Plasma Extracellular Vesicle Long RNA in Diagnosis and Prediction in Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Research Design
2.2. Assessments
2.3. Plasma Sample Collection
2.4. Isolation and Characterization of EVs
2.4.1. Transmission Electron Microscopy (TEM)
2.4.2. Size Distribution Measurement
2.4.3. Western Blot Analysis
2.5. RNA-Seq Analysis
2.6. Data and Statistical Analyses
3. Results
3.1. Patients’ Characteristics and Treatment Patterns
3.2. Effectiveness Assessment
3.3. EV Isolation and Plasma exLR-Seq Analysis
Analysis of exLRs of SCLC-Group Patients and Control-Group Individuals
3.4. Analysis of exLRs of SCLC Chemo-Sensitive and Chemo-Refractory Groups
3.5. Blood exLRs May Reflect the Fractions of Different Cell Types
3.6. Identification of Differentially Expressed long RNA Candidates and Model Construction
Predictive Performance of exLR t-Score
3.7. Analysis of t-Scores of 17 Paired Samples at Baseline and after Two Courses of Chemotherapy
3.8. Potential Diagnostic Values of exLR t-Signature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Primers 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Mondelo-Macía, P.; García-González, J.; León-Mateos, L.; Castillo-García, A.; López-López, R.; Muinelo-Romay, L.; Díaz-Peña, R. Current Status and Future Perspectives of Liquid Biopsy in Small Cell Lung Cancer. Biomedicines 2021, 9, 48. [Google Scholar] [CrossRef]
- Farago, A.F.; Keane, F.K. Current standards for clinical management of small cell lung cancer. Transl. Lung Cancer Res. 2018, 7, 69–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Kuang, P.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; Ye, L.; Yu, F.; et al. Mechanisms of drugs-resistance in small cell lung cancer: DNA-related, RNA-related, apoptosis-related, drug accumulation and metabolism procedure. Transl. Lung Cancer Res. 2020, 9, 768–786. [Google Scholar] [CrossRef]
- Bracht, J.W.P.; Mayo-de-Las-Casas, C.; Berenguer, J.; Karachaliou, N.; Rosell, R. The Present and Future of Liquid Biopsies in Non-Small Cell Lung Cancer: Combining Four Biosources for Diagnosis, Prognosis, Prediction, and Disease Monitoring. Curr. Oncol. Rep. 2018, 20, 70. [Google Scholar] [CrossRef]
- van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef]
- Minciacchi, V.R.; Freeman, M.R.; Di Vizio, D. Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin. Cell. Dev. Biol. 2015, 40, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Reese, M.; Dhayat, S.A. Small extracellular vesicle non-coding RNAs in pancreatic cancer: Molecular mechanisms and clinical implications. J. Hematol. Oncol. 2021, 14, 141. [Google Scholar] [CrossRef]
- Anfossi, S.; Babayan, A.; Pantel, K.; Calin, G.A. Clinical utility of circulating non-coding RNAs—An update. Nat. Rev. Clin. Oncol. 2018, 15, 541–563. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, Y.; Zhang, X.; Yang, Y.; Zheng, X.; Li, X.; Liu, Y.; Zhang, Y. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol. Cancer 2018, 17, 68. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Li, Y.; Liao, Z.; Wang, Z.; Wang, Z.; Li, Y.; Qian, L.; Zhao, J.; Zong, H.; Kang, B.; et al. Plasma extracellular vesicle long RNA profiling identifies a diagnostic signature for the detection of pancreatic ductal adenocarcinoma. Gut 2020, 69, 540–550. [Google Scholar] [CrossRef]
- Su, Y.; Li, Y.; Guo, R.; Zhao, J.; Chi, W.; Lai, H.; Wang, J.; Wang, Z.; Li, L.; Sang, Y.; et al. Plasma extracellular vesicle long RNA profiles in the diagnosis and prediction of treatment response for breast cancer. NPJ Breast Cancer 2021, 7, 154. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Yu, S.; Wang, Z.; He, X.; Su, Y.; Guo, T.; Sheng, H.; Chen, J.; Zheng, Q.; et al. Extracellular Vesicles Long RNA Sequencing Reveals Abundant mRNA, circRNA, and lncRNA in Human Blood as Potential Biomarkers for Cancer Diagnosis. Clin. Chem. 2019, 65, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Yu, S.; Qian, L.; Chen, K.; Lai, H.; Zhang, H.; Li, Y.; Zhang, Y.; Gu, S.; et al. Circulating EVs long RNA-based subtyping deconvolution enable prediction of immunogenic signatures clinical outcome for, P.D.A.C. Mol. Ther. Nucleic Acids. 2021, 26, 488–501. [Google Scholar] [CrossRef] [PubMed]
- Carter, L.; Rothwell, D.G.; Mesquita, B.; Smowton, C.; Leong, H.S.; Fernandez-Gutierrez, F.; Li, Y.; Burt, D.J.; Antonello, J.; Morrow, C.J.; et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat. Med. 2017, 23, 114–119. [Google Scholar] [CrossRef]
- Chan, B.A.; Coward, J.I.G. Chemotherapy advances in small-cell lung cancer. J. Thorac. Dis. 2013, 5 (Suppl. S5), S565–S578. [Google Scholar] [CrossRef]
- Gong, Y.; Klein Wolterink, R.G.J.; Wang, J.; Bos, G.M.J.; Germeraad, W.T.V. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J. Hematol. Oncol. 2021, 14, 73. [Google Scholar] [CrossRef]
- Bauman, A.B.; Moeller, C.E.; Soileau, A.M.; Goodermuth, C.E.; Costa, V.R.; Schaumburg, J.C.; Pucheu-Haston, C.M.; Welborn, N.D.; Dehghanpir, S.D.; Mitchell, M.A.; et al. Canine memory T-cell subsets in health and disease. Vet. Immunol. Immunopathol. 2022, 246, 110401. [Google Scholar] [CrossRef]
- Willemsen, A.E.; He, X.; van Cranenbroek, B.; de Jong, P.C.; de Boer, M.; Joosten, I.; Koenen, H.J.; van Herpen, C.M.; Gerritsen, W.R. Baseline effector cells predict response and NKT cells predict pulmonary toxicity in advanced breast cancer patients treated with everolimus and exemestane. Int. Immunopharmacol. 2021, 93, 107404. [Google Scholar] [CrossRef]
- Liang, P.; Li, J.; Chen, J.; Lu, J.; Hao, Z.; Shi, J.; Chang, Q.; Zeng, Z. Immunoprognostic model of lung adenocarcinoma and screening of sensitive drugs. Sci Rep. 2022, 12, 7162. [Google Scholar] [CrossRef]
- Ji, Y.; Sheng, L.; Du, X.; Qiu, G.; Su, D. Elevated platelet count is a strong predictor of poor prognosis in stage I non-small cell lung cancer patients. Platelets 2015, 26, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zheng, Q.; Liu, W. Combination of ferroptosis and pyroptosis to construct a prognostic classifier and predict immune landscape, chemotherapeutic efficacy and immunosuppressive molecules in hepatocellular carcinoma. BMC Cancer 2022, 22, 229. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Wang, H.; Yu, J.; Zhang, J.; Yang, Z.; Liu, M.; Niu, Y.; Wei, X.; Wang, W.; Li, H.; et al. miR-3607-3p suppresses non-small cell lung cancer (NSCLC) by targeting TGFBR1 and CCNE2. PLoS Genet. 2018, 14, e1007790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; He, J.; Zhang, W.; Wang, K.; Jin, S.; Li, J.; Gao, W. CARM1 promotes non-small cell lung cancer progression through upregulating CCNE2 expression. Aging 2020, 12, 10578–10593. [Google Scholar] [CrossRef]
- Allera-Moreau, C.; Rouquette, I.; Lepage, B.; Oumouhou, N.; Walschaerts, M.; Leconte, E.; Schilling, V.; Gordien, K.; Brouchet, L.; Delisle, M.B.; et al. DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients. Oncogenesis 2012, 1, e30. [Google Scholar] [CrossRef] [Green Version]
- An, C.; Liu, G.; Cheng, S.; Pang, B.; Sun, S.; Zhang, Y.; Pan, Z.; Kang, X. A pilot study of cdc6 as a biomarker for circulating tumor cells in patients with lung cancer. J. Clin. Lab. Anal. 2020, 34, e23245. [Google Scholar] [CrossRef]
- Wang, W.; He, J.; Lu, H.; Kong, Q.; Lin, S. KRT8 and KRT19, associated with EMT, are hypomethylated and overexpressed in lung adenocarcinoma and link to unfavorable prognosis. Biosci. Rep. 2020, 40, BSR20193468. [Google Scholar] [CrossRef]
- Ding, X.; Gu, Y.; Jin, M.; Guo, X.; Xue, S.; Tan, C.; Huang, J.; Yang, W.; Xue, M.; Zhou, Q.; et al. The deubiquitinating enzyme UCHL1 promotes resistance to pemetrexed in non-small cell lung cancer by upregulating thymidylate synthase. Theranostics 2020, 10, 6048–6060. [Google Scholar] [CrossRef]
- Goto, Y.; Zeng, L.; Yeom, C.J.; Zhu, Y.; Morinibu, A.; Shinomiya, K.; Kobayashi, M.; Hirota, K.; Itasaka, S.; Yoshimura, M.; et al. UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α. Nat. Commun. 2015, 6, 6153. [Google Scholar] [CrossRef]
- Moin, A.T.; Sarkar, B.; Ullah, M.A.; Araf, Y.; Ahmed, N.; Rudra, B. In silico assessment of EpCAM transcriptional expression and determination of the prognostic biomarker for human lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Biochem. Biophys. Rep. 2021, 27, 101074. [Google Scholar] [CrossRef] [PubMed]
- Skirecki, T.; Hoser, G.; Kawiak, J.; Dziedzic, D.; Domagała-Kulawik, J. Flow cytometric analysis of CD133- and EpCAM-positive cells in the peripheral blood of patients with lung cancer. Arch. Immunol. Ther. Exp. 2014, 62, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Fei, F.; Song, Y.; Li, X.; Zhang, Z.; Fei, Z.; Su, H.; Wan, S. Polymorphisms of EpCAM gene and prognosis for non-small-cell lung cancer in Han Chinese. Cancer Sci. 2014, 105, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yang, J.; Zhou, W.; Ren, Y.; Wang, X.; Chen, H.; Zhang, J.; Chen, J.; Sun, Y.; Cui, L.; et al. Activation of an AKT/FOXM1/STMN1 pathway drives resistance to tyrosine kinase inhibitors in lung cancer. Br. J. Cancer 2017, 117, 974–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mlak, R.; Krawczyk, P.; Ciesielka, M.; Homa, I.; Powrózek, T.; Prendecka, M.; Kozioł, P.; Milanowski, J.; Małecka-Massalska, T. Predictive value of STMN1 gene promoter polymorphism (-2166T>C) in patients with advanced NSCLC treated with the combination of platinum compounds and vinorelbine. Cancer Chemother. Pharmacol. 2015, 76, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, W.; Xing, X.; Zhang, D.; Lei, J.; Li, G. BRCA1 and STMN1 as prognostic markers in NSCLCs who received cisplatin-based adjuvant chemotherapy. Oncotarget 2017, 8, 80869–80877. [Google Scholar] [CrossRef] [Green Version]
- Xun, G.; Hu, W.; Li, B. PTEN loss promotes oncogenic function of STMN1 via PI3K/AKT pathway in lung cancer. Sci. Rep. 2021, 11, 14318. [Google Scholar] [CrossRef]
Characteristics | SCLC | Healthy Group (n = 59) | ||
---|---|---|---|---|
Total (n = 57) | Chemo-Sensitive (n = 33) | Chemo-Refractory (n = 24) | ||
Age, years | ||||
Mean | 63.65 | 62.85 | 64.75 | 59.92 |
Median | 64 | 62 | 66.5 | 58 |
Range | 41–79 | 41–79 | 45–74 | 41–91 |
Age group | ||||
<65 years | 29 (50.9%) | 19 (57.6%) | 10 (41.7%) | 40 (67.8%) |
≥65 years | 28 (49.1%) | 14 (42.4%) | 14 (58.3%) | 19 (32.2%) |
Sex | ||||
Male | 52 (91.2%) | 30 (90.9%) | 22 (91.7%) | 47 (79.7%) |
Female | 5 (8.8%) | 3 (9.1%) | 2 (8.3%) | 12 (20.3%) |
Smoking history | ||||
Never-smoker | 6 (10.5%) | 4 (12.1%) | 2 (8.3%) | / |
Former or current smoker | 51 (89.5%) | 29 (87.9%) | 22 (91.7%) | / |
Family history of cancer | ||||
Yes | 14 (24.6%) | 10 (30.3%) | 4 (16.7%) | / |
No | 43 (75.4%) | 23 (69.7%) | 20 (83.3%) | / |
ECOG PS at baseline | ||||
0 | 2 (3.5%) | 2 (6.1%) | 0 (0.0%) | / |
1 | 54 (94.7%) | 30 (90.9%) | 24 (100.0%) | / |
2 | 1 (1.8%) | 1 (3.0%) | 0 (0.0%) | / |
Stage | ||||
LS | 20 (35.1%) | 17 (51.5%) | 3 (12.5%) | / |
ES | 37 (64.9%) | 16 (48.5%) | 21 (87.5%) | / |
Metastatic sites at baseline | ||||
Bilateral Lung | 4 (7.0%) | 1 (3.0%) | 3 (12.5%) | / |
Brain | 10 (17.5%) | 3 (9.1%) | 7 (29.2%) | / |
Bone | 13 (22.8%) | 3 (9.1%) | 10 (41.7%) | / |
Liver | 10 (17.5%) | 4 (12.1%) | 6 (25.0%) | / |
Adrenal gland | 7 (12.3%) | 3 (9.1%) | 4 (16.7%) | / |
Supraclavicular lymph node | 8 (14.0%) | 4 (12.1%) | 4 (16.7%) | / |
Pleural | 16 (28.1%) | 7 (21.2%) | 9 (37.5%) | / |
Others | 18 (31.6%) | 8 (24.2%) | 10 (41.7%) | / |
Chemotherapy | ||||
EP | 25 (43.9%) | 18 (54.5%) | 7 (29.2%) | / |
EC | 31 (54.4%) | 14 (42.4%) | 17 (70.8%) | / |
IP | 1 (1.8%) | 1 (3.0%) | 0 (0.0%) | / |
Responses | Total (n = 57) | Chemo-Sensitive (n = 33) | Chemo-Refractory (n = 24) |
---|---|---|---|
CR | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
PR | 42 (73.7%) | 33 (100.0%) | 9 (37.5%) |
SD | 11 (19.3%) | 0 (0.0%) | 11 (45.8%) |
PD | 4 (7.0%) | 0 (0.0%) | 4 (16.7%) |
ORR | 73.7% [95% CI, 60.3–84.5%] | 100.0% [95% CI, 89.4–100.0%] | 37.5% [95% CI, 18.8–59.4%] |
DCR | 93.0% [95% CI, 83.0–98.1%] | 100.0% [95% CI, 89.4–100.0%] | 83.3% [95% CI, 62.6–95.3%] |
exLRs | Chemo-Refractory vs. Chemo-Sensitive Group | SCLC vs. Healthy Controls | OS | PFS | ||
---|---|---|---|---|---|---|
Mean Fold Change | p-Value | Mean Fold Change | FDR | p-Value | p-Value | |
CALB2 | 2.66 | 1.39 × 10−3 | 3.01 | 1.11 × 10−6 | 3.58 × 10−4 | 1.52 × 10−6 |
CCNE2 | 2.20 | 2.54 × 10−4 | 3.45 | 2.05 × 10−11 | 1.55 × 10−5 | 8.71 × 10−7 |
CDC6 | 1.59 | 1.12 × 10−2 | 2.69 | 3.85 × 10−8 | 1.36 × 10−3 | 1.36 × 10−3 |
CDCA7 | 1.90 | 8.60 × 10−4 | 2.02 | 1.54 × 10−3 | 1.70 × 10−4 | 1.34 × 10−3 |
EPCAM | 2.28 | 3.83 × 10−3 | 4.51 | 2.12 × 10−14 | 1.50 × 10−2 | 5.68 × 10−3 |
HOXB7 | 1.62 | 4.31 × 10−3 | 2.46 | 6.71 × 10−5 | 3.87 × 10−2 | 9.71 × 10−3 |
KRT8 | 2.07 | 8.96 × 10−3 | 3.24 | 2.16 × 10−7 | 1.11 × 10−2 | 3.64 × 10−3 |
LAMB1 | 1.45 | 3.87 × 10−2 | 2.39 | 2.88 × 10−7 | 2.14 × 10−2 | 2.21 × 10−2 |
STMN1 | 1.56 | 1.77 × 10−2 | 2.07 | 7.37 × 10−6 | 4.43 × 10−4 | 1.75 × 10−2 |
UCHL1 | 2.36 | 2.34 × 10−3 | 2.21 | 4.70 × 10−5 | 4.32 × 10−4 | 1.76 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Chen, J.; Liao, J.; Li, Y.; Yu, H.; Zhao, X.; Sun, S.; Hu, Z.; Zhang, Y.; Zhu, Z.; et al. Plasma Extracellular Vesicle Long RNA in Diagnosis and Prediction in Small Cell Lung Cancer. Cancers 2022, 14, 5493. https://doi.org/10.3390/cancers14225493
Liu C, Chen J, Liao J, Li Y, Yu H, Zhao X, Sun S, Hu Z, Zhang Y, Zhu Z, et al. Plasma Extracellular Vesicle Long RNA in Diagnosis and Prediction in Small Cell Lung Cancer. Cancers. 2022; 14(22):5493. https://doi.org/10.3390/cancers14225493
Chicago/Turabian StyleLiu, Chang, Jinying Chen, Jiatao Liao, Yuchen Li, Hui Yu, Xinmin Zhao, Si Sun, Zhihuang Hu, Yao Zhang, Zhengfei Zhu, and et al. 2022. "Plasma Extracellular Vesicle Long RNA in Diagnosis and Prediction in Small Cell Lung Cancer" Cancers 14, no. 22: 5493. https://doi.org/10.3390/cancers14225493
APA StyleLiu, C., Chen, J., Liao, J., Li, Y., Yu, H., Zhao, X., Sun, S., Hu, Z., Zhang, Y., Zhu, Z., Fan, M., Huang, S., & Wang, J. (2022). Plasma Extracellular Vesicle Long RNA in Diagnosis and Prediction in Small Cell Lung Cancer. Cancers, 14(22), 5493. https://doi.org/10.3390/cancers14225493