) | 46 (56.8) | 24 (46.2) | 40 (46.5) | 16 (38.1) | 280 (49.3) | |
Grade 4 | 75 (24.4) | 14 (17.3) | 8 (15.4) | 4 (4.7) | 2 (4.8) | 103 (18.1) | |
WHO/ISUP grade | |||||||
Grade 1/2 | 91 (29.6) | 21 (25.9) | 26 (50.0) | 51 (59.3) | 26 (61.9) | 215 (37.9) | <0.0001 |
Grade 3 | 117 (38.1) | 43 (53.1) | 13 (25.0) | 28 (32.6) | 14 (33.3) | 215 (37.9) | |
Grade 4 | 99 (32.2) | 17 (21.0) | 13 (25.0) | 7 (8.1) | 2 (4.8) | 138 (24.3) | |
Necrosis | |||||||
Absent | 150 (48.9) | 37 (45.7) | 35 (67.3) | 63 (73.3) | 34 (81.0) | 319 (56.2) | <0.0001 |
Present | 156 (50.8) | 43 (53.1) | 17 (32.7) | 23 (26.7) | 8 (19.0) | 247 (43.5) | |
Indeterminable | 1 (0.3) | 1 (1.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (0.4) | |
Lymphovascular invasion | |||||||
Absent | 195 (63.5) | 54 (66.7) | 43 (82.7) | 68 (79.1) | 29 (69.0) | 389 (68.5) | 0.0081 |
Present | 94 (30.6) | 23 (28.4) | 7 (13.5) | 13 (15.1) | 7 (16.7) | 144 (25.4) | |
Indeterminable | 18 (5.9) | 4 (4.9) | 2 (3.8) | 5 (5.8) | 6 (14.3) | 35 (6.2) | |
TIME | |||||||
PD-L1 expression | |||||||
IC0 | 153 (49.8) | 47 (58.0) | 40 (76.9) | 62 (72.1) | 32 (76.2) | 334 (58.8) | 0.0005 |
IC1 | 88 (28.7) | 22 (27.2) | 9 (17.3) | 18 (20.9) | 7 (16.7) | 144 (25.4) | |
IC2 | 38 (12.4) | 9 (11.1) | 3 (5.8) | 3 (3.5) | 1 (2.4) | 54 (9.5) | |
IC3 | 28 (9.1) | 3 (3.7) | 0 (0.0) | 3 (3.5) | 2 (4.8) | 36 (6.3) | |
PD-L1 expression | |||||||
Negative b | 153 (49.8) | 47 (58.0) | 40 (76.9) | 62 (72.1) | 32 (76.2) | 334 (58.8) | <0.0001 |
Positive c | 154 (50.2) | 34 (42.0) | 12 (23.1) | 24 (27.9) | 10 (23.8) | 234 (41.2) | |
Immunophenotype | |||||||
Desert | 109 (35.5) | 33 (40.7) | 26 (50.0) | 51 (59.3) | 23 (54.8) | 242 (42.6) | 0.0008 |
Excluded | 169 (55.0) | 46 (56.8) | 25 (48.1) | 30 (34.9) | 18 (42.9) | 288 (50.7) | |
Inflamed | 29 (9.4) | 2 (2.5) | 1 (1.9) | 5 (5.8) | 1 (2.4) | 38 (6.7) |
Characteristic, n (%) | Synchronous a (N = 307) | Metachronous b (N = 261) | Total (N = 568) | p-Value c | Standardized Difference |
---|---|---|---|---|---|
Sex | |||||
Male | 238 (77.5) | 196 (75.1) | 434 (76.4) | 0.497 | 0.1 |
Female | 69 (22.5) | 65 (24.9) | 134 (23.6) | −0.1 | |
Age (year) | |||||
Mean (standard deviation) | 63.8 (10.9) | 66.4 (10.3) | 65.0 (10.7) | 0.0032 | −0.2 |
Median [range] | 64.0 [23, 87] | 68.0 [31, 89] | 66.0 [23, 89] | ||
Age category | |||||
<65 y | 155 (50.5) | 102 (39.1) | 257 (45.2) | 0.021 | 0.2 |
≥65 and <75 y | 100 (32.6) | 100 (38.3) | 200 (35.2) | −0.1 | |
≥75 y | 52 (16.9) | 59 (22.6) | 111 (19.5) | −0.1 | |
ECOG PS category | |||||
0, 1 | 251 (81.8) | 212 (81.2) | 463 (81.5) | 0.400 | 0.0 |
≥2 | 38 (12.4) | 27 (10.3) | 65 (11.4) | 0.1 | |
Unknown | 18 (5.9) | 22 (8.4) | 40 (7.0) | −0.1 | |
IMDC risk group | |||||
Favorable | 11 (3.6) | 103 (39.5) | 114 (20.1) | < 0.0001 | −1.0 |
Intermediate | 199 (64.8) | 134 (51.3) | 333 (58.6) | 0.3 | |
Poor | 97 (31.6) | 24 (9.2) | 121 (21.3) | 0.6 | |
White blood cells | |||||
≤ULN | 253 (82.4) | 231 (88.5) | 484 (85.2) | 0.107 | −0.2 |
>ULN | 49 (16.0) | 26 (10.0) | 75 (13.2) | 0.2 | |
Indeterminable | 5 (1.6) | 4 (1.5) | 9 (1.6) | 0.0 | |
Neutrophils | |||||
≤ULN | 219 (71.3) | 187 (71.6) | 406 (71.5) | 0.144 | 0.0 |
>ULN | 63 (20.5) | 42 (16.1) | 105 (18.5) | 0.1 | |
Indeterminable | 25 (8.1) | 32 (12.3) | 57 (10.0) | −0.1 | |
Neutrophil–lymphocyte ratio | |||||
<2.9 | 135 (44.0) | 131 (50.2) | 266 (46.8) | 0.021 | −0.1 |
≥2.9 | 147 (47.9) | 97 (37.2) | 244 (43.0) | 0.2 | |
Indeterminable | 25 (8.1) | 33 (12.6) | 58 (10.2) | −0.1 | |
CRP (mg/dL) | |||||
<0.3 | 92 (30.0) | 129 (49.4) | 221 (38.9) | <0.0001 | −0.4 |
≥0.3 | 199 (64.8) | 114 (43.7) | 313 (55.1) | 0.4 | |
Indeterminable | 16 (5.2) | 18 (6.9) | 34 (6.0) | −0.1 | |
Hemoglobin | |||||
≥LLN | 112 (36.5) | 153 (58.6) | 265 (46.7) | <0.0001 | −0.5 |
<LLN | 190 (61.9) | 104 (39.8) | 294 (51.8) | 0.5 | |
Indeterminable | 5 (1.6) | 4 (1.5) | 9 (1.6) | 0.0 | |
Platelets | |||||
≤ULN | 258 (84.0) | 243 (93.1) | 501 (88.2) | 0.0020 | −0.3 |
>ULN | 44 (14.3) | 14 (5.4) | 58 (10.2) | 0.3 | |
Indeterminable | 5 (1.6) | 4 (1.5) | 9 (1.6) | 0.0 | |
Corrected serum calcium (mg/dL) | |||||
≤10 | 250 (81.4) | 223 (85.4) | 473 (83.3) | 0.058 | −0.1 |
>10 | 39 (12.7) | 18 (6.9) | 57 (10.0) | 0.2 | |
Indeterminable | 18 (5.9) | 20 (7.7) | 38 (6.7) | −0.1 | |
Lactate dehydrogenase | |||||
≤ULN × 1.5 | 273 (88.9) | 241 (92.3) | 514 (90.5) | 0.370 | −0.1 |
>ULN × 1.5 | 19 (6.2) | 12 (4.6) | 31 (5.5) | 0.1 | |
Indeterminable | 15 (4.9) | 8 (3.1) | 23 (4.0) | 0.1 | |
Albumin | |||||
≥LLN | 95 (30.9) | 128 (49.0) | 223 (39.3) | <0.0001 | −0.4 |
<LLN | 199 (64.8) | 123 (47.1) | 322 (56.7) | 0.4 | |
Indeterminable | 13 (4.2) | 10 (3.8) | 23 (4.0) | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujita, K.; Kimura, G.; Tsuzuki, T.; Kato, T.; Banno, E.; Kazama, A.; Yamashita, R.; Matsushita, Y.; Ishii, D.; Fukawa, T.; et al. The Association of Tumor Immune Microenvironment of the Primary Lesion with Time to Metastasis in Patients with Renal Cell Carcinoma: A Retrospective Analysis. Cancers 2022, 14, 5258. https://doi.org/10.3390/cancers14215258
Fujita K, Kimura G, Tsuzuki T, Kato T, Banno E, Kazama A, Yamashita R, Matsushita Y, Ishii D, Fukawa T, et al. The Association of Tumor Immune Microenvironment of the Primary Lesion with Time to Metastasis in Patients with Renal Cell Carcinoma: A Retrospective Analysis. Cancers. 2022; 14(21):5258. https://doi.org/10.3390/cancers14215258
Chicago/Turabian StyleFujita, Kazutoshi, Go Kimura, Toyonori Tsuzuki, Taigo Kato, Eri Banno, Akira Kazama, Ryo Yamashita, Yuto Matsushita, Daisuke Ishii, Tomoya Fukawa, and et al. 2022. "The Association of Tumor Immune Microenvironment of the Primary Lesion with Time to Metastasis in Patients with Renal Cell Carcinoma: A Retrospective Analysis" Cancers 14, no. 21: 5258. https://doi.org/10.3390/cancers14215258
APA StyleFujita, K., Kimura, G., Tsuzuki, T., Kato, T., Banno, E., Kazama, A., Yamashita, R., Matsushita, Y., Ishii, D., Fukawa, T., Nakagawa, Y., Fukuyama, T., Sano, F., Kondo, Y., & Uemura, H. (2022). The Association of Tumor Immune Microenvironment of the Primary Lesion with Time to Metastasis in Patients with Renal Cell Carcinoma: A Retrospective Analysis. Cancers, 14(21), 5258. https://doi.org/10.3390/cancers14215258