Prognostic Impact of Caspase-8, CDK9 and Phospho-CDK9 (Thr 186) Expression in Patients with Uterine Cervical Cancer Treated with Definitive Chemoradiation and Brachytherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Characteristics
2.2. Treatment and Follow-Up Assessment
2.3. Immunohistochemical Staining and Scoring
2.4. Statistical Analysis
3. Results
3.1. Associations with Tumors and Patient Histopathologic Characteristics
3.2. Disease-Related Outcomes according to the Expression of Caspase-8, CDK9 and pCDK9
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Potter, R.; Georg, P.; Dimopoulos, J.C.; Grimm, M.; Berger, D.; Nesvacil, N.; Georg, D.; Schmid, M.P.; Reinthaller, A.; Sturdza, A.; et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother. Oncol. 2011, 100, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Potter, R.; Tanderup, K.; Schmid, M.P.; Jurgenliemk-Schulz, I.; Haie-Meder, C.; Fokdal, L.U.; Sturdza, A.E.; Hoskin, P.; Mahantshetty, U.; Segedin, B.; et al. MRI-guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE-I): A multicentre prospective cohort study. Lancet Oncol. 2021, 22, 538–547. [Google Scholar] [CrossRef]
- Azria, E.; Morice, P.; Haie-Meder, C.; Thoury, A.; Pautier, P.; Lhomme, C.; Duvillard, P.; Castaigne, D. Results of hysterectomy in patients with bulky residual disease at the end of chemoradiotherapy for stage IB2/II cervical carcinoma. Ann. Surg. Oncol. 2005, 12, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet 2019, 393, 169–182. [Google Scholar] [CrossRef]
- Peiretti, M.; Zapardiel, I.; Zanagnolo, V.; Landoni, F.; Morrow, C.P.; Maggioni, A. Management of recurrent cervical cancer: A review of the literature. Surg. Oncol. 2012, 21, e59–e66. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Sill, M.W.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; Michael, H.E.; et al. Bevacizumab for advanced cervical cancer: Final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet 2017, 390, 1654–1663. [Google Scholar] [CrossRef] [Green Version]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yanez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef]
- Fleischmann, M.; Chatzikonstantinou, G.; Fokas, E.; Wichmann, J.; Christiansen, H.; Strebhardt, K.; Rodel, C.; Tselis, N.; Rodel, F. Molecular Markers to Predict Prognosis and Treatment Response in Uterine Cervical Cancer. Cancers 2021, 13, 5748. [Google Scholar] [CrossRef]
- Mandal, R.; Barron, J.C.; Kostova, I.; Becker, S.; Strebhardt, K. Caspase-8: The double-edged sword. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188357. [Google Scholar] [CrossRef]
- Kostova, I.; Mandal, R.; Becker, S.; Strebhardt, K. The role of caspase-8 in the tumor microenvironment of ovarian cancer. Cancer Metastasis Rev. 2021, 40, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Paoli, P.; Giannoni, E.; Chiarugi, P. Anoikis molecular pathways and its role in cancer progression. Biochim. Biophys. Acta 2013, 1833, 3481–3498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmke, C.; Raab, M.; Rodel, F.; Matthess, Y.; Oellerich, T.; Mandal, R.; Sanhaji, M.; Urlaub, H.; Rodel, C.; Becker, S.; et al. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res. 2016, 26, 914–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthess, Y.; Raab, M.; Knecht, R.; Becker, S.; Strebhardt, K. Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol. Oncol. 2014, 8, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Matthess, Y.; Raab, M.; Sanhaji, M.; Lavrik, I.N.; Strebhardt, K. Cdk1/cyclin B1 controls Fas-mediated apoptosis by regulating caspase-8 activity. Mol. Cell. Biol. 2010, 30, 5726–5740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, R.; Raab, M.; Matthess, Y.; Becker, S.; Knecht, R.; Strebhardt, K. pERK 1/2 inhibit Caspase-8 induced apoptosis in cancer cells by phosphorylating it in a cell cycle specific manner. Mol. Oncol. 2014, 8, 232–249. [Google Scholar] [CrossRef]
- Hillert, L.K.; Ivanisenko, N.V.; Busse, D.; Espe, J.; Konig, C.; Peltek, S.E.; Kolchanov, N.A.; Ivanisenko, V.A.; Lavrik, I.N. Dissecting DISC regulation via pharmacological targeting of caspase-8/c-FLIPL heterodimer. Cell Death Differ. 2020, 27, 2117–2130. [Google Scholar] [CrossRef]
- Hajra, K.M.; Liu, J.R. Apoptosome dysfunction in human cancer. Apoptosis 2004, 9, 691–704. [Google Scholar] [CrossRef]
- Mandal, R.; Raab, M.; Rödel, F.; Krämer, A.; Kostova, K.; Peňa-Llopis, S.; Häupl, B.; Oellerich, T.; Gasimli, K.; Sanhaji, M.; et al. A non-apoptotic function of Caspase-8 negatively regulates POLR2A-mediated transcriptional elongation via CDK9 in cervical cancer. Cell Mol. Life Sci. 2022. [Google Scholar]
- Paparidis, N.F.; Durvale, M.C.; Canduri, F. The emerging picture of CDK9/P-TEFb: More than 20 years of advances since PITALRE. Mol. Biosyst. 2017, 13, 246–276. [Google Scholar] [CrossRef]
- Mandal, R.; Becker, S.; Strebhardt, K. Targeting CDK9 for Anti-Cancer Therapeutics. Cancers 2021, 13, 2181. [Google Scholar] [CrossRef]
- Rodel, F.; Martin, D.; Helmke, C.; Balermpas, P.; Fokas, E.; Wieland, U.; Rave-Frank, M.; Kitz, J.; Matthess, Y.; Raab, M.; et al. Polo-like kinase 3 and phosphoT273 caspase-8 are associated with improved local tumor control and survival in patients with anal carcinoma treated with concomitant chemoradiotherapy. Oncotarget 2016, 7, 53339–53349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekonomopoulou, M.T.; Babas, E.; Mioglou-Kalouptsi, E.; Malandri, M.; Iakovidou-Kritsi, Z. Changes in activities of caspase-8 and caspase-9 in human cervical malignancy. Int. J. Gynecol. Cancer 2011, 21, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Pingoud-Meier, C.; Lang, D.; Janss, A.J.; Rorke, L.B.; Phillips, P.C.; Shalaby, T.; Grotzer, M.A. Loss of caspase-8 protein expression correlates with unfavorable survival outcome in childhood medulloblastoma. Clin. Cancer Res. 2003, 9, 6401–6409. [Google Scholar] [PubMed]
- Liu, S.; Garcia-Marques, F.; Zhang, C.A.; Lee, J.J.; Nolley, R.; Shen, M.; Hsu, E.C.; Aslan, M.; Koul, K.; Pitteri, S.J.; et al. Discovery of CASP8 as a potential biomarker for high-risk prostate cancer through a high-multiplex immunoassay. Sci. Rep. 2021, 11, 7612. [Google Scholar] [CrossRef]
- Elrod, H.A.; Fan, S.; Muller, S.; Chen, G.Z.; Pan, L.; Tighiouart, M.; Shin, D.M.; Khuri, F.R.; Sun, S.Y. Analysis of death receptor 5 and caspase-8 expression in primary and metastatic head and neck squamous cell carcinoma and their prognostic impact. PLoS ONE 2010, 5, e12178. [Google Scholar] [CrossRef]
- Li, C.; Egloff, A.M.; Sen, M.; Grandis, J.R.; Johnson, D.E. Caspase-8 mutations in head and neck cancer confer resistance to death receptor-mediated apoptosis and enhance migration, invasion, and tumor growth. Mol. Oncol. 2014, 8, 1220–1230. [Google Scholar] [CrossRef]
- De Blasio, A.; Di Fiore, R.; Morreale, M.; Carlisi, D.; Drago-Ferrante, R.; Montalbano, M.; Scerri, C.; Tesoriere, G.; Vento, R. Unusual roles of caspase-8 in triple-negative breast cancer cell line MDA-MB-231. Int. J. Oncol. 2016, 48, 2339–2348. [Google Scholar] [CrossRef] [Green Version]
- Stupack, D.G.; Teitz, T.; Potter, M.D.; Mikolon, D.; Houghton, P.J.; Kidd, V.J.; Lahti, J.M.; Cheresh, D.A. Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 2006, 439, 95–99. [Google Scholar] [CrossRef]
- Fleischmann, M.; Martin, D.; Pena-Llopis, S.; Oppermann, J.; von der Grun, J.; Diefenhardt, M.; Chatzikonstantinou, G.; Fokas, E.; Rodel, C.; Strebhardt, K.; et al. Association of Polo-Like Kinase 3 and PhosphoT273 Caspase 8 Levels With Disease-Related Outcomes Among Cervical Squamous Cell Carcinoma Patients Treated With Chemoradiation and Brachytherapy. Front. Oncol. 2019, 9, 742. [Google Scholar] [CrossRef] [Green Version]
- Toyozumi, Y.; Arima, N.; Izumaru, S.; Kato, S.; Morimatsu, M.; Nakashima, T. Loss of caspase-8 activation pathway is a possible mechanism for CDDP resistance in human laryngeal squamous cell carcinoma, HEp-2 cells. Int. J. Oncol. 2004, 25, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Paul, I.; Chacko, A.D.; Stasik, I.; Busacca, S.; Crawford, N.; McCoy, F.; McTavish, N.; Wilson, B.; Barr, M.; O’Byrne, K.J.; et al. Acquired differential regulation of caspase-8 in cisplatin-resistant non-small-cell lung cancer. Cell Death Dis. 2012, 3, e449. [Google Scholar] [CrossRef] [Green Version]
- Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ. 2015, 22, 526–539. [Google Scholar] [CrossRef] [Green Version]
- Muller, I.; Strozyk, E.; Schindler, S.; Beissert, S.; Oo, H.Z.; Sauter, T.; Lucarelli, P.; Raeth, S.; Hausser, A.; Al Nakouzi, N.; et al. Cancer Cells Employ Nuclear Caspase-8 to Overcome the p53-Dependent G2/M Checkpoint through Cleavage of USP28. Mol. Cell 2020, 77, 970–984.e7. [Google Scholar] [CrossRef] [PubMed]
- Koschny, R.; Brost, S.; Hinz, U.; Sykora, J.; Batke, E.M.; Singer, S.; Breuhahn, K.; Stremmel, W.; Walczak, H.; Schemmer, P.; et al. Cytosolic and nuclear caspase-8 have opposite impact on survival after liver resection for hepatocellular carcinoma. BMC Cancer 2013, 13, 532. [Google Scholar] [CrossRef] [Green Version]
- Kretz, A.L.; Schaum, M.; Richter, J.; Kitzig, E.F.; Engler, C.C.; Leithauser, F.; Henne-Bruns, D.; Knippschild, U.; Lemke, J. CDK9 is a prognostic marker and therapeutic target in pancreatic cancer. Tumour Biol. 2017, 39, 1010428317694304. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Herrmann, C.H.; Chiang, K.; Sung, T.L.; Moon, S.H.; Donehower, L.A.; Rice, A.P. 55K isoform of CDK9 associates with Ku70 and is involved in DNA repair. Biochem. Biophys. Res. Commun. 2010, 397, 245–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nepomuceno, T.C.; Fernandes, V.C.; Gomes, T.T.; Carvalho, R.S.; Suarez-Kurtz, G.; Monteiro, A.N.; Carvalho, M.A. BRCA1 recruitment to damaged DNA sites is dependent on CDK9. Cell Cycle 2017, 16, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.S.; Zhao, R.; Hsu, E.L.; Cayer, J.; Ye, F.; Guo, Y.; Shyr, Y.; Cortez, D. Cyclin-dependent kinase 9-cyclin K functions in the replication stress response. EMBO Rep. 2010, 11, 876–882. [Google Scholar] [CrossRef] [Green Version]
- Storch, K.; Cordes, N. The impact of CDK9 on radiosensitivity, DNA damage repair and cell cycling of HNSCC cancer cells. Int. J. Oncol. 2016, 48, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Seebacher, N.A.; Hornicek, F.J.; Duan, Z. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in osteosarcoma. EBioMedicine 2019, 39, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Dean, D.C.; Yu, Z.; Hornicek, F.; Kan, Q.; Duan, Z. Aberrant CDK9 expression within chordoma tissues and the therapeutic potential of a selective CDK9 inhibitor LDC000067. J. Cancer 2020, 11, 132–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlafstein, A.J.; Withers, A.E.; Rudra, S.; Danelia, D.; Switchenko, J.M.; Mister, D.; Harari, S.; Zhang, H.; Daddacha, W.; Ehdaivand, S.; et al. CDK9 Expression Shows Role as a Potential Prognostic Biomarker in Breast Cancer Patients Who Fail to Achieve Pathologic Complete Response after Neoadjuvant Chemotherapy. Int. J. Breast Cancer 2018, 2018, 6945129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowczak, J.; Szczerbowski, K.; Maniewski, M.; Zdrenka, M.; Slupski, P.; Antosik, P.; Kolodziejska, S.; Sekielska-Domanowska, M.; Dubiel, M.; Bodnar, M.; et al. The Prognostic Role of CDK9 in Bladder Cancer. Cancers 2022, 14, 1492. [Google Scholar] [CrossRef]
- Mbonye, U.; Wang, B.; Gokulrangan, G.; Shi, W.; Yang, S.; Karn, J. Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation. J. Biol. Chem. 2018, 293, 10009–10025. [Google Scholar] [CrossRef] [Green Version]
- Mbonye, U.R.; Gokulrangan, G.; Datt, M.; Dobrowolski, C.; Cooper, M.; Chance, M.R.; Karn, J. Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4(+) T lymphocytes. PLoS Pathog. 2013, 9, e1003338. [Google Scholar] [CrossRef]
Marker | Casp 8 n (%) | CDK9 n (%) | pCDK9 n (%) |
---|---|---|---|
Dichotomized score | ≤6 WS >6 | ≤6 WS >6 | ≤ median > |
Low score | 42 (60.9) | 43 (62.3) | 39 (56.5) |
High score | 27 (39.1) | 26 (37.7) | 30 (43.5) |
Marker | No. | Casp 8 Low n (%) | Casp 8 High n (%) | p-Value | No. | CDK9 Low n (%) | CDK9 High n (%) | p-Value | No. | pCDK9 Low n (%) | pCDK9 High n (%) | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | ||||||||||||
≤ 59 years | 38 | 21 (30.4) 21(30.4) | 17 (24.6) | 38 | 24 (34.7) | 14 (20.2) | 38 | 22 (31.8) | 16 (23.3) | |||
> 59 years | 31 | 10 (14.6) | 0.291 | 31 | 19 (27.6) | 12 (17.4) | 1 | 31 | 17 (24.6) | 14 (20.2) | 0.799 | |
T-Stage | ||||||||||||
T1/2 | 35 | 15 (27.7) | 20 (30.0) | 35 | 18 (26.1) | 17 (24.6) | 35 | 21 (30.4) | 14 (20.3) | |||
T3/4 | 34 | 27 (39.1) | 7 (10.2) | 0.002 | 34 | 25 (36.3) | 9 (13.0) | 0.058 | 34 | 18 (26.0) | 16 (23.3) | 0.554 |
N-Stage | ||||||||||||
N0 | 35 | 23 (33.3) | 13 (18.8) | 35 | 20 (28.9) | 15 (27.7) | 35 | 21 (30.4) | 14 (20.2) | |||
N1 | 33 | 19 (27.6) | 14 (20.3) | 33 | 20 (28.9) | 10 (15.8) | 33 | 18 (26.0) | 15 (21.8) | |||
Nx | 1 | 1 (1.5) | 0.653 | 1 | 1 (1.5) | 0.244 | 1 | 1 (1.5) | 0.467 | |||
M-Stage | ||||||||||||
M0 | 59 | 36 (52.2) | 24 (34.7) | 59 | 35 (50.7) | 24 (34.7) | 59 | 36 (52.2) | 23 (33.3) | |||
M1 | 10 | 7 (10.2) | 3 (4.3) | 0.522 | 10 | 8 (11.7) | 2 (2.9) | 0.212 | 10 | 3 (4.3) | 7 (10.2) | 0.067 |
FIGO | ||||||||||||
Low (IA–IIB) | 26 | 10 (15.8) | 15 (27.7) | 26 | 14 (20.6) | 14 (20.6) | 26 | 18 (26.0) | 8 (11.6) | |||
High (IIIa–IVA) | 43 | 32 (46.4) | 11 (15.9) | 0.003 | 42 | 29 (42.6) | 13 (19.2) | 0.136 | 43 | 21 (30.4) | 22 (31.8) | 0.098 |
Grading | ||||||||||||
G1/2 | 36 | 21 (30.4) | 15 (27.7) | 36 | 21 (30.4) | 15 (27.7) | 36 | 18 (26.0) | 18 (26.0) | |||
G3 | 31 | 20 (29.9) | 11 (15.9) | 31 | 22 (31.8) | 9 (13.0) | 31 | 19 (27.6) | 12 (17.5) | |||
Gx | 2 | 1 (1.5) | 1 (1.5) | 0.831 | 2 | 2 (2.9) | 0.095 | 2 | 2 (2.9) | 0.294 | ||
p16Ink4a | ||||||||||||
Low (WS ≤ 6) | 26 | 18 (26.0) | 8 (11.6) | 0.268 | 25 | 19 (27.9) | 6 (8.8) | 0.065 | 26 | 16 (23.1) | 10 (14.5) | 0.513 |
High (WS > 6) | 43 | 24 (34.8) | 19 (27.5) | 43 | 23 (33.8) | 20 (29.4) | 43 | 23 (33.3) | 20 (28.9) | |||
Casp 8 | ||||||||||||
Low (WS ≤ 6) | 42 | 31 (44.9) | 11 (15.9) | 42 | 19 (27.7) | 23 (33.3) | ||||||
High (WS > 6) | 27 | 12 (17.4) | 15 (27.7) | 0.014 | 27 | 20 (30.0) | 7 (17.9) | 0.018 | ||||
CDK9 | ||||||||||||
Low (WS ≤ 6) | 43 | 31 (44.9) | 12 (17.5) | 43 | 29 (42.0) | 14 (20.3) | ||||||
High (WS > 6) | 26 | 11 (15.9) | 15 (27.7) | 0.014 | 26 | 10 (14.5) | 16 (23.2) | 0.019 | ||||
pCDK9 | ||||||||||||
Low (≤med) | 39 | 19 (27.7) | 20 (30.0) | 39 | 29 (42.0) | 10 (14.5) | ||||||
High (>med) | 30 | 27 (39.1) | 7 (10.3) | 0.018 | 30 | 14 (20.3) | 16 (23.2) | 0.019 |
Multivariate Analyses | |||||
---|---|---|---|---|---|
95% Confidence Interval | |||||
Univariate p-Value | Hazard Ratio (HR) | Lower | Upper | p-Value | |
Relapse-free survival | |||||
T-stage (T1–2/T3–4) | 0.004 | 3.03 | 1.07 | 8.58 | 0.036 |
FIGO (IA–IIB/IIIA–IVA) | <0.001 | 2.18 | 0.33 | 14.42 | 0.415 |
Casp 8 (WS ≤ 6/> 6) | 0.005 | 1.32 | 0.31 | 5.47 | 0.702 |
CDK 9 (WS ≤ 6/>6) | 0.008 | 5.48 | 1.95 | 15.97 | 0.003 |
pCDK 9 (≤/> median) | 0.004 | 4.56 | 1.48 | 13.97 | 0.001 |
Distant metastasis-free survival | |||||
T-stage (T1–2/T3–4) | 0.005 | 4.15 | 1.16 | 14.8 | 0.028 |
FIGO (IA–IIB/IIIA–IVA) | 0.001 | 3.47 | 0.3 | 39.92 | 0.318 |
Casp 8 (WS ≤ 6/> 6) | 0.038 | 1.25 | 0.28 | 5.54 | 0.768 |
pCDK 9 (≤/> median) | 0.001 | 7.33 | 1.64 | 32.76 | 0.009 |
Cancer-specific survival | |||||
T-stage (T1–2/T3–4) | 0.004 | 2.83 | 0.9 | 8.84 | 0.073 |
FIGO (IA–IIB/IIIA–IVA) | 0.004 | 1.53 | 0.19 | 11.8 | 0.698 |
Casp 8 (WS ≤ 6/>6) | 0.017 | 1.1 | 0.25 | 4.85 | 0.898 |
CDK 9 (WS ≤ 6/>6) | 0.015 | 4.75 | 1.17 | 15.32 | 0.009 |
pCDK 9 (≤/> median) | 0.022 | 4.18 | 1.43 | 12.16 | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleischmann, M.; Mandal, R.; Kostova, I.; Raab, M.; Sanhaji, M.; Hehlgans, S.; Diefenhardt, M.; Rödel, C.; Fokas, E.; Strebhardt, K.; et al. Prognostic Impact of Caspase-8, CDK9 and Phospho-CDK9 (Thr 186) Expression in Patients with Uterine Cervical Cancer Treated with Definitive Chemoradiation and Brachytherapy. Cancers 2022, 14, 5500. https://doi.org/10.3390/cancers14225500
Fleischmann M, Mandal R, Kostova I, Raab M, Sanhaji M, Hehlgans S, Diefenhardt M, Rödel C, Fokas E, Strebhardt K, et al. Prognostic Impact of Caspase-8, CDK9 and Phospho-CDK9 (Thr 186) Expression in Patients with Uterine Cervical Cancer Treated with Definitive Chemoradiation and Brachytherapy. Cancers. 2022; 14(22):5500. https://doi.org/10.3390/cancers14225500
Chicago/Turabian StyleFleischmann, Maximilian, Ranadip Mandal, Izabela Kostova, Monika Raab, Mourad Sanhaji, Stephanie Hehlgans, Markus Diefenhardt, Claus Rödel, Emmanouil Fokas, Klaus Strebhardt, and et al. 2022. "Prognostic Impact of Caspase-8, CDK9 and Phospho-CDK9 (Thr 186) Expression in Patients with Uterine Cervical Cancer Treated with Definitive Chemoradiation and Brachytherapy" Cancers 14, no. 22: 5500. https://doi.org/10.3390/cancers14225500
APA StyleFleischmann, M., Mandal, R., Kostova, I., Raab, M., Sanhaji, M., Hehlgans, S., Diefenhardt, M., Rödel, C., Fokas, E., Strebhardt, K., & Rödel, F. (2022). Prognostic Impact of Caspase-8, CDK9 and Phospho-CDK9 (Thr 186) Expression in Patients with Uterine Cervical Cancer Treated with Definitive Chemoradiation and Brachytherapy. Cancers, 14(22), 5500. https://doi.org/10.3390/cancers14225500