Restoration of CD4+ T Cells during NAFLD without Modulation of the Hepatic Immunological Pattern Is Not Sufficient to Prevent HCC
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials & Methods
2.1. Animals
2.2. Multiplex Cytokine/Chemokine Assay
2.3. H&E and IHC
2.4. Flow Cytometry
2.5. Statistical Analysis
3. Results
3.1. SP16 Prevents NAFLD-Induced CD4+T Cell Depletion
3.2. SP16 Treatment during Late-Stage NAFLD Resulted in the Modulation of CD4+ Th Subsets without Affecting the Overall Immunological Pattern or Inhibiting HCC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orci, L.A.; Sanduzzi-Zamparelli, M.; Caballol, B.; Sapena, V.; Colucci, N.; Torres, F.; Bruix, J.; Reig, M.; Toso, C. Incidence of Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review, Meta-analysis, and Meta-regression. Clin. Gastroenterol. Hepatol. 2021, 20, 283–292.e1. [Google Scholar] [CrossRef]
- Yang, Y.M.; Kim, S.Y.; Seki, E. Inflammation and Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Semin. Liver Dis. 2019, 39, 026–042. [Google Scholar] [CrossRef]
- Ma, C.; Kesarwala, A.H.; Eggert, T.; Medina-Echeverz, J.; Kleiner, D.E.; Jin, P.; Stroncek, D.F.; Terabe, M.; Kapoor, V.; ElGindi, M.; et al. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016, 531, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Weiskirchen, R.; Tacke, F. Immune surveillance of liver cancer in non-alcoholic fatty liver disease: Excess lipids cause CD4 T-cells loss and promote hepatocellular carcinoma development. Hepatobiliary Surg. Nutr. 2016, 5, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Mirshahi, F.; Aqbi, H.F.; Isbell, M.; Manjili, S.H.; Guo, C.; Saneshaw, M.; Bandyopadhyay, D.; Dozmorov, M.; Khosla, A.; Wack, K.; et al. Distinct hepatic immunological patterns are associated with the progression or inhibition of hepatocellular carcinoma. Cell Rep. 2022, 38, 110454. [Google Scholar] [CrossRef]
- Asgharpour, A.; Cazanave, S.C.; Pacana, T.; Seneshaw, M.; Vincent, R.; Banini, B.A.; Kumar, D.P.; Daita, K.; Min, H.-K.; Mirshahi, F.; et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol. 2016, 65, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Isbell, M.I. Modulation of Inflammation during Tumor Progression and Inhibition. Master’s Thesis, Virginia Commonwealth University, Richmond, VA, USA, 2022. [Google Scholar]
- Wohlford, G.F.; Buckley, L.F.; Kadariya, D.; Park, T.; Chiabrando, J.G.; Carbone, S.; Mihalick, V.; Halquist, M.S.; Pearcy, A.; Austin, D.; et al. A phase 1 clinical trial of SP16, a first-in-class anti-inflammatory LRP1 agonist, in healthy volunteers. PLoS ONE 2021, 16, e0247357. [Google Scholar] [CrossRef]
- Toldo, S.; Austin, D.; Mauro, A.G.; Mezzaroma, E.; Van Tassell, B.W.; Marchetti, C.; Carbone, S.; Mogelsvang, S.; Gelber, C.; Abbate, A. Low-Density Lipoprotein Receptor–Related Protein-1 Is a Therapeutic Target in Acute Myocardial Infarction. JACC Basic Transl. Sci. 2017, 2, 561–574. [Google Scholar] [CrossRef]
- Potere, N.; Del Buono, M.G.; Mauro, A.G.; Abbate, A.; Toldo, S. Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Front. Cardiovasc. Med. 2019, 6, 51. [Google Scholar] [CrossRef]
- Idowu, M.O.; Kmieciak, M.; Dumur, C.; Burton, R.S.; Grimes, M.M.; Powers, C.N.; Manjili, M.H. CD44+/CD24−/low cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum. Pathol. 2012, 43, 364–373. [Google Scholar] [CrossRef]
- Payne, K.K.; Aqbi, H.F.; Butler, S.E.; Graham, L.; Keim, R.C.; Wan, W.; Idowu, M.O.; Bear, H.D.; Wang, X.; Manjili, M.H. Gr1−/low CD11b−/low MHCII+ myeloid cells boost T cell anti-tumor efficacy. J. Leukoc. Biol. 2018, 104, 1215–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, Z.J.; Fu, Q.; Ma, C.; Kruhlak, M.; Zhang, H.; Luo, J.; Heinrich, B.; Yu, S.J.; Zhang, Q.; Wilson, A.; et al. Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4+ T cell apoptosis promoting HCC development. Cell Death Dis. 2018, 9, 620. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; Yao, Y.; Zhang, X.; Guan, Y.; Zheng, F. CD4+ T cell activation and inflammation in NASH-related fibrosis. Front. Immunol. 2022, 13, 967410. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, W.; Fu, J.; Ni, Y.; Liu, K. Correlation between T-Lymphocyte Subsets, Regulatory T Cells, and Hepatic Fibrosis in Patients with Nonalcoholic Fatty Liver. Evidence-Based Complement. Altern. Med. 2022, 2022, 6250751. [Google Scholar] [CrossRef]
- Rau, M.; Schilling, A.-K.; Meertens, J.; Hering, I.; Weiss, J.; Jurowich, C.; Kudlich, T.; Hermanns, H.M.; Bantel, H.; Beyersdorf, N.; et al. Progression from Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis Is Marked by a Higher Frequency of Th17 Cells in the Liver and an Increased Th17/Resting Regulatory T Cell Ratio in Peripheral Blood and in the Liver. J. Immunol. 2015, 196, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Tay, R.E.; Richardson, E.K.; Toh, H.C. Revisiting the role of CD4+ T cells in cancer immunotherapy—New insights into old paradigms. Cancer Gene Ther. 2020, 28, 5–17. [Google Scholar] [CrossRef]
- Borst, J.; Ahrends, T.; Bąbała, N.; Melief, C.J.M.; Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2018, 18, 635–647. [Google Scholar] [CrossRef]
- Li, R.; Wang, L.; Zhang, Q.; Duan, H.; Qian, D.; Yang, F.; Xia, J. Alpiniae oxyphyllae fructus possesses neuroprotective effects on H2O2 stimulated PC12 cells via regulation of the PI3K/Akt signaling Pathway. Front. Pharmacol. 2022, 13, 3245. [Google Scholar] [CrossRef]
- Hu, S.; Wu, Y.; Zhao, B.; Hu, H.; Zhu, B.; Sun, Z.; Li, P.; Du, S. Panax notoginseng Saponins Protect Cerebral Microvascular Endothelial Cells against Oxygen-Glucose Deprivation/Reperfusion-Induced Barrier Dysfunction via Activation of PI3K/Akt/Nrf2 Antioxidant Signaling Pathway. Molecules 2018, 23, 2781. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-T.; Dai, Q.; Zhang, S.-X.; Liu, Y.-J.; Yu, Q.-Q.; Tan, F.; Lu, S.-H.; Wang, Q.; Chen, J.-W.; Huang, H.-Q.; et al. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol. Sin. 2018, 39, 1294–1304. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef]
- Manjili, M.H.; Khazaie, K. Pattern recognition of tumor dormancy and relapse beyond cell-intrinsic and cell-extrinsic pathways. Semin. Cancer Biol. 2022, 78, 1–4. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isbell, M.; Mirshahi, F.; Aqbi, H.F.; Guo, C.; Saneshaw, M.; Koelsch, N.; Idowu, M.O.; Austin, D.; Gelber, C.; Wang, X.-Y.; et al. Restoration of CD4+ T Cells during NAFLD without Modulation of the Hepatic Immunological Pattern Is Not Sufficient to Prevent HCC. Cancers 2022, 14, 5502. https://doi.org/10.3390/cancers14225502
Isbell M, Mirshahi F, Aqbi HF, Guo C, Saneshaw M, Koelsch N, Idowu MO, Austin D, Gelber C, Wang X-Y, et al. Restoration of CD4+ T Cells during NAFLD without Modulation of the Hepatic Immunological Pattern Is Not Sufficient to Prevent HCC. Cancers. 2022; 14(22):5502. https://doi.org/10.3390/cancers14225502
Chicago/Turabian StyleIsbell, Madison, Faridoddin Mirshahi, Hussein F. Aqbi, Chunqing Guo, Mulugeta Saneshaw, Nicholas Koelsch, Michael O. Idowu, Dana Austin, Cohava Gelber, Xiang-Yang Wang, and et al. 2022. "Restoration of CD4+ T Cells during NAFLD without Modulation of the Hepatic Immunological Pattern Is Not Sufficient to Prevent HCC" Cancers 14, no. 22: 5502. https://doi.org/10.3390/cancers14225502
APA StyleIsbell, M., Mirshahi, F., Aqbi, H. F., Guo, C., Saneshaw, M., Koelsch, N., Idowu, M. O., Austin, D., Gelber, C., Wang, X. -Y., Sanyal, A. J., & Manjili, M. H. (2022). Restoration of CD4+ T Cells during NAFLD without Modulation of the Hepatic Immunological Pattern Is Not Sufficient to Prevent HCC. Cancers, 14(22), 5502. https://doi.org/10.3390/cancers14225502