Region-Specific Effects of Fractionated Low-Dose Versus Single-Dose Radiation on Hippocampal Neurogenesis and Neuroinflammation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Radiation and Tissue Sampling
2.2. Immunofluorescence Microscopy (IFM)
2.3. Statistical Analysis
3. Results
3.1. Microglia and Astrocytes in the Cornu Ammonis (CA) after Fractionated Low-Dose and Single-Dose Radiation
3.2. Microglia in the Dentate Gyrus (DG) after Fractionated Low-Dose and Single-Dose Radiation
3.3. Astrocytes in the Dentate Gyrus (DG) after Fractionated Low-Dose and Single-Dose Radiation
3.4. Neuroprogenitors in the Dentate Gyrus (DG) after Fractionated Low-Dose and Single-Dose Radiation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makale, M.T.; McDonald, C.R.; Hattangadi-Gluth, J.A.; Kesari, S. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat. Rev. Neurol. 2017, 13, 52–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padovani, L.; Andre, N.; Constine, L.S.; Muracciole, X. Neurocognitive function after radiotherapy for paediatric brain tumours. Nat. Rev. Neurol. 2012, 8, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Jethwa, K.; Rathawa, A.; Chauhan, G.; Mehra, S. The Anatomy of the Hippocampus. In Cerebral Ischemia; Pluta, R., Ed.; Exon Publications: Brisbane, Australia, 2021. [Google Scholar] [CrossRef]
- Toda, T.; Gage, F.H. Review: Adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res. 2018, 373, 693–709. [Google Scholar] [CrossRef] [PubMed]
- Gotz, M.; Nakafuku, M.; Petrik, D. Neurogenesis in the Developing and Adult Brain-Similarities and Key Differences. Cold Spring Harb. Perspect. Biol. 2016, 8, a018853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.M.; Colonna, M. The identity and function of microglia in neurodegeneration. Nat. Immunol. 2018, 19, 1048–1058. [Google Scholar] [CrossRef] [PubMed]
- Santello, M.; Toni, N.; Volterra, A. Astrocyte function from information processing to cognition and cognitive impairment. Nat. Neurosci. 2019, 22, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Allen, N.J.; Lyons, D.A. Glia as architects of central nervous system formation and function. Science 2018, 362, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Constanzo, J.; Midavaine, E.; Fouquet, J.; Lepage, M.; Descoteaux, M.; Kirby, K.; Tremblay, L.; Masson-Cote, L.; Geha, S.; Longpre, J.M.; et al. Brain irradiation leads to persistent neuroinflammation and long-term neurocognitive dysfunction in a region-specific manner. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 102, 109954. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Zhou, J.W. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia 2019, 67, 1017–1035. [Google Scholar] [CrossRef]
- Schmal, Z.; Hammer, B.; Muller, A.; Rube, C.E. Fractionated Low-Dose Radiation Induces Long-Lasting Inflammatory Responses in the Hippocampal Stem Cell Niche. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 1262–1275. [Google Scholar] [CrossRef]
- Schmal, Z.; Isermann, A.; Hladik, D.; von Toerne, C.; Tapio, S.; Rube, C.E. DNA damage accumulation during fractionated low-dose radiation compromises hippocampal neurogenesis. Radiother. Oncol. 2019, 137, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.A.; Boddeke, H.W.; Kettenmann, H. Microglia in Physiology and Disease. Annu. Rev. Physiol. 2017, 79, 619–643. [Google Scholar] [CrossRef]
- Pazzaglia, S.; Briganti, G.; Mancuso, M.; Saran, A. Neurocognitive Decline Following Radiotherapy: Mechanisms and Therapeutic Implications. Cancers 2020, 12, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monje, M.L.; Mizumatsu, S.; Fike, J.R.; Palmer, T.D. Irradiation induces neural precursor-cell dysfunction. Nat. Med. 2002, 8, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science 2016, 353, 777–783. [Google Scholar] [CrossRef]
- Grosu, A.L.; Frings, L.; Bentsalo, I.; Oehlke, O.; Brenner, F.; Bilger, A.; Fennell, J.T.; Rothe, T.; Schneider-Fuchs, S.; Graf, E.; et al. Whole-brain irradiation with hippocampal sparing and dose escalation on metastases: Neurocognitive testing and biological imaging (HIPPORAD)—A phase II prospective randomized multicenter trial (NOA-14, ARO 2015-3, DKTK-ROG). BMC Cancer 2020, 20, 532. [Google Scholar] [CrossRef]
- Giuseppe, Z.R.; Silvia, C.; Eleonora, F.; Gabriella, M.; Marica, F.; Silvia, C.; Mario, B.; Francesco, D.; Savino, C.; Milly, B.; et al. Hippocampal-sparing radiotherapy and neurocognitive impairment: A systematic literature review. J. Cancer Res. Ther. 2020, 16, 1215–1222. [Google Scholar] [CrossRef]
- Redmond, K.J.; Achanta, P.; Grossman, S.A.; Armour, M.; Reyes, J.; Kleinberg, L.; Tryggestad, E.; Quinones-Hinojosa, A.; Ford, E.C. A radiotherapy technique to limit dose to neural progenitor cell niches without compromising tumor coverage. J. Neurooncol. 2011, 104, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Chung, E.; Noh, J.M.; Lee, K.C.; Kim, J.H.; Chung, W.K.; Suh, Y.G.; Lee, J.A.; Seol, K.H.; Wu, H.G.; Kim, Y.S.; et al. Dummy Run of Quality Assurance Program before Prospective Study of Hippocampus-Sparing Whole-Brain Radiotherapy and Simultaneous Integrated Boost for Multiple Brain Metastases from Non-small Cell Lung Cancer: Korean Radiation Oncology Group (KROG) 17-06 Study. Cancer Res. Treat. 2019, 51, 1001–1010. [Google Scholar] [CrossRef]
- Kim, K.H.; Cho, B.C.; Lee, C.G.; Kim, H.R.; Suh, Y.G.; Kim, J.W.; Choi, C.; Baek, J.G.; Cho, J. Hippocampus-Sparing Whole-Brain Radiotherapy and Simultaneous Integrated Boost for Multiple Brain Metastases from Lung Adenocarcinoma: Early Response and Dosimetric Evaluation. Technol. Cancer Res. Treat. 2016, 15, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.Y.; Tsan, D.L.; Chuang, C.C.; Yang, C.C.; Pai, P.C.; Wang, C.L.; Wu, Y.M.; Lee, C.C.; Lin, C.H.; Wei, K.C.; et al. Oncological Outcomes After Hippocampus-Sparing Whole-Brain Radiotherapy in Cancer Patients with Newly Diagnosed Brain Oligometastases: A Single-Arm Prospective Observational Cohort Study in Taiwan. Front. Oncol. 2021, 11, 784635. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez de Dios, N.; Counago, F.; Lopez, J.L.; Calvo, P.; Murcia, M.; Rico, M.; Vallejo, C.; Luna, J.; Trueba, I.; Cigarral, C.; et al. Treatment Design and Rationale for a Randomized Trial of Prophylactic Cranial Irradiation with or without Hippocampal Avoidance for SCLC: PREMER Trial on Behalf of the Oncologic Group for the Study of Lung Cancer/Spanish Radiation Oncology Group-Radiation Oncology Clinical Research Group. Clin. Lung. Cancer 2018, 19, e693–e697. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmal, Z.; Rübe, C.E. Region-Specific Effects of Fractionated Low-Dose Versus Single-Dose Radiation on Hippocampal Neurogenesis and Neuroinflammation. Cancers 2022, 14, 5477. https://doi.org/10.3390/cancers14225477
Schmal Z, Rübe CE. Region-Specific Effects of Fractionated Low-Dose Versus Single-Dose Radiation on Hippocampal Neurogenesis and Neuroinflammation. Cancers. 2022; 14(22):5477. https://doi.org/10.3390/cancers14225477
Chicago/Turabian StyleSchmal, Zoé, and Claudia E. Rübe. 2022. "Region-Specific Effects of Fractionated Low-Dose Versus Single-Dose Radiation on Hippocampal Neurogenesis and Neuroinflammation" Cancers 14, no. 22: 5477. https://doi.org/10.3390/cancers14225477
APA StyleSchmal, Z., & Rübe, C. E. (2022). Region-Specific Effects of Fractionated Low-Dose Versus Single-Dose Radiation on Hippocampal Neurogenesis and Neuroinflammation. Cancers, 14(22), 5477. https://doi.org/10.3390/cancers14225477