Immunomodulatory Effects of Stereotactic Body Radiotherapy and Vaccination with Heat-Killed Mycobacterium Obuense (IMM-101) in Patients with Locally Advanced Pancreatic Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Treatment Scheme and Methods
2.1. Study Design and Participants
2.2. SBRT and IMM-101 Vaccination
2.3. Follow up and Resectability Assessments
2.4. Objectives and Endpoints
2.5. Targeted Gene-Expression Profiling
2.6. Flow Cytometry Immuno-Monitoring
2.7. Statistical Analysis—Sample Size Calculation
2.8. Statistical Analysis—Data Analysis and Visualisation
3. Results
3.1. Patient and Treatment Characteristics
3.2. Safety and Clinical Outcome
3.3. Downregulation of Genes Related to Lymphocyte Subsets and Immune inhibition after IMM-101/SBRT
3.4. Reduced Peripheral Lymphocyte Numbers following IMM-101/SBRT
3.5. IMM-101/SBRT Increased Proportions of Activated Lymphocytes
3.6. Treatment-Induced Increase in Activated Lymphocytes Is Correlated with Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Latenstein, A.E.J.; van der Geest, L.G.M.; Bonsing, B.A.; Groot Koerkamp, B.; Haj Mohammad, N.; de Hingh, I.; de Meijer, V.E.; Molenaar, I.Q.; van Santvoort, H.C.; van Tienhoven, G.; et al. Nationwide trends in incidence, treatment and survival of pancreatic ductal adenocarcinoma. Eur. J. Cancer 2020, 125, 83–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Behrman, S.W.; Benson, A.B.; Cardin, D.B.; Chiorean, E.G.; Chung, V.; Czito, B.; Del Chiaro, M.; et al. Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 439–457. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.M.; Chang, D.T.; Goodman, K.A.; Dholakia, A.S.; Raman, S.P.; Hacker-Prietz, A.; Iacobuzio-Donahue, C.A.; Griffith, M.E.; Pawlik, T.M.; Pai, J.S.; et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer 2015, 121, 1128–1137. [Google Scholar] [CrossRef]
- Suker, M.; Nuyttens, J.J.; Eskens, F.; Haberkorn, B.C.M.; Coene, P.L.O.; van der Harst, E.; Bonsing, B.A.; Vahrmeijer, A.L.; Mieog, J.S.D.; Jan Swijnenburg, R.; et al. Efficacy and feasibility of stereotactic radiotherapy after folfirinox in patients with locally advanced pancreatic cancer (LAPC-1 trial). EClinicalMedicine 2019, 17, 100200. [Google Scholar] [CrossRef]
- Quan, K.; Sutera, P.; Xu, K.; Bernard, M.E.; Burton, S.A.; Wegner, R.E.; Zeh, H.; Bahary, N.; Stoller, R.; Heron, D.E. Results of a prospective phase 2 clinical trial of induction gemcitabine/capecitabine followed by stereotactic ablative radiation therapy in borderline resectable or locally advanced pancreatic adenocarcinoma. Pract. Radiat. Oncol. 2018, 8, 95–106. [Google Scholar] [CrossRef]
- Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 2005, 104, 1129–1137. [Google Scholar] [CrossRef]
- Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular Mechanisms of Radiation-Induced Cancer Cell Death: A Primer. Front. Cell Dev. Biol. 2020, 8, 41. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, M.; Huang, Z.; Yu, J.; Meng, X. SBRT combined with PD-1/PD-L1 inhibitors in NSCLC treatment: A focus on the mechanisms, advances, and future challenges. J. Hematol. Oncol. 2020, 13, 105. [Google Scholar] [CrossRef]
- Sharabi, A.B.; Lim, M.; DeWeese, T.L.; Drake, C.G. Radiation and checkpoint blockade immunotherapy: Radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015, 16, e498–e509. [Google Scholar] [CrossRef]
- Reits, E.A.; Hodge, J.W.; Herberts, C.A.; Groothuis, T.A.; Chakraborty, M.; Wansley, E.K.; Camphausen, K.; Luiten, R.M.; de Ru, A.H.; Neijssen, J.; et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 2006, 203, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, M.; Abrams, S.I.; Camphausen, K.; Liu, K.; Scott, T.; Coleman, C.N.; Hodge, J.W. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J. Immunol. 2003, 170, 6338–6347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharabi, A.B.; Nirschl, C.J.; Kochel, C.M.; Nirschl, T.R.; Francica, B.J.; Velarde, E.; Deweese, T.L.; Drake, C.G. Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-Mediated Antitumor Immune Responses via Cross-Presentation of Tumor Antigen. Cancer Immunol. Res. 2015, 3, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornel, A.M.; Mimpen, I.L.; Nierkens, S. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers 2020, 12, 1760. [Google Scholar] [CrossRef]
- Golden, E.B.; Apetoh, L. Radiotherapy and immunogenic cell death. Semin. Radiat. Oncol. 2015, 25, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72. [Google Scholar] [CrossRef]
- Ahmed, A.; Tait, S.W.G. Targeting immunogenic cell death in cancer. Mol. Oncol. 2020, 14, 2994–3006. [Google Scholar] [CrossRef]
- Bazzi, S.; Modjtahedi, H.; Mudan, S.; Achkar, M.; Akle, C.; Bahr, G.M. Immunomodulatory effects of heat-killed Mycobacterium obuense on human blood dendritic cells. Innate Immun. 2017, 23, 592–605. [Google Scholar] [CrossRef] [Green Version]
- Elia, A.; Lincoln, L.; Brunet, L.R.; Hagemann, T. Treatment with IMM-101 induces protective CD8+ T cell responses in clinically relevant models of pancreatic cancer. J. Immunother. Cancer 2013, 1, P215. [Google Scholar] [CrossRef] [Green Version]
- Dalgleish, A.G.; Stebbing, J.; Adamson, D.J.; Arif, S.S.; Bidoli, P.; Chang, D.; Cheeseman, S.; Diaz-Beveridge, R.; Fernandez-Martos, C.; Glynne-Jones, R.; et al. Randomised, open-label, phase II study of gemcitabine with and without IMM-101 for advanced pancreatic cancer. Br. J. Cancer 2016, 115, e16. [Google Scholar] [CrossRef]
- Costa Neves, M.; Giakoustidis, A.; Stamp, G.; Gaya, A.; Mudan, S. Extended Survival after Complete Pathological Response in Metastatic Pancreatic Ductal Adenocarcinoma Following Induction Chemotherapy, Chemoradiotherapy, and a Novel Immunotherapy Agent, IMM-101. Cureus 2015, 7, e435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stebbing, J.; Dalgleish, A.; Gifford-Moore, A.; Martin, A.; Gleeson, C.; Wilson, G.; Brunet, L.R.; Grange, J.; Mudan, S. An intra-patient placebo-controlled phase I trial to evaluate the safety and tolerability of intradermal IMM-101 in melanoma. Ann. Oncol. 2012, 23, 1314–1319. [Google Scholar] [CrossRef] [PubMed]
- Dalgleish, A.G.; Mudan, S.; Fusi, A. Enhanced effect of checkpoint inhibitors when given after or together with IMM-101: Significant responses in four advanced melanoma patients with no additional major toxicity. J. Transl. Med. 2018, 16, 227. [Google Scholar] [CrossRef] [PubMed]
- Dutch Pancreatic Cancer, G. CT Staging for Adenocarcinoma of the Pancreatic Head and Uncinate Process, Criteria for Resectability. 2012. Available online: https://dpcg.nl/wp-content/uploads/2020/04/Criteria_resectabiliteit.pdf (accessed on 1 May 2019).
- CTEP. Common Terminology Criteria for Adverse Events (CTCAE); version 5.0; U.S. Department of Health and Human Services: Washington, DC, USA, 2017.
- Lau, S.P.; Klaase, L.; Vink, M.; Dumas, J.; Bezemer, K.; van Krimpen, A.; van der Breggen, R.; Wismans, L.V.; Doukas, M.; de Koning, W.; et al. Autologous dendritic cells pulsed with allogeneic tumour cell lysate induce tumour-reactive T-cell responses in patients with pancreatic cancer: A phase I study. Eur. J. Cancer 2022, 169, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Kunert, A.; Basak, E.A.; Hurkmans, D.P.; Balcioglu, H.E.; Klaver, Y.; van Brakel, M.; Oostvogels, A.A.M.; Lamers, C.H.J.; Bins, S.; Koolen, S.L.W.; et al. CD45RA(+)CCR7(-) CD8 T cells lacking co-stimulatory receptors demonstrate enhanced frequency in peripheral blood of NSCLC patients responding to nivolumab. J. Immunother. Cancer 2019, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Morpheus, Versatile Matrix Visualisation and Analysis Software. Available online: https://software.broadinstitute.org/morpheus (accessed on 3 January 2022).
- Oweida, A.J.; Mueller, A.C.; Piper, M.; Milner, D.; Van Court, B.; Bhatia, S.; Phan, A.; Bickett, T.; Jordan, K.; Proia, T.; et al. Response to radiotherapy in pancreatic ductal adenocarcinoma is enhanced by inhibition of myeloid-derived suppressor cells using STAT3 anti-sense oligonucleotide. Cancer Immunol. Immunother. 2021, 70, 989–1000. [Google Scholar] [CrossRef]
- van Meir, H.; Nout, R.A.; Welters, M.J.; Loof, N.M.; de Kam, M.L.; van Ham, J.J.; Samuels, S.; Kenter, G.G.; Cohen, A.F.; Melief, C.J.; et al. Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology 2017, 6, e1267095. [Google Scholar] [CrossRef]
- Barker, H.E.; Paget, J.T.E.; Khan, A.A.; Harrington, K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer 2015, 15, 409–425. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Auh, S.L.; Wang, Y.; Burnette, B.; Wang, Y.; Meng, Y.; Beckett, M.; Sharma, R.; Chin, R.; Tu, T.; et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: Changing strategies for cancer treatment. Blood 2009, 114, 589–595. [Google Scholar] [CrossRef]
- Verbrugge, I.; Hagekyriakou, J.; Sharp, L.L.; Galli, M.; West, A.; McLaughlin, N.M.; Duret, H.; Yagita, H.; Johnstone, R.W.; Smyth, M.J.; et al. Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res. 2012, 72, 3163–3174. [Google Scholar] [CrossRef]
- Helmink, B.A.; Reddy, S.M.; Gao, J.; Zhang, S.; Basar, R.; Thakur, R.; Yizhak, K.; Sade-Feldman, M.; Blando, J.; Han, G.; et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 2020, 577, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Petitprez, F.; de Reyniès, A.; Keung, E.Z.; Chen, T.W.-W.; Sun, C.-M.; Calderaro, J.; Jeng, Y.-M.; Hsiao, L.-P.; Lacroix, L.; Bougoüin, A.; et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020, 577, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Montalvo-Ortiz, W.; Yu, L.; Krasco, A.; Ebstein, S.; Cortez, C.; Lowy, I.; Murphy, A.J.; Sleeman, M.A.; Skokos, D. Sequence of alphaPD-1 relative to local tumor irradiation determines the induction of abscopal antitumor immune responses. Sci. Immunol. 2021, 6. [Google Scholar] [CrossRef] [PubMed]
- Crooks, J.; Brown, S.; Gauthier, A.; de Boisferon, M.H.; MacDonald, A.; Brunet, L.R. The effects of combination treatment of IMM-101, a heat-killed whole cell preparation of Mycobacterium obuense (NCTC 13365) with checkpoint inhibitors in pre-clinical models. Poster 2016, 10, 20. [Google Scholar]
- Mukherjee, N.; Julián, E.; Torrelles, J.B.; Svatek, R.S. Effects of Mycobacterium bovis Calmette et Guérin (BCG) in oncotherapy: Bladder cancer and beyond. Vaccine 2021, 39, 7332–7340. [Google Scholar] [CrossRef]
- Malmstrom, P.U.; Sylvester, R.J.; Crawford, D.E.; Friedrich, M.; Krege, S.; Rintala, E.; Solsona, E.; Di Stasi, S.M.; Witjes, J.A. An individual patient data meta-analysis of the long-term outcome of randomised studies comparing intravesical mitomycin C versus bacillus Calmette-Guerin for non-muscle-invasive bladder cancer. Eur. Urol. 2009, 56, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Shelley, M.D.; Kynaston, H.; Court, J.; Wilt, T.J.; Coles, B.; Burgon, K.; Mason, M.D. A systematic review of intravesical bacillus Calmette-Guerin plus transurethral resection vs transurethral resection alone in Ta and T1 bladder cancer. BJU Int. 2001, 88, 209–216. [Google Scholar] [CrossRef]
- Han, R.F.; Pan, J.G. Can intravesical bacillus Calmette-Guerin reduce recurrence in patients with superficial bladder cancer? A meta-analysis of randomized trials. Urology 2006, 67, 1216–1223. [Google Scholar] [CrossRef]
- Shelley, M.D.; Wilt, T.J.; Court, J.; Coles, B.; Kynaston, H.; Mason, M.D. Intravesical bacillus Calmette-Guerin is superior to mitomycin C in reducing tumour recurrence in high-risk superficial bladder cancer: A meta-analysis of randomized trials. BJU Int. 2004, 93, 485–490. [Google Scholar] [CrossRef]
- Bohle, A.; Jocham, D.; Bock, P.R. Intravesical bacillus Calmette-Guerin versus mitomycin C for superficial bladder cancer: A formal meta-analysis of comparative studies on recurrence and toxicity. J. Urol. 2003, 169, 90–95. [Google Scholar] [CrossRef]
Patient Characteristics | N = 20 (IQR) or [%] |
---|---|
Age, years | 63 (60–68) |
Male sex | 11 [55] |
BMI, kg/m² | 24 (21–28) |
ECOG performance status * | |
0 | 4 [20] |
1 | 16 [80] |
CA 19.9 at inclusion, kU/L | 101 (43–137) |
CEA at inclusion, µg/L | 4.4 (3.5–5.8) |
Leukocyte count at inclusion, ×109/L | 6.7 (4.7–9.9) |
Platelet count at inclusion, ×109/L | 195 (133–232) |
Neutrophil count at inclusion, ×109/L | 3.6 (2.7–7.2) |
Lymphocyte count at inclusion, ×109/L | 1.4 (1.2–1.8) |
SII, (N x P) / L | 624 (311–889) |
NLR | 3.1 (2.3–5.0) |
PLR | 147 (87–171) |
Treatment characteristics | |
Biliary stenting at diagnosis | 9 [45] |
Diagnostic laparoscopy at diagnosis | 6 [30] |
FOLFIRINOX treatment | 20 [100] |
FOLFIRINOX, cycles | 8 (8–9) |
Interval stop FOLFIRINOX and start IMM-101, weeks | 6.4 (5.2–7.8) |
40 Gray of SBRT | 20 [100] |
IMM-101 | 20 [100] |
Six vaccinations | 19 [95] |
Three vaccinations | 1 [5] |
Resection | 4 [20] |
Subject | Adverse Event Term | Grade | Relation to SBRT | Relation to IMM-101 |
---|---|---|---|---|
IMM003 | Gastro-intestinal haemorrhage | 3 | Possibly | Unrelated |
IMM006 | Gastro-intestinal haemorrhage | 3 | Possibly | Unrelated |
IMM007 | Gastro-intestinal haemorrhage | 3 | Unrelated | Unrelated |
IMM007 | Gastro-intestinal haemorrhage | 3 | Possibly | Unrelated |
IMM007 | Stent disfunction | 3 | Unrelated | Unrelated |
IMM007 | Cholangitis | 3 | Unrelated | Unrelated |
IMM007 | Stent disfunction | 3 | Unrelated | Unrelated |
IMM008 | Cholestatis | 3 | Unrelated | Unrelated |
IMM008 | Cholangiosepsis | 3 | Unrelated | Unrelated |
IMM009 | Vertigo | 3 | Unrelated | Unrelated |
IMM014 | Duodenal obstruction | 3 | Unrelated | Unrelated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van ‘t Land, F.R.; Lau, S.P.; de Koning, W.; Klaase, L.; Vink, M.; van Krimpen, A.; Dumas, J.; Vadgama, D.; Nuyttens, J.J.; Mustafa, D.A.M.; et al. Immunomodulatory Effects of Stereotactic Body Radiotherapy and Vaccination with Heat-Killed Mycobacterium Obuense (IMM-101) in Patients with Locally Advanced Pancreatic Cancer. Cancers 2022, 14, 5299. https://doi.org/10.3390/cancers14215299
van ‘t Land FR, Lau SP, de Koning W, Klaase L, Vink M, van Krimpen A, Dumas J, Vadgama D, Nuyttens JJ, Mustafa DAM, et al. Immunomodulatory Effects of Stereotactic Body Radiotherapy and Vaccination with Heat-Killed Mycobacterium Obuense (IMM-101) in Patients with Locally Advanced Pancreatic Cancer. Cancers. 2022; 14(21):5299. https://doi.org/10.3390/cancers14215299
Chicago/Turabian Stylevan ‘t Land, Freek R., Sai P. Lau, Willem de Koning, Larissa Klaase, Madelief Vink, Anneloes van Krimpen, Jasper Dumas, Disha Vadgama, Joost J. Nuyttens, Dana A. M. Mustafa, and et al. 2022. "Immunomodulatory Effects of Stereotactic Body Radiotherapy and Vaccination with Heat-Killed Mycobacterium Obuense (IMM-101) in Patients with Locally Advanced Pancreatic Cancer" Cancers 14, no. 21: 5299. https://doi.org/10.3390/cancers14215299
APA Stylevan ‘t Land, F. R., Lau, S. P., de Koning, W., Klaase, L., Vink, M., van Krimpen, A., Dumas, J., Vadgama, D., Nuyttens, J. J., Mustafa, D. A. M., Stadhouders, R., Willemsen, M., Stubbs, A. P., Aerts, J. G., & van Eijck, C. H. J. (2022). Immunomodulatory Effects of Stereotactic Body Radiotherapy and Vaccination with Heat-Killed Mycobacterium Obuense (IMM-101) in Patients with Locally Advanced Pancreatic Cancer. Cancers, 14(21), 5299. https://doi.org/10.3390/cancers14215299