The Clinical and Molecular Features in the VHL Renal Cancers; Close or Distant Relatives with Sporadic Clear Cell Renal Cell Carcinoma?
Abstract
:Simple Summary
Abstract
1. Epidemiology, Clinical Features, Diagnosis and Screening of VHL Disease
1.1. Current Epidemiology and Clinical Spectrum
1.2. VHL Disease Types, Clinical Spectrum
1.3. Diagnostic Criteria and Screening
2. Molecular Features of VHL Disease
2.1. Background and Overview of VHL Disease Genetics
2.2. VHL Gene, pVHL, HIF, and HIF-Independent Functions of pVHL
2.3. Difference between VHL-Related Sporadic and Hereditary ccRCC
2.4. Clinical and Therapeutic Implications, Prognosis
3. Von Hippel-Lindau Disease and ccRCC
3.1. Clinical, Pathological, and Imaging Overview
3.2. Peculiar Molecular Aspects of VHL-Related ccRCC
4. Therapeutic Approach to VHL-Related ccRCC and Clinical Outcomes
4.1. Localized Disease
4.2. Metastatic Disease
5. MicroRNA Biomarkers of VHL-Associated Hereditary ccRCC
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Binderup, M.L.M. Von Hippel-Lindau Disease: Diagnosis and Factors Influencing Disease Outcome. Dan. Med. J. 2018, 65, 1–29. [Google Scholar]
- Rednam, S.P.; Erez, A.; Druker, H.; Janeway, K.A.; Kamihara, J.; Kohlmann, W.K.; Nathanson, K.L.; States, L.J.; Tomlinson, G.E.; Villani, A.; et al. Von Hippel-Lindau and Hereditary Pheochromocytoma/Paraganglioma Syndromes: Clinical Features, Genetics, and Surveillance Recommendations in Childhood. Clin. Cancer Res. 2017, 23, e68–e75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, E.R.; Yates, J.R.W.; Ferguson-Smith, M.A. Statistical Analysis of the Two Stage Mutation Model in von Hippel-Lindau Disease, and in Sporadic Cerebellar Haemangioblastoma and Renal Cell Carcinoma. J. Med. Genet. 1990, 27, 311–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Qiu, J.; Yang, W.; Ma, K.; Li, L.; Xie, H.; Xu, Y.; Gong, Y.; Zhou, J.; Cai, L.; et al. Clinical Characteristics and Risk Factors for Survival in Affected Offspring of von Hippel-Lindau Disease Patients. J. Med. Genet. 2021, 59, 951–956. [Google Scholar] [CrossRef]
- v. Hippel, E. Über Eine Sehr Seltene Erkrankung Der Netzhaut. Albrecht Von Graefes Arch. Für Ophthalmol. 1904, 59, 83–106. [Google Scholar] [CrossRef] [Green Version]
- Lindau, A. Zur Frage der Angiomatosis retinæ und ihrer hirnkomplikationen. Acta Ophthalmol. 1926, 4, 193–226. [Google Scholar] [CrossRef]
- Maher, E.R.; Yates, J.R.W.; Harries, R.; Benjamin, C.; Harris, R.; Moore, A.T.; Ferguson-Smith, M.A. Clinical Features and Natural History of von Hippel-Lindau Disease. QJM 1990, 77, 1151–1163. [Google Scholar] [CrossRef]
- Horton, W.A.; Wong, V.; Eldridge, R. Von Hippel-Lindau Disease: Clinical and Pathological Manifestations in Nine Families with 50 Affected Members. Arch. Intern. Med. 1976, 136, 769–777. [Google Scholar] [CrossRef]
- Lamiell, J.M.; Salazar, F.G.; Edward Hsia, Y. Von Hippel-Lindau Disease Affecting 43 Members of a Single Kindred. Medicine 1989, 68, 1–29. [Google Scholar] [CrossRef]
- Shanbhogue, K.P.; Hoch, M.; Fatterpaker, G.; Chandarana, H. Von Hippel-Lindau Disease: Review of Genetics and Imaging. Radiol. Clin. N. Am. 2016, 54, 409–422. [Google Scholar] [CrossRef]
- Neumann, H.P.H.; Wiestler, O.D. Clustering of Features of von Hippel-Lindau Syndrome: Evidence for a Complex Genetic Locus. The Lancet 1991, 337, 1052–1054. [Google Scholar] [CrossRef]
- Nordstrom-O’Brien, M.; van der Luijt, R.B.; van Rooijen, E.; van den Ouweland, A.M.; Majoor-Krakauer, D.F.; Lolkema, M.P.; van Brussel, A.; Voest, E.E.; Giles, R.H. Genetic Analysis of von Hippel-Lindau Disease. Hum. Mutat. 2010, 31, 521–537. [Google Scholar] [CrossRef] [PubMed]
- Von Hippel-Lindau Syndrome. A Pleomorphic Condition. Available online: https://pubmed.ncbi.nlm.nih.gov/10630173/ (accessed on 21 May 2022).
- Friedrich, C.A. Genotype-Phenotype Correlation in von Hippel-Lindau Syndrome. Hum. Mol. Genet. 2001, 10, 763–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gossage, L.; Eisen, T.; Maher, E.R. VHL, the Story of a Tumour Suppressor Gene. Nat. Rev. Cancer 2015, 15, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Wang, J.Y.; Peng, S.H.; Li, T.; Ning, X.H.; Hong, B.A.; Liu, J.Y.; Wu, P.J.; Zhou, B.W.; Zhou, J.C.; et al. Genotype and Phenotype Correlation in von Hippel–Lindau Disease Based on Alteration of the HIF-α Binding Site in VHL Protein. Genet. Med. 2018, 20, 1266–1273. [Google Scholar] [CrossRef] [Green Version]
- Gallou, C.; Chauveau, D.; Richard, S.; Joly, D.; Giraud, S.; Olschwang, S.; Martin, N.; Saquet, C.; Chrétien, Y.; Méjean, A.; et al. Genotype-Phenotype Correlation in von Hippel-Lindau Families with Renal Lesions. Hum. Mutat. 2004, 24, 215–224. [Google Scholar] [CrossRef]
- Kai, R.O.; Woodward, E.R.; Killick, P.; Lim, C.; Macdonald, F.; Maher, E.R. Genotype-Phenotype Correlations in von Hippel-Lindau Disease. Hum. Mutat. 2007, 28, 143–149. [Google Scholar] [CrossRef]
- Melmon, K.L.; Rosen, S.W. Lindau’s disease. Review of the literature and study of a large kindred. Am. J. Med. 1964, 36, 595–617. [Google Scholar] [CrossRef]
- Chittiboina, P.; Lonser, R.R. Von Hippel-Lindau Disease. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 132. [Google Scholar]
- Gläsker, S.; Bender, B.U.; Apel, T.W.; Natt, E.; van Velthoven, V.; Scheremet, R.; Zentner, J.; Neumann, H.P.H. The Impact of Molecular Genetic Analysis of the VHL Gene in Patients with Haemangioblastomas of the Central Nervous System. J. Neurol. Neurosurg. Psychiatry 1999, 67, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Maher, E. Von Hippel-Lindau Disease. Curr. Mol. Med. 2004, 4, 833–842. [Google Scholar] [CrossRef]
- Varshney, N.; Kebede, A.A.; Owusu-Dapaah, H.; Lather, J.; Kaushik, M.; Bhullar, J.S. A Review of Von Hippel-Lindau Syndrome. J. Kidney Cancer VHL 2017, 4, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.Y.; Kaelin, W.G. Role of VHL Gene Mutation in Human Cancer. J. Clin. Oncol. 2004, 22, 4991–5004. [Google Scholar] [CrossRef] [PubMed]
- Knudson, A.G. Mutation and Cancer: Statistical Study of Retinoblastoma. Proc. Natl. Acad. Sci. USA 1971, 68, 820–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somatic Inactivation of the VHL Gene in Von Hippel-Lindau Disease Tumors. Available online: https://pubmed.ncbi.nlm.nih.gov/9106522/ (accessed on 22 May 2022).
- Crossey, P.A.; Foster, K.; Richards, F.M.; Phipps, M.E.; Latif, F.; Tory, K.; Jones, M.H.; Bentley, E.; Kumar, R.; Lerman, M.I.; et al. Molecular Genetic Investigations of the Mechanism of Tumourigenesis in von Hippel-Lindau Disease: Analysis of Allele Loss in VHL Tumours. Hum. Genet. 1994, 93, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Iliopoulos, O.; Kibel, A.; Gray, S.; Kaelin, W.G. Tumour Suppression by the Human von Hippel-Lindau Gene Product. Nat. Med. 1995, 1, 822–826. [Google Scholar] [CrossRef]
- Inactivation of the von Hippel-Lindau (VHL) Tumour Suppressor Gene and Allelic Losses at Chromosome Arm 3p in Primary Renal Cell Carcinoma: Evidence for a VHL-Independent Pathway in Clear Cell Renal Tumourigenesis. Available online: https://pubmed.ncbi.nlm.nih.gov/9624531/ (accessed on 25 May 2022).
- Sato, Y.; Yoshizato, T.; Shiraishi, Y.; Maekawa, S.; Okuno, Y.; Kamura, T.; Shimamura, T.; Sato-Otsubo, A.; Nagae, G.; Suzuki, H.; et al. Integrated Molecular Analysis of Clear-Cell Renal Cell Carcinoma. Nat. Genet. 2013, 45, 860–867. [Google Scholar] [CrossRef]
- Li, J.; Guo, L.; Ai, Z. An Integrated Analysis of Cancer Genes in Clear Cell Renal Cell Carcinoma. Future Oncol. 2017, 13, 715–725. [Google Scholar] [CrossRef]
- Rankin, E.B.; Tomaszewski, J.E.; Haase, V.H. Renal Cyst Development in Mice with Conditional Inactivation of the von Hippel-Lindau Tumor Suppressor. Cancer Res. 2006, 66, 2576–2583. [Google Scholar] [CrossRef] [Green Version]
- Vortmeyer, A.O.; Yuan, Q.; Lee, Y.S.; Zhuang, Z.; Oldfield, E.H. Developmental Effects of von Hippel-Lindau Gene Deficiency. Ann. Neurol. 2004, 55, 721–728. [Google Scholar] [CrossRef]
- Kaelin, W.G. Molecular Basis of the VHL Hereditary Cancer Syndrome. Nat. Rev. Cancer 2002, 2, 673–682. [Google Scholar] [CrossRef]
- Schanza, L.M.; Seles, M.; Stotz, M.; Fosselteder, J.; Hutterer, G.C.; Pichler, M.; Stiegelbauer, V. MicroRNAs Associated with Von Hippel-Lindau Pathway in Renal Cell Carcinoma: A Comprehensive Review. Int. J. Mol. Sci. 2017, 18, 2495. [Google Scholar] [CrossRef] [PubMed]
- White, N.M.A.; Yousef, G.M. MicroRNAs: Exploring a New Dimension in the Pathogenesis of Kidney Cancer. BMC Med. 2010, 8, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuin, T.; Yamasaki, I.; Tamura, K.; Okuda, H.; Furihata, M.; Ashida, S. Von Hippel-Lindau Disease: Molecular Pathological Basis, Clinical Criteria, Genetic Testing, Clinical Features of Tumors and Treatment. Jpn. J. Clin. Oncol. 2006, 36, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gläsker, S.; Vergauwen, E.; Koch, C.A.; Kutikov, A.; Vortmeyer, A.O. Von Hippel-Lindau Disease: Current Challenges and Future Prospects. OncoTargets Ther. 2020, 13, 5669–5690. [Google Scholar] [CrossRef] [PubMed]
- Seizinger, B.R.; Rouleau, G.A.; Ozelius, L.J.; Lane, A.H.; Farmer, G.E.; Lamiell, J.M.; Haines, J.; Yuen, J.W.M.; Collins, D.; Majoor-Krakauer, D.; et al. Von Hippel-Lindau Disease Maps to the Region of Chromosome 3 Associated with Renal Cell Carcinoma. Nature 1988, 332, 268–269. [Google Scholar] [CrossRef] [PubMed]
- Latif, F.; Tory, K.; Gnarra, J.; Yao, M.; Duh, F.M.; Orcutt, M.; Stackhouse, T.; Kuzmin, I.; Modi, W.; Geil, L.; et al. Identification of the von Hippel-Lindau Disease Tumor Suppressor Gene. Science 1993, 260, 1317–1320. [Google Scholar] [CrossRef]
- Blankenship, C.; Naglich, J.G.; Whaley, J.M.; Seizinger, B.; Kley, N. Alternate Choice of Initiation Codon Produces a Biologically Active Product of the von Hippel Lindau Gene with Tumor Suppressor Activity. Oncogene 1999, 18, 1529–1535. [Google Scholar] [CrossRef] [Green Version]
- Takagi, Y.; Pause, A.; Conaway, R.C.; Conaway, J.W. Identification of Elongin C Sequences Required for Interaction with the von Hippel-Lindau Tumor Suppressor Protein. J. Biol. Chem. 1997, 272, 27444–27449. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, A.R.; Davidowitz, E.J.; Burk, R.D. Elongin BC Complex Prevents Degradation of von Hippel-Lindau Tumor Suppressor Gene Products. Proc. Natl. Acad. Sci. USA 2000, 97, 8507–8512. [Google Scholar] [CrossRef] [Green Version]
- Iwai, K.; Yamanaka, K.; Kamura, T.; Minato, N.; Conaway, R.C.; Conaway, J.W.; Klausner, R.D.; Pause, A. Identification of the von Hippel-Lindau Tumor-Suppressor Protein as Part of an Active E3 Ubiquitin Ligase Complex. Proc. Natl. Acad. Sci. USA 1999, 96, 12436–12441. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-Y.; Lin, C.-H.; Hsu, T. VHL Inactivation in Precancerous Kidney Cells Induces an Inflammatory Response via ER Stress–Activated IRE1α Signaling. Cancer Res. 2017, 77, 13–3406. [Google Scholar] [CrossRef] [PubMed]
- Clifford, S.C.; Astuti, D.; Hooper, L.; Maxwell, P.H.; Ratcliffe, P.J.; Maher, E.R. The PVHL-Associated SCF Ubiquitin Ligase Complex: Molecular Genetic Analysis of Elongin B and C, Rbx1 and HIF-1alpha in Renal Cell Carcinoma. Oncogene 2001, 20, 5067–5074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaakkola, P.; Mole, D.R.; Tian, Y.M.; Wilson, M.I.; Gielbert, J.; Gaskell, S.J.; von Kriegsheim, A.; Hebestreit, H.F.; Mukherji, M.; Schofield, C.J.; et al. Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation. Science 2001, 292, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Miller, F.; Kentsis, A.; Osman, R.; Pan, Z.Q. Inactivation of VHL by Tumorigenic Mutations That Disrupt Dynamic Coupling of the PVHL.Hypoxia-Inducible Transcription Factor-1alpha Complex. J. Biol. Chem. 2005, 280, 7985–7996. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, L.; Zhang, X.; Yan, Q.; Minamishima, Y.A.; Olumi, A.F.; Mao, M.; Bartz, S.; Kaelin, W.G. Hypoxia-Inducible Factor Linked to Differential Kidney Cancer Risk Seen with Type 2A and Type 2B VHL Mutations. Mol. Cell Biol. 2007, 27, 5381–5392. [Google Scholar] [CrossRef] [Green Version]
- Schito, L.; Semenza, G.L. Hypoxia-Inducible Factors: Master Regulators of Cancer Progression. Trends Cancer 2016, 2, 758–770. [Google Scholar] [CrossRef] [Green Version]
- Semenza, G.L. Targeting HIF-1 for Cancer Therapy. Nat. Rev. Cancer 2003, 3, 721–732. [Google Scholar] [CrossRef]
- Carroll, V.A.; Ashcroft, M. Role of Hypoxia-Inducible Factor (HIF)-1alpha versus HIF-2alpha in the Regulation of HIF Target Genes in Response to Hypoxia, Insulin-like Growth Factor-I, or Loss of von Hippel-Lindau Function: Implications for Targeting the HIF Pathway. Cancer Res. 2006, 66, 6264–6270. [Google Scholar] [CrossRef] [Green Version]
- Baldewijns, M.M.; van Vlodrop, I.J.H.; Vermeulen, P.B.; Soetekouw, P.M.M.B.; van Engeland, M.; de Bruïne, A.P. VHL and HIF Signalling in Renal Cell Carcinogenesis. J. Pathol. 2010, 221, 125–138. [Google Scholar] [CrossRef]
- Schödel, J.; Grampp, S.; Maher, E.R.; Moch, H.; Ratcliffe, P.J.; Russo, P.; Mole, D.R. Hypoxia, Hypoxia-Inducible Transcription Factors, and Renal Cancer. Eur. Urol. 2016, 69, 646–657. [Google Scholar] [CrossRef] [Green Version]
- Elorza, A.; Soro-Arnáiz, I.; Meléndez-Rodríguez, F.; Rodríguez-Vaello, V.; Marsboom, G.; de Cárcer, G.; Acosta-Iborra, B.; Albacete-Albacete, L.; Ordóñez, A.; Serrano-Oviedo, L.; et al. HIF2α Acts as an MTORC1 Activator through the Amino Acid Carrier SLC7A5. Mol. Cell 2012, 48, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Ganner, A.; Gehrke, C.; Klein, M.; Thegtmeier, L.; Matulenski, T.; Wingendorf, L.; Wang, L.; Pilz, F.; Greidl, L.; Meid, L.; et al. VHL Suppresses RAPTOR and Inhibits MTORC1 Signaling in Clear Cell Renal Cell Carcinoma. Sci. Rep. 2021, 11, 14827. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Kaelin, W.G. Targeting the HIF2-VEGF Axis in Renal Cell Carcinoma. Nat. Med. 2020, 26, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.M.; Choueiri, T.K.; Papadopoulos, K.P.; Plimack, E.R.; Merchan, J.R.; McDermott, D.F.; Michaelson, M.D.; Appleman, L.J.; Thamake, S.; Perini, R.F.; et al. The Oral HIF-2 α Inhibitor MK-6482 in Patients with Advanced Clear Cell Renal Cell Carcinoma (RCC): Updated Follow-up of a Phase I/II Study. J. Clin. Oncol. 2021, 39, 273. [Google Scholar] [CrossRef]
- FDA Approves Belzutifan for Cancers Associated with von Hippel-Lindau Disease|FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-belzutifan-cancers-associated-von-hippel-lindau-disease (accessed on 29 May 2022).
- Zhang, J.; Zhang, Q. VHL and Hypoxia Signaling: Beyond HIF in Cancer. Biomedicines 2018, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Haase, V.H. The VHL Tumor Suppressor: Master Regulator of HIF. Curr. Pharm. Des. 2009, 15, 3895. [Google Scholar] [CrossRef] [Green Version]
- Kapitsinou, P.P.; Haase, V.H. The VHL Tumor Suppressor and HIF: Insights from Genetic Studies in Mice. Cell Death Differ. 2008, 15, 650–659. [Google Scholar] [CrossRef]
- Tarade, D.; Ohh, M. The HIF and Other Quandaries in VHL Disease. Oncogene 2018, 37, 139–147. [Google Scholar] [CrossRef]
- Rathmell, W.K.; Chen, S. VHL Inactivation in Renal Cell Carcinoma: Implications for Diagnosis, Prognosis and Treatment. Expert Rev. Anticancer Ther. 2008, 8, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Gnarra, J.R.; Tory, K.; Weng, Y.; Schmidt, L.; Wei, M.H.; Li, H.; Latif, F.; Liu, S.; Chen, F.; Duh, F.M.; et al. Mutations of the VHL Tumour Suppressor Gene in Renal Carcinoma. Nat. Genet. 1994, 7, 85–90. [Google Scholar] [CrossRef]
- Young, A.C.; Craven, R.A.; Cohen, D.; Taylor, C.; Booth, C.; Harnden, P.; Cairns, D.A.; Astuti, D.; Gregory, W.; Maher, E.R.; et al. Analysis of VHL Gene Alterations and Their Relationship to Clinical Parameters in Sporadic Conventional Renal Cell Carcinoma. Clin. Cancer Res. 2009, 15, 7582–7592. [Google Scholar] [CrossRef] [PubMed]
- Hamano, K.; Esumi, M.; Igarashi, H.; Chino, K.; Mochida, J.; Ishida, H.; Okada, K. Biallelic Inactivation of the von Hippel-Lindau Tumor Suppressor Gene in Sporadic Renal Cell Carcinoma. J. Urol. 2002, 167, 713–717. [Google Scholar] [CrossRef]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012, 366, 883–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, M.; Yoshida, M.; Kishida, T.; Nakaigawa, N.; Baba, M.; Kobayashi, K.; Miura, T.; Moriyama, M.; Nagashima, Y.; Nakatani, Y.; et al. VHL Tumor Suppressor Gene Alterations Associated with Good Prognosis in Sporadic Clear-Cell Renal Carcinoma. J. Natl. Cancer Inst. 2002, 94, 1569–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somatic VHL Alteration and Its Impact on Prognosis in Patients with Clear Cell Renal Cell Carcinoma. Available online: https://pubmed.ncbi.nlm.nih.gov/15809750/ (accessed on 22 May 2022).
- Kim, H.S.; Kim, J.H.; Jang, H.J.; Han, B.; Zang, D.Y. Clinicopathologic Significance of Vhl Gene Alteration in Clear-Cell Renal Cell Carcinoma: An Updated Meta-Analysis and Review. Int. J. Mol. Sci. 2018, 19, 2529. [Google Scholar] [CrossRef]
- Gordan, J.D.; Lal, P.; Dondeti, V.R.; Letrero, R.; Parekh, K.N.; Oquendo, C.E.; Greenberg, R.A.; Flaherty, K.T.; Rathmell, W.K.; Keith, B.; et al. HIF-Alpha Effects on c-Myc Distinguish Two Subtypes of Sporadic VHL-Deficient Clear Cell Renal Carcinoma. Cancer Cell 2008, 14, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Takayanagi, S.; Mukasa, A.; Nakatomi, H.; Kanno, H.; Kuratsu, J.I.; Nishikawa, R.; Mishima, K.; Natsume, A.; Wakabayashi, T.; Houkin, K.; et al. Development of Database and Genomic Medicine for von Hippel-Lindau Disease in Japan. Neurol. Med. Chir. 2017, 57, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Wilding, A.; Ingham, S.L.; Lalloo, F.; Clancy, T.; Huson, S.M.; Moran, A.; Evans, D.G. Life Expectancy in Hereditary Cancer Predisposing Diseases: An Observational Study. J. Med. Genet. 2012, 49, 264–269. [Google Scholar] [CrossRef]
- Wang, J.Y.; Peng, S.H.; Li, T.; Ning, X.H.; Liu, S.J.; Hong, B.A.; Liu, J.Y.; Wu, P.J.; Zhou, B.W.; Zhou, J.C.; et al. Risk Factors for Survival in Patients with von Hippel-Lindau Disease. J. Med. Genet. 2018, 55, 322–328. [Google Scholar] [CrossRef]
- Bausch, B.; Jilg, C.; Gläsker, S.; Vortmeyer, A.; Lützen, N.; Anton, A.; Eng, C.; Neumann, H.P.H. Renal Cancer in von Hippel-Lindau Disease and Related Syndromes. Nat. Rev. Nephrol. 2013, 9, 529–538. [Google Scholar] [CrossRef]
- Binderup, M.L.M.; Jensen, A.M.; Budtz-Jørgensen, E.; Bisgaard, M.L. Survival and Causes of Death in Patients with von Hippel-Lindau Disease. J. Med. Genet. 2017, 54, 11–18. [Google Scholar] [CrossRef]
- IARC Publications Website—Urinary and Male Genital Tumours. Available online: https://publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours/Urinary-And-Male-Genital-Tumours-2022 (accessed on 15 August 2022).
- Jonasch, E.; Gao, J.; Rathmell, W.K. Renal Cell Carcinoma. BMJ 2014, 349, g4797. [Google Scholar] [CrossRef] [PubMed]
- Freifeld, Y.; Ananthakrishnan, L.; Margulis, V. Imaging for Screening and Surveillance of Patients with Hereditary Forms of Renal Cell Carcinoma. Curr. Urol. Rep. 2018, 19, 82. [Google Scholar] [CrossRef] [PubMed]
- Prevalence, Morphology and Biology of Renal Cell Carcinoma in von Hippel-Lindau Disease Compared to Sporadic Renal Cell Carcinoma. Available online: https://pubmed.ncbi.nlm.nih.gov/9751329/ (accessed on 21 May 2022).
- Choyke, P.L.; Glenn, G.M.; Walther, M.M.; Zbar, B.; Weiss, G.H.; Alexander, R.B.; Hayes, W.S.; Long, J.P.; Thakore, K.N.; Linehan, W.M. The Natural History of Renal Lesions in von Hippel-Lindau Disease: A Serial CT Study in 28 Patients. Am. J. Roentgenol. 1992, 159, 1229–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, E.R.; Adlard, J.; Barwell, J.; Brady, A.F.; Brennan, P.; Cook, J.; Crawford, G.S.; Dabir, T.; Davidson, R.; Dyer, R.; et al. Evaluation of Tumour Surveillance Protocols and Outcomes in von Hippel-Lindau Disease in a National Health Service. Br. J. Cancer 2022, 126, 1339–1345. [Google Scholar] [CrossRef]
- Poston, C.D.; Jaffe, G.S.; Lubensky, I.A.; Solomon, D.; Zbar, B.; Linehan, W.M.; Walther, M.M. Characterization of the Renal Pathology of a Familial Form of Renal Cell Carcinoma Associated with von Hippel-Lindau Disease: Clinical and Molecular Genetic Implications. J. Urol. 1995, 153, 22–26. [Google Scholar] [CrossRef]
- Solomon, D.; Schwartz, A. Renal Pathology in von Hippel-Lindau Disease. Hum. Pathol. 1988, 19, 1072–1079. [Google Scholar] [CrossRef]
- Montani, M.; Heinimann, K.; von Teichman, A.; Rudolph, T.; Perren, A.; Moch, H. VHL-Gene Deletion in Single Renal Tubular Epithelial Cells and Renal Tubular Cysts: Further Evidence for a Cyst-Dependent Progression Pathway of Clear Cell Renal Carcinoma in von Hippel-Lindau Disease. Am. J. Surg. Pathol. 2010, 34, 806–815. [Google Scholar] [CrossRef]
- Peng, S.; Shepard, M.J.; Wang, J.; Li, T.; Ning, X.; Cai, L.; Zhuang, Z.; Gong, K. Genotype-Phenotype Correlations in Chinese von Hippel-Lindau Disease Patients. Oncotarget 2017, 8, 38456–38465. [Google Scholar] [CrossRef] [Green Version]
- Lonser, R.R.; Glenn, G.M.; Walther, M.; Chew, E.Y.; Libutti, S.K.; Linehan, W.M.; Oldfield, E.H. Von Hippel-Lindau Disease. Lancet 2003, 361, 2059–2067. [Google Scholar] [CrossRef]
- Jilg, C.A.; Neumann, H.P.; Gläsker, S.; Schäfer, O.; Ardelt, P.U.; Schwardt, M.; Schultze-Seemann, W. Growth Kinetics in von Hippel-Lindau-Associated Renal Cell Carcinoma. Urol. Int. 2012, 88, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, J.; Zhang, L.; Yao, L.; Zhang, C.; He, Z.; Li, X.; Zhou, L. Natural History and Growth Kinetics of Clear Cell Renal Cell Carcinoma in Sporadic and von Hippel-Lindau Disease. Transl. Androl. Urol. 2021, 10, 1064. [Google Scholar] [CrossRef] [PubMed]
- Gumundsson, E.; Hellborg, H.; Lundstam, S.; Erikson, S.; Ljungberg, B. Metastatic Potential in Renal Cell Carcinomas ≤7 Cm: Swedish Kidney Cancer Quality Register Data. Eur. Urol. 2011, 60, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Ploussard, G.; Droupy, S.; Ferlicot, S.; Ples, R.; Rocher, L.; Richard, S.; Benoit, G. Local Recurrence after Nephron-Sparing Surgery in von Hippel-Lindau Disease. Urology 2007, 70, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Tabuchi, H.; Nagashima, Y.; Baba, M.; Nakaigawa, N.; Ishiguro, H.; Hamada, K.; Inayama, Y.; Kishida, T.; Hattori, K.; et al. Gene Expression Analysis of Renal Carcinoma: Adipose Differentiation-Related Protein as a Potential Diagnostic and Prognostic Biomarker for Clear-Cell Renal Carcinoma. J. Pathol. 2005, 205, 377–387. [Google Scholar] [CrossRef]
- Dagher, J.; Kammerer-Jacquet, S.F.; Brunot, A.; Pladys, A.; Patard, J.J.; Bensalah, K.; Perrin, C.; Verhoest, G.; Mosser, J.; Lespagnol, A.; et al. Wild-Type VHL Clear Cell Renal Cell Carcinomas Are a Distinct Clinical and Histologic Entity: A 10-Year Follow-Up. Eur. Urol. Focus 2016, 1, 284–290. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Qiu, J.; Li, Z.; Wu, Y.; Zhang, C.; Yao, L.; Gong, K.; Li, X.; Zhou, L. Natural History of Von Hippel–Lindau Disease-Associated and Sporadic Clear Cell Renal Cell Carcinoma: A Comparative Study. J. Cancer Res. Clin. Oncol. 2021, 148, 2631–2641. [Google Scholar] [CrossRef]
- Chahoud, J.; McGettigan, M.; Parikh, N.; Boris, R.S.; Iliopoulos, O.; Rathmell, W.K.; Daniels, A.B.; Jonasch, E.; Spiess, P.E. Evaluation, Diagnosis and Surveillance of Renal Masses in the Setting of VHL Disease. World J. Urol. 2021, 39, 2409–2415. [Google Scholar] [CrossRef]
- Meister, M.; Choyke, P.; Anderson, C.; Patel, U. Radiological Evaluation, Management, and Surveillance of Renal Masses in Von Hippel-Lindau Disease. Clin. Radiol. 2009, 64, 589–600. [Google Scholar] [CrossRef]
- Ashouri, K.; Mohseni, S.; Tourtelot, J.; Sharma, P.; Spiess, P.E. Implications of Von Hippel-Lindau Syndrome and Renal Cell Carcinoma. J. Kidney Cancer VHL 2015, 2, 163–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, E.R.; Neumann, H.P.H.; Richard, S. Von Hippel-Lindau Disease: A Clinical and Scientific Review. Eur. J. Hum. Genet. 2011, 19, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Jonasch, E.; Walker, C.L.; Rathmell, W.K. Clear Cell Renal Cell Carcinoma Ontogeny and Mechanisms of Lethality. Nat. Rev. Nephrol. 2021, 17, 245–261. [Google Scholar] [CrossRef] [PubMed]
- de Rojas-P, I.; Albiñana, V.; Taranets, L.; Recio-Poveda, L.; Cuesta, A.M.; Popov, N.; Kronenberger, T.; Botella, L.M. The Endothelial Landscape and Its Role in Von Hippel-Lindau Disease. Cells 2021, 10, 2313. [Google Scholar] [CrossRef] [PubMed]
- Jonasch, E.; Donskov, F.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.K.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.K.; Welsh, S.J.; et al. Belzutifan for Renal Cell Carcinoma in von Hippel-Lindau Disease. N. Engl. J. Med. 2021, 385, 2036–2046. [Google Scholar] [CrossRef]
- VHLA Suggested Active Surveillance Guidelines. Available online: https://www.vhl.org/wp-content/uploads/2020/10/Active-Surveillance-Guidelines-2020.pdf (accessed on 1 October 2022).
- Walther, M.M.; Choyke, P.L.; Glenn, G.; Lyne, J.C.; Rayford, W.; Venzon, D.; Linehan, W.M. Renal Cancer in Families with Hereditary Renal Cancer: Prospective Analysis of a Tumor Size Threshold for Renal Parenchymal Sparing Surgery. J. Urol. 1999, 161, 1475–1479. [Google Scholar] [CrossRef]
- Duffey, B.G.; Choyke, P.L.; Glenn, G.; Grubb, R.L.; Venzon, D.; Linehan, W.M.; Walther, M.M. The Relationship between Renal Tumor Size and Metastases in Patients with von Hippel-Lindau Disease. J. Urol. 2004, 172, 63–65. [Google Scholar] [CrossRef]
- Treatment of Renal Cell Carcinoma in von Hippel-Lindau Disease: A Multicenter Study. Available online: https://pubmed.ncbi.nlm.nih.gov/7752324/ (accessed on 29 May 2022).
- Bratslavsky, G.; Liu, J.J.; Johnson, A.D.; Sudarshan, S.; Choyke, P.L.; Linehan, W.M.; Pinto, P.A. Salvage Partial Nephrectomy for Hereditary Renal Cancer: Feasibility and Outcomes. J. Urol. 2008, 179, 67–70. [Google Scholar] [CrossRef]
- Jilg, C.A.; Neumann, H.P.H.; Gläsker, S.; Schäfer, O.; Leiber, C.; Ardelt, P.U.; Schwardt, M.; Schultze-Seemann, W. Nephron Sparing Surgery in von Hippel-Lindau Associated Renal Cell Carcinoma; Clinicopathological Long-Term Follow-Up. Fam. Cancer 2012, 11, 387–394. [Google Scholar] [CrossRef]
- Goldfarb, D.A.; Neumann, H.P.H.; Penn, I.; Novick, A.C. Results of Renal Transplantation in Patients with Renal Cell Carcinoma and von Hippel-Lindau Disease. Transplantation 1997, 64, 1726–1729. [Google Scholar] [CrossRef]
- Park, B.K.; Kim, C.K.; Park, S.Y.; Shen, S.H. Percutaneous Radiofrequency Ablation of Renal Cell Carcinomas in Patients with von Hippel Lindau Disease: Indications, Techniques, Complications, and Outcomes. Acta Radiol. 2013, 54, 418–427. [Google Scholar] [CrossRef]
- Allasia, M.; Soria, F.; Battaglia, A.; Gazzera, C.; Calandri, M.; Caprino, M.P.; Lucatello, B.; Velrti, A.; Maccario, M.; Pasini, B.; et al. Radiofrequency Ablation for Renal Cancer in Von Hippel-Lindau Syndrome Patients: A Prospective Cohort Analysis. Clin. Genitourin. Cancer 2017, 16, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Park, B.K.; Kim, C.K.; LeeLee, H.M.; Jeon, S.S.; Seo, S.I.; Jeong, B.C.; Choi, H.Y. Percutaneous Radiofrequency Ablation of Renal Cell Carcinomas in Patients with von Hippel Lindau Disease Previously Undergoing a Radical Nephrectomy or Repeated Nephron-Sparing Surgery. Acta Radiol. 2011, 52, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Park, B.K.; Kim, C.K. Percutaneous Radio Frequency Ablation of Renal Tumors in Patients with von Hippel-Lindau Disease: Preliminary Results. J. Urol. 2010, 183, 1703–1707. [Google Scholar] [CrossRef] [PubMed]
- Jennens, R.R.; Rosenthal, M.A.; Lindeman, G.J.; Michael, M. Complete Radiological and Metabolic Response of Metastatic Renal Cell Carcinoma to SU5416 (Semaxanib) in a Patient with Probable von Hippel-Lindau Syndrome. Urol. Oncol. 2004, 22, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Tsimafeyeu, I. Sunitinib Treatment of Metastatic Renal Cell Carcinoma in von Hippel-Lindau Disease. J. Cancer Res. Ther. 2015, 11, 920–922. [Google Scholar] [CrossRef]
- Jonasch, E.; McCutcheon, I.E.; Waguespack, S.G.; Wen, S.; Davis, D.W.; Smith, L.A.; Tannir, N.M.; Gombos, D.S.; Fuller, G.N.; Matin, S.F. Pilot Trial of Sunitinib Therapy in Patients with von Hippel-Lindau Disease. Ann. Oncol. 2011, 22, 2661–2666. [Google Scholar] [CrossRef]
- Roma, A.; Maruzzo, M.; Basso, U.; Brunello, A.; Zamarchi, R.; Bezzon, E.; Pomerri, F.; Zovato, S.; Opocher, G.; Zagonel, V. First-Line Sunitinib in Patients with Renal Cell Carcinoma (RCC) in von Hippel–Lindau (VHL) Disease: Clinical Outcome and Patterns of Radiological Response. Fam. Cancer 2015, 14, 309–316. [Google Scholar] [CrossRef]
- Kobayashi, A.; Takahashi, M.; Imai, H.; Akiyama, S.; Sugiyama, S.; Komine, K.; Saijo, K.; Takahashi, M.; Takahashi, S.; Shirota, H.; et al. Attainment of a Long-Term Favorable Outcome by Sunitinib Treatment for Pancreatic Neuroendocrine Tumor and Renal Cell Carcinoma Associated with von Hippel-Lindau Disease. Intern. Med. 2016, 55, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.C.; Lee, J.S.; Kim, S.H.; So, H.S.; Woo, C.Y.; Lee, J.L. Sunitinib Treatment for Metastatic Renal Cell Carcinoma in Patients with von Hippel-Lindau Disease. Cancer Res. Treat. 2013, 45, 349–353. [Google Scholar] [CrossRef]
- Sunitinib Treatment for Multifocal Renal Cell Carcinoma (RCC) and Pancreatic Neuroendocrine Tumor (NET) in Patient with Von Hippel-Lindau Disease. Case Report. Available online: https://pubmed.ncbi.nlm.nih.gov/26812297/ (accessed on 28 May 2022).
- Oudard, S.; Elaidi, R.; Brizard, M.; le Rest, C.; Caillet, V.; Deveaux, S.; Benoit, G.; Corréas, J.M.; Benoudiba, F.; David, P.; et al. Sunitinib for the Treatment of Benign and Malignant Neoplasms from von Hippel-Lindau Disease: A Single-Arm, Prospective Phase II Clinical Study from the PREDIR Group. Oncotarget 2016, 7, 85306–85317. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.Y.S.; Jonasch, E.; McCutcheon, I.E. Pazopanib Therapy for Cerebellar Hemangioblastomas in von Hippel-Lindau Disease: Case Report. Target. Oncol. 2012, 7, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Jonasch, E.; McCutcheon, I.E.; Gombos, D.S.; Ahrar, K.; Perrier, N.D.; Liu, D.; Robichaux, C.C.; Villarreal, M.F.; Weldon, J.A.; Woodson, A.H.; et al. Pazopanib in Patients with von Hippel-Lindau Disease: A Single-Arm, Single-Centre, Phase 2 Trial. Lancet Oncol. 2018, 19, 1351–1359. [Google Scholar] [CrossRef]
- Pilié, P.; Hasanov, E.; Matin, S.F.; Woodson, A.H.H.; Marcott, V.D.; Bird, S.; Slack, R.S.; Fuller, G.N.; McCutcheon, I.E.; Jonasch, E. Pilot Study of Dovitinib in Patients with von Hippel-Lindau Disease. Oncotarget 2018, 9, 23390–23395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.H.; Yu, Y.D.; Kang, M.H.; Park, D.S. Sorafenib Treatment for Recurrent Stage T1 Bilateral Renal Cell Carcinoma in Patients with Von Hippel- Lindau Disease: A Case Report and Literature Review. Can. Urol. Assoc. J. 2015, 9, E651–E653. [Google Scholar] [CrossRef] [PubMed]
- A Study of Belzutifan (MK-6482) in Participants with Advanced Clear Cell Renal Cell Carcinoma (MK-6482-018)—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04846920?term=belzutifan&draw=2&rank=2 (accessed on 29 May 2022).
- Choueiri, T.K.; Bauer, T.M.; McDermott, D.F.; Arrowsmith, E.; Roy, A.; Perini, R.F.; Vickery, D.; Tykodi, S.S. Phase 2 Study of the Oral Hypoxia-Inducible Factor 2α (HIF-2α) Inhibitor MK-6482 in Combination with Cabozantinib in Patients with Advanced Clear Cell Renal Cell Carcinoma (CcRCC). J. Clin. Oncol. 2021, 39, 272. [Google Scholar] [CrossRef]
- Renal Cell Carcinoma in von Hippel-Lindau Disease. Nephron Sparing Surgery. Available online: https://pubmed.ncbi.nlm.nih.gov/30403378/ (accessed on 24 June 2022).
- Metwalli, A.R.; Linehan, W.M. Nephron-Sparing Surgery for Multifocal and Hereditary Renal Tumors. Curr. Opin. Urol. 2014, 24, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, L.; Bianchi, F.M.; Chessa, F.; Barbaresi, U.; Casablanca, C.; Piazza, P.; Mottaran, A.; Droghetti, M.; Roveroni, C.; Balestrazzi, E.; et al. Percutaneous Tumor Ablation versus Partial Nephrectomy for Small Renal Mass: The Impact of Histologic Variant and Tumor Size. Minerva Urol. Nephrol. 2021, 73, 581–590. [Google Scholar] [CrossRef]
- Trevisani, F.; Ghidini, M.; Larcher, A.; Lampis, A.; Lote, H.; Manunta, P.; Alibrandi, M.T.S.; Zagato, L.; Citterio, L.; Dell’Antonio, G.; et al. MicroRNA 193b-3p as a Predictive Biomarker of Chronic Kidney Disease in Patients Undergoing Radical Nephrectomy for Renal Cell Carcinoma. Br. J. Cancer 2016, 115, 1343–1350. [Google Scholar] [CrossRef] [Green Version]
- Trevisani, F.; Floris, M.; Vago, R.; Minnei, R.; Cinque, A. Long Non-Coding RNAs as Novel Biomarkers in the Clinical Management of Papillary Renal Cell Carcinoma Patients: A Promise or a Pledge? Cells 2022, 11, 1658. [Google Scholar] [CrossRef]
- Cinque, A.; Capasso, A.; Vago, R.; Floris, M.; Lee, M.W.; Minnei, R.; Trevisani, F. MicroRNA Signatures in the Upper Urinary Tract Urothelial Carcinoma Scenario: Ready for the Game Changer? Int. J. Mol. Sci. 2022, 23, 2602. [Google Scholar] [CrossRef]
- Ghidini, M.; Hahne, J.C.; Frizziero, M.; Tomasello, G.; Trevisani, F.; Lampis, A.; Passalacqua, R.; Valeri, N. MicroRNAs as Mediators of Resistance Mechanisms to Small-Molecule Tyrosine Kinase Inhibitors in Solid Tumours. Target. Oncol. 2018, 13, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Trevisani, F.; Floris, M.; Minnei, R.; Cinque, A. Renal Oncocytoma: The Diagnostic Challenge to Unmask the Double of Renal Cancer. Int. J. Mol. Sci. 2022, 23, 2603. [Google Scholar] [CrossRef] [PubMed]
- Cinque, A.; Vago, R.; Trevisani, F. Circulating RNA in Kidney Cancer: What We Know and What We Still Suppose. Genes 2021, 12, 835. [Google Scholar] [CrossRef] [PubMed]
- Gattolliat, C.H.; Couvé, S.; Meurice, G.; Oréar, C.; Droin, N.; Chiquet, M.; Ferlicot, S.; Verkarre, V.; Vasiliu, V.; Molinié, V.; et al. Integrative Analysis of Dysregulated MicroRNAs and MRNAs in Multiple Recurrent Synchronized Renal Tumors from Patients with von Hippel-Lindau Disease. Int. J. Oncol. 2018, 53, 1455–1468. [Google Scholar] [CrossRef]
- Fisher, R.; Horswell, S.; Rowan, A.; Salm, M.P.; de Bruin, E.C.; Gulati, S.; McGranahan, N.; Stares, M.; Gerlinger, M.; Varela, I.; et al. Development of Synchronous VHL Syndrome Tumors Reveals Contingencies and Constraints to Tumor Evolution. Genome Biol. 2014, 15, 433. [Google Scholar] [CrossRef]
- Shi, L.; Wang, M.; Li, H.; You, P. MicroRNAs in Body Fluids: A More Promising Biomarker for Clear Cell Renal Cell Carcinoma. Cancer Manag. Res. 2021, 13, 7663–7675. [Google Scholar] [CrossRef]
Genetic Alterations | Biological Pathways |
---|---|
3p loss | PI3K activation (possible role in conferring lethality), PI3K-AKT-mTOR (possible therapeutic target) |
5q gain | DNA methylation pathway |
VHL mutation | p53 |
VHL methylation | mRNA processing |
PBRM1 mutation | TGFα, EGFR expression (cell proliferation and survival) |
SETD2 mutation | PDGFB (angiogenesis, lymphangiogenesis) |
BAP1 mutation | CXCR4, MMP2/9/14, lysyl oxidase, UPAR, MMP2 (tumoral cell invasion and metastases) |
DNA repair defects | dysregulation of TWIST and activation of HGFR (EMT) |
Defect in mitosis | VEGFA (angiogenesis, therapeutic target) |
9p gain | |
14q gain | |
8q gain | |
TCEB1 mutation | |
Loss of segments of the small arm of chromosome 3 (the VHL gene-harboring 3p25-26, 3p12, 3p13-14.2, 3p21 |
miRNA | Upregulated/ Downregulated | Fold-Change (VHL/Sporadic) | Raw p-Value | Adj p-Value |
---|---|---|---|---|
hsa-miR-489 | Upregulated | 2.267 | 0.0103 | ns |
hsa-miR-204 | Upregulated | 2.266 | 0.0078 | ns |
hsa-let-7f | Upregulated | 1.946 | 0.0004 | 0.0123 |
hsa-miR-200b | Upregulated | 1.914 | 0.0012 | 0.0216 |
hsa-let-7a | Upregulated | 1.821 | 5.8836 × 10−05 | 0.0036 |
hsa-miR-200a | Upregulated | 1.767 | 0.0035 | 0.0454 |
hsa-miR-146b-5p | Upregulated | 1.684 | 0.0283 | ns |
hsa-miR-429 | Upregulated | 1.611 | 0.0066 | ns |
hsa-miR-26b | Upregulated | 1.579 | 0.0004 | 0.0121 |
hsa-miR-28-5p | Upregulated | 1.542 | 0.0006 | 0.0121 |
hsa-miR-122 | Upregulated | 1.527 | 0.0347 | ns |
hsa-miR-20a | Upregulated | 1.521 | 0.0002 | 0.0092 |
hsa-miR-1274a | Downregulated | −1.58 | 0.0114 | ns |
hsa-miR-1260 | Downregulated | −1.727 | 0.0027 | 0.0386 |
hsa-miR-886-3p | Downregulated | −1.764 | 0.0399 | ns |
hsa-miR-1308 | Downregulated | −1.812 | 0.0136 | ns |
hsa-miR-494 | Downregulated | −2.882 | 6.0369 × 10−05 | 0.0036 |
hsa-miR-923 | Downregulated | −4.149 | 2.0833 × 10−06 | 0.0006 |
Drug or Compound | Clinical Scenario | NCT or PMID | Phase |
---|---|---|---|
17AAG | VHL disease-related RCC | NCT00088374 | 2 |
Vandetanib | VHL disease-related RCC | NCT00566995 | 2 |
PT2385 | VHL disease-related RCC | NCT03108066 | 2 |
Belzutifan as single agent | VHL disease-related tumor, including RCC; VHL disease-related RCC; Advanced ccRCCs, including sporadic and VHL-related tumors; Advanced solid tumors, including ccRCCs | NCT04924075; NCT03401788; NCT04846920; NCT02974738 | 2 2 1 1 |
Belzutifan plus Cabozantinib | Advanced ccRCCs | NCT03634540 | 2 |
Sunitinib | VHL disease-related tumor, including RCC; VHL disease-related tumor, including RCC Metastatic VHL-related RCC, case report; VHL disease-related tumor, including metastatic RCC Metastatic VHL disease-related RCC, retrospective analysis; VHL-disease-related tumor, including metastatic RCC, case series | NCT00330564; NCT01168440; 26881543; 22105611; 25391617; 24454008 | 2 2 / 2 / / |
Pazopanib | VHL disease-related tumor, including RCC | NCT01436227 | 2 |
DFF332 as single agent or in combination with Everolimus or Spartalizumab plus Taminadenant | Tumors with HIF-stabilizing mutations (including also VHL disease-related ccRCC) | NCT04895748 | 1 |
Sorafenib | Recurrent stage T1 bilateral VHL-related RCC, case report | 26425233 | / |
Dovitinib | VHL-related CHB, 33% of recruited patients had also RCC | NCT01266070 | 2 |
Semaxinib | Metastatic VHL-related RCC, case report | 15271314 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinque, A.; Minnei, R.; Floris, M.; Trevisani, F. The Clinical and Molecular Features in the VHL Renal Cancers; Close or Distant Relatives with Sporadic Clear Cell Renal Cell Carcinoma? Cancers 2022, 14, 5352. https://doi.org/10.3390/cancers14215352
Cinque A, Minnei R, Floris M, Trevisani F. The Clinical and Molecular Features in the VHL Renal Cancers; Close or Distant Relatives with Sporadic Clear Cell Renal Cell Carcinoma? Cancers. 2022; 14(21):5352. https://doi.org/10.3390/cancers14215352
Chicago/Turabian StyleCinque, Alessandra, Roberto Minnei, Matteo Floris, and Francesco Trevisani. 2022. "The Clinical and Molecular Features in the VHL Renal Cancers; Close or Distant Relatives with Sporadic Clear Cell Renal Cell Carcinoma?" Cancers 14, no. 21: 5352. https://doi.org/10.3390/cancers14215352
APA StyleCinque, A., Minnei, R., Floris, M., & Trevisani, F. (2022). The Clinical and Molecular Features in the VHL Renal Cancers; Close or Distant Relatives with Sporadic Clear Cell Renal Cell Carcinoma? Cancers, 14(21), 5352. https://doi.org/10.3390/cancers14215352