Plasma Sequencing for Patients with GIST—Limitations and Opportunities in an Academic Setting
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of This Study
2.2. DNA Preparation
2.3. Isolation and Quality Control of Free Circulating DNA
2.4. Tumor Volumetry
2.5. Routine Next-Generation Panel Sequencing
2.6. Research Pipeline (Pipeline 2)
2.7. Droplet Digital PCR
2.8. Cell Lines and Reagents
2.9. Statistical Analyses
3. Results
3.1. EDTA Blood Sampling Tubes Require Immediate Processing
3.2. Impact of Isolation Protocol on cfDNA Yield and Detection of Mutations
3.3. Implementation of Panel NGS of Plasma Using Clinical Routine Panels: Sequencing Artifacts as a Pitfall
3.4. Analysis of GIST Patient Plasma Samples
3.5. Location and Tumor Size May Determine Shedding Rates
3.6. Distribution of KIT/PDGFRA Mutations from 133 Plasma Sequencing Analyses
3.7. Evolution of Primary and Secondary Mutations of Known Malignant Potential during Therapy
3.8. The Costs for Periodical ctDNA Testing Are Comparable to Radiological Imaging
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joensuu, H.; Fletcher, C.; Dimitrijevic, S.; Silberman, S.; Roberts, P.; Demetri, G. Management of malignant gastrointestinal stromal tumours. Lancet Oncol. 2002, 3, 655–664. [Google Scholar] [CrossRef]
- Soreide, K.; Sandvik, O.M.; Soreide, J.A.; Giljaca, V.; Jureckova, A.; Bulusu, V.R. Global epidemiology of gastrointestinal stromal tumours (GIST): A systematic review of population-based cohort studies. Cancer Epidemiol. 2016, 40, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirota, S.; Isozaki, K.; Moriyama, Y.; Hashimoto, K.; Nishida, T.; Ishiguro, S.; Kawano, K.; Hanada, M.; Kurata, A.; Takeda, M.; et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998, 279, 577–580. [Google Scholar] [CrossRef]
- Heinrich, M.C.; Corless, C.L.; Duensing, A.; McGreevey, L.; Chen, C.J.; Joseph, N.; Singer, S.; Griffith, D.J.; Haley, A.; Town, A.; et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003, 299, 708–710. [Google Scholar] [CrossRef]
- Blanke, C.D.; Demetri, G.D.; Von Mehren, M.; Heinrich, M.C.; Eisenberg, B.; Fletcher, J.A.; Corless, C.L.; Fletcher, C.D.; Roberts, P.J.; Heinz, D.; et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J. Clin. Oncol. 2008, 26, 620–625. [Google Scholar] [CrossRef]
- Corless, C.L.; Barnett, C.M.; Heinrich, M.C. Gastrointestinal stromal tumours: Origin and molecular oncology. Nat. Rev. Cancer 2011, 11, 865–878. [Google Scholar] [CrossRef]
- Grunewald, S.; Klug, L.R.; Mühlenberg, T.; Lategahn, J.; Falkenhorst, J.; Town, A.; Ehrt, C.; Wardelmann, E.; Hartmann, W.; Schildhaus, H.U.; et al. Resistance to Avapritinib in PDGFRA-Driven GIST Is Caused by Secondary Mutations in the PDGFRA Kinase Domain. Cancer Discov. 2020, 11, 108–125. [Google Scholar] [CrossRef]
- Wardelmann, E.; Merkelbach-Bruse, S.; Pauls, K.; Thomas, N.; Schildhaus, H.U.; Heinicke, T.; Speidel, N.; Pietsch, T.; Buettner, R.; Pink, D.; et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin. Cancer Res. 2006, 12, 1743–1749. [Google Scholar] [CrossRef] [Green Version]
- Bauer, S.; Heinrich, M.C.; George, S.; Zalcberg, J.R.; Serrano, C.; Gelderblom, H.; Jones, R.L.; Attia, S.; D’Amato, G.; Chi, P.; et al. Clinical Activity of Ripretinib in Patients with Advanced Gastrointestinal Stromal Tumor Harboring Heterogeneous KIT/PDGFRA Mutations in the Phase III INVICTUS Study. Clin. Cancer Res. 2021, 27, 6333–6342. [Google Scholar] [CrossRef]
- Garner, A.P.; Gozgit, J.M.; Anjum, R.; Vodala, S.; Schrock, A.; Zhou, T.; Serrano, C.; Eilers, G.; Zhu, M.; Ketzer, J.; et al. Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. Clin. Cancer Res. 2014, 20, 5745–5755. [Google Scholar] [CrossRef]
- Qiagen MiSeq DX Reagents. Available online: https://emea.illumina.com/products/by-type/ivd-products/miseqdx-reagents.html (accessed on 12 August 2022).
- Mölder, F.; Jablonski, K.P.; Letcher, B.; Hall, M.B.; Tomkins-Tinch, C.H.; Sochat, V.; Forster, J.; Lee, S.; Twardziok, S.O.; Kanitz, A.; et al. Sustainable data analysis with Snakemake. F1000Res 2021, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Forster. snakemake-workflows/dna-seq-varlociraptor: v3.14.1. 2022. Available online: https://github.com/snakemake-workflows/dna-seq-varlociraptor (accessed on 25 July 2022).
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Fulcrumgenomics, Fgbio. Available online: https://github.com/fulcrumgenomics/fgbio (accessed on 25 July 2022).
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrison, E.A.M. Gabor Haplotype-based variant detection from short-read sequencing. arXiv 2012, arXiv:1207.3907 [q-bio.GN]. [Google Scholar]
- Rausch, T.; Zichner, T.; Schlattl, A.; Stütz, A.M.; Benes, V.; Korbel, J.O. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 2012, 28, i333–i339. [Google Scholar] [CrossRef] [Green Version]
- Köster, J.; Dijkstra, L.J.; Marschall, T.; Schönhuth, A. Varlociraptor: Enhancing sensitivity and controlling false discovery rate in somatic indel discovery. Genome Biol. 2020, 21, 98. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Mühlenberg, T.; Zhang, Y.; Wagner, A.J.; Grabellus, F.; Bradner, J.; Taeger, G.; Lang, H.; Taguchi, T.; Schuler, M.; Fletcher, J.A.; et al. Inhibitors of deacetylases suppress oncogenic KIT signaling, acetylate HSP90, and induce apoptosis in gastrointestinal stromal tumors. Cancer Res. 2009, 69, 6941–6950. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, T.; Sonobe, H.; Toyonaga, S.; Yamasaki, I.; Shuin, T.; Takano, A.; Araki, K.; Akimaru, K.; Yuri, K. Conventional and Molecular Cytogenetic Characterization of a New Human Cell Line, GIST-T1, Established from Gastrointestinal Stromal Tumor. Lab. Investig. 2002, 82, 663–665. [Google Scholar] [CrossRef] [Green Version]
- Mühlenberg, T.; Ketzer, J.; Heinrich, M.C.; Grunewald, S.; Marino-Enriquez, A.; Trautmann, M.; Hartmann, W.; Wardelmann, E.; Treckmann, J.; Worm, K.; et al. KIT-Dependent and KIT-Independent Genomic Heterogeneity of Resistance in Gastrointestinal Stromal Tumors—TORC1/2 Inhibition as Salvage Strategy. Mol. Cancer Ther. 2019, 18, 1985–1996. [Google Scholar] [CrossRef] [Green Version]
- Shihab, H.A.; Rogers, M.F.; Gough, J.; Mort, M.; Cooper, D.N.; Day, I.N.; Gaunt, T.R.; Campbell, C. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 2015, 31, 1536–1543. [Google Scholar] [CrossRef]
- Schaefer, I.-M.; DeMatteo, R.P.; Serrano, C. The GIST of Advances in Treatment of Advanced Gastrointestinal Stromal Tumor. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 885–899. [Google Scholar] [CrossRef] [PubMed]
- KassenärztlicheBundesvereinigung. Einheitlicher Bewertungsmaßstab. Available online: https://www.kbv.de/tools/ebm/ (accessed on 12 August 2021).
- Duranti, S.; Fabi, A.; Filetti, M.; Falcone, R.; Lombardi, P.; Daniele, G.; Franceschini, G.; Carbognin, L.; Palazzo, A.; Garganese, G.; et al. Breast Cancer Drug Approvals Issued by EMA: A Review of Clinical Trials. Cancers 2021, 13, 5198. [Google Scholar] [CrossRef]
- Johansson, G.; Berndsen, M.; Lindskog, S.; Österlund, T.; Fagman, H.; Muth, A.; Ståhlberg, A. Monitoring Circulating Tumor DNA during Surgical Treatment in Patients with Gastrointestinal Stromal Tumors. Mol. Cancer Ther. 2021, 20, 2568–2576. [Google Scholar] [CrossRef]
- Kang, G.; Sohn, B.S.; Pyo, J.S.; Kim, J.Y.; Lee, B.; Kim, K.M. Detecting Primary KIT Mutations in Presurgical Plasma of Patients with Gastrointestinal Stromal Tumor. Mol. Diagn. Ther. 2016, 20, 347–351. [Google Scholar] [CrossRef]
- GuardantHealth. Tests for Patients with Advanced Cancer. Available online: https://guardanthealth.com/products/tests-for-patients-with-advanced-cancer/#:~:text=To%20learn%20more%2C%20contact%20Guardant,commercial%20launch%20September%2028%2C%202020 (accessed on 21 September 2022).
- Arshad, J.; Roberts, A.; Ahmed, J.; Cotta, J.; Pico, B.A.; Kwon, D.; Trent, J.C. Utility of Circulating Tumor DNA in the Management of Patients with GI Stromal Tumor: Analysis of 243 Patients. JCO Precis. Oncol. 2020, 4, 66–73. [Google Scholar] [CrossRef]
- HiSSDiagnostics. Cell-Free DNA BCT. Available online: https://hiss-dx.de/produkte/diagnostik-forschung/molekularbiologie/gewinnung-aufreinigung/1/cell-free-dna-bct (accessed on 22 September 2022).
- Preismed. Sarstedt S-Monovette 7,5 ml. Available online: https://shop.preismed.de/Infusion-Injektion/Blutentnahme/Sarstedt-System/Roehrchen/S-Monovette-EDTA-rot-Blutgruppen-7-5-ml-1x50-Stueck.html (accessed on 22 September 2022).
- Kang, Q.; Henry, N.L.; Paoletti, C.; Jiang, H.; Vats, P.; Chinnaiyan, A.M.; Hayes, D.F.; Merajver, S.D.; Rae, J.M.; Tewari, M. Comparative analysis of circulating tumor DNA stability In K(3)EDTA, Streck, and CellSave blood collection tubes. Clin. Biochem. 2016, 49, 1354–1360. [Google Scholar] [CrossRef]
- Boonstra, P.A.; Ter Elst, A.; Tibbesma, M.; Bosman, L.J.; Mathijssen, R.; Atrafi, F.; van Coevorden, F.; Steeghs, N.; Farag, S.; Gelderblom, H.; et al. A single digital droplet PCR assay to detect multiple KIT exon 11 mutations in tumor and plasma from patients with gastrointestinal stromal tumors. Oncotarget 2018, 9, 13870–13883. [Google Scholar] [CrossRef] [Green Version]
- Jilg, S.; Rassner, M.; Maier, J.; Waldeck, S.; Kehl, V.; Follo, M.; Philipp, U.; Sauter, A.; Specht, K.; Mitschke, J.; et al. Circulating cKIT and PDGFRA DNA indicates disease activity in Gastrointestinal Stromal Tumor (GIST). Int. J. Cancer 2019, 145, 2292–2303. [Google Scholar] [CrossRef]
- Serrano, C.; Vivancos, A.; López-Pousa, A.; Matito, J.; Mancuso, F.M.; Valverde, C.; Quiroga, S.; Landolfi, S.; Castro, S.; Dopazo, C.; et al. Clinical value of next generation sequencing of plasma cell-free DNA in gastrointestinal stromal tumors. BMC Cancer 2020, 20, 99. [Google Scholar] [CrossRef] [Green Version]
- Maier, J.; Lange, T.; Kerle, I.; Specht, K.; Bruegel, M.; Wickenhauser, C.; Jost, P.; Niederwieser, D.; Peschel, C.; Duyster, J.; et al. Detection of mutant free circulating tumor DNA in the plasma of patients with gastrointestinal stromal tumor harboring activating mutations of CKIT or PDGFRA. Clin. Cancer Res. 2013, 19, 4854–4867. [Google Scholar] [CrossRef] [PubMed]
- Wada, N.; Kurokawa, Y.; Takahashi, T.; Hamakawa, T.; Hirota, S.; Naka, T.; Miyazaki, Y.; Makino, T.; Yamasaki, M.; Nakajima, K.; et al. Detecting Secondary C-KIT Mutations in the Peripheral Blood of Patients with Imatinib-Resistant Gastrointestinal Stromal Tumor. Oncology 2016, 90, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Namlos, H.M.; Boye, K.; Mishkin, S.J.; Baroy, T.; Lorenz, S.; Bjerkehagen, B.; Stratford, E.W.; Munthe, E.; Kudlow, B.A.; Myklebost, O.; et al. Noninvasive Detection of ctDNA Reveals Intratumor Heterogeneity and Is Associated with Tumor Burden in Gastrointestinal Stromal Tumor. Mol. Cancer Ther. 2018, 17, 2473–2480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, C.; Leal, A.; Kuang, Y.; Morgan, J.A.; Barysauskas, C.M.; Phallen, J.; Triplett, O.; Mariño-Enríquez, A.; Wagner, A.J.; Demetri, G.D.; et al. Phase I Study of Rapid Alternation of Sunitinib and Regorafenib for the Treatment of Tyrosine Kinase Inhibitor Refractory Gastrointestinal Stromal Tumors. Clin. Cancer Res. 2019, 25, 7287–7293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leest, P.V.D.; Boonstra, P.A.; Elst, A.T.; Kempen, L.C.V.; Tibbesma, M.; Koopmans, J.; Miedema, A.; Tamminga, M.; Groen, H.J.M.; Reyners, A.K.L.; et al. Comparison of Circulating Cell-Free DNA Extraction Methods for Downstream Analysis in Cancer Patients. Cancers 2020, 12, 1222. [Google Scholar] [CrossRef] [PubMed]
- Mouliere, F.; Chandrananda, D.; Piskorz, A.M.; Moore, E.K.; Morris, J.; Ahlborn, L.B.; Mair, R.; Goranova, T.; Marass, F.; Heider, K.; et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. 2018, 10, eaat4921. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Charnsangavej, C.; Faria, S.C.; Macapinlac, H.A.; Burgess, M.A.; Patel, S.R.; Chen, L.L.; Podoloff, D.A.; Benjamin, R.S. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: Proposal of new computed tomography response criteria. J. Clin. Oncol. 2007, 25, 1753–1759. [Google Scholar] [CrossRef]
- Stetson, D.; Ahmed, A.; Xu, X.; Nuttall, B.R.B.; Lubinski, T.J.; Johnson, J.H.; Barrett, J.C.; Dougherty, B.A. Orthogonal Comparison of Four Plasma NGS Tests with Tumor Suggests Technical Factors are a Major Source of Assay Discordance. JCO Precis. Oncol. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Xie, M.; Lu, C.; Wang, J.; McLellan, M.D.; Johnson, K.J.; Wendl, M.C.; McMichael, J.F.; Schmidt, H.K.; Yellapantula, V.; Miller, C.A.; et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 2014, 20, 1472–1478. [Google Scholar] [CrossRef]
- Gómez-Peregrina, D.; García-Valverde, A.; Pilco-Janeta, D.; Serrano, C. Liquid Biopsy in Gastrointestinal Stromal Tumors: Ready for Prime Time? Curr. Treat. Options Oncol. 2021, 22, 32. [Google Scholar] [CrossRef]
- Serrano, C.; Bauer, S.; Gómez-Peregrina, D.; Kang, Y.-K.; Jones, R.L.; Rutkowski, P.; Mir, O.; Heinrich, M.C.; Tap, W.D.; Newberry, K.; et al. Circulating tumor DNA (ctDNA) analyses of the phase III VOYAGER trial: KIT mutational landscape and outcomes in patients with advanced gastrointestinal stromal tumor (GIST). J. Clin. Oncol. 2022, 40, 101. [Google Scholar] [CrossRef]
Target | Forward Primer Sequence | Reverse Primer Sequence | Mutant Probe 5′ → 3′ FAM | Wild-Type Probe 5′ → 3′ HEX |
---|---|---|---|---|
KIT exon 13 V654A | TCCTGTATGG TACTGCATGC | GAGAGAACAA CAGTCTGGGT | TGGTGCAGG CTCCAAGTA GATTCGCA | TGGTGCAGG CTCCAAGTA GATTCACA |
KIT exon 14 p.T670I | ATGGGAGGCA GAATTAATCT | GATCTTCCTGC TTTGAACAA | CCCACCCTG GTCATTAT AGAATA | CCCACCCTG GTCATTACA GAATA |
AGE (DIAGNOSIS) | Median: | 50.5 years (27–76) |
GENDER | Male: | 25 (66%) |
Female: | 13 (34%) | |
PRIMARY TUMOR LOCALIZATION | Gastric: | 8 (21%) |
Small intestine: | 23 (61%) | |
Rectum: | 2 (5%) | |
Other: | 5 (13.2%) | |
METASTASIS LOCALIZATION | Liver: | 12 (32%) |
Peritoneum: | 12 (32%) | |
Both: | 7 (18%) | |
Other | 6 (16%) | |
DISEASE STATUS AT DIAGNOSIS | Localized | 22 (58%) |
Metastatic | 16 (42%) | |
DISEASE STATUS AT FIRST PLASMA SEQUENCING | Localized | 2 (5.2%) |
Metastatic | 36 (94.7%) | |
PRIMARY MUTATION | KIT exon 9 | 10 (26%) |
(TUMOR TISSUE) | KIT exon 11 | 24 (63%) |
KIT exon 17 | 1 (3%) | |
PDGFRA exon 18 | 3 (8%) | |
SECONDARY MUTATIONS | KIT exon 11 | 1 (3%) |
(TUMOR TISSUE) | KIT exon 13/14 | 1 (3%) |
KIT exon 17/18 | 7 (18%) | |
PDGFRA exon 14 | 1 (3%) | |
None: | 28 (73%) | |
NUMBER OF SAMPLES PER PATIENT | 1 | 12 (31.6%) |
2 | 11 (28.9%) | |
3 | 5 (13.2%) | |
>3 | 10 (26.3%) | |
TECHNOLOGY | V2 | 87 (64.4%) |
V3 | 48 (35.6%) | |
| 21 | |
DNA-ISOLATION METHOD | Qiagen | 63 (46.7%) |
Maxwell | 72 (53.3%) | |
BLOOD TUBES | STRECK | 14 (10.4%) |
EDTA | 121 (89.6%) | |
| 12 (8.9%) |
Untreated | Imatinib | Sunitinib | Regorafenib | Pazopanib | Avapritinib | Sunitinib and Sirolimus | Ponatinib | Nilotinib | Other | |
---|---|---|---|---|---|---|---|---|---|---|
n = 11 | n = 34 | n = 14 | n = 18 | n = 11 | n = 3 | n = 2 | n = 13 | n = 10 | n = 7 | |
Exon 13 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
Exon 17 | 0 | 4 | 1 | 1 | 0 | 0 | 2 | 4 | 5 | 0 |
Exon 17 D816 | 0 | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 |
Exon 13 and 17 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Cost per Sample (€) | |||||||||
---|---|---|---|---|---|---|---|---|---|
EBM | Research Costs | ||||||||
CT Scan | MRI Scan | CT-Guided Biopsy | NGS Panel Sequencing | ddPCR per Sample and Mutation | |||||
abdominal CT | 80.54 | abdominal MRI | 117.14 | biopsy | 103.93 | STRECK tube | 10.50 | STRECK tube | 10.50 |
contrast agent | 24.03 | contrast agent | 24.03 | DNA Extraction | 26.25 | DNA Extraction | 26.25 | DNA extraction (Maxwell) | 20.83 |
infusion | 7.45 | infusion | 7.45 | flagfall fee | 16.13 | flagfall fee | 16.13 | primers and probes | 5.60 |
flagfall fee tumorgenetics | 42.61 | flagfall fee tumorgenetics | 42.61 | ddPCR reagents | 5.12 | ||||
Mutation analysis per 250 bp | 75.42 | Mutation analysis per 250 bp | 75.42 | ddPCR consumables | 6.40 | ||||
personnel costs | 8.33 | ||||||||
total | 112.02 | total | 148.62 | total | 264.34 | total | 170.91 | total | 56.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkenhorst, J.; Grunewald, S.; Krzeciesa, D.; Herold, T.; Ketzer, J.; Christoff, M.; Hamacher, R.; Kostbade, K.; Treckmann, J.; Köster, J.; et al. Plasma Sequencing for Patients with GIST—Limitations and Opportunities in an Academic Setting. Cancers 2022, 14, 5496. https://doi.org/10.3390/cancers14225496
Falkenhorst J, Grunewald S, Krzeciesa D, Herold T, Ketzer J, Christoff M, Hamacher R, Kostbade K, Treckmann J, Köster J, et al. Plasma Sequencing for Patients with GIST—Limitations and Opportunities in an Academic Setting. Cancers. 2022; 14(22):5496. https://doi.org/10.3390/cancers14225496
Chicago/Turabian StyleFalkenhorst, Johanna, Susanne Grunewald, Dawid Krzeciesa, Thomas Herold, Julia Ketzer, Miriam Christoff, Rainer Hamacher, Karina Kostbade, Jürgen Treckmann, Johannes Köster, and et al. 2022. "Plasma Sequencing for Patients with GIST—Limitations and Opportunities in an Academic Setting" Cancers 14, no. 22: 5496. https://doi.org/10.3390/cancers14225496
APA StyleFalkenhorst, J., Grunewald, S., Krzeciesa, D., Herold, T., Ketzer, J., Christoff, M., Hamacher, R., Kostbade, K., Treckmann, J., Köster, J., Farzaliyev, F., Fletcher, B. S., Dieckmann, N., Kaths, M., Mühlenberg, T., Schildhaus, H. -U., & Bauer, S. (2022). Plasma Sequencing for Patients with GIST—Limitations and Opportunities in an Academic Setting. Cancers, 14(22), 5496. https://doi.org/10.3390/cancers14225496