Management of Recurrent Glioblastomas: What Can We Learn from the French Glioblastoma Biobank?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Eligibility and Informed Consent
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. General Characteristics of rGB Patients and Second-Line Treatment Options
3.2. Survival Outcomes of rGB Patients
3.3. Analysis of the Efficacy of Second-Line Treatments
3.3.1. Comparison of Systemic Treatment with and without Reoperation (n = 227)
3.3.2. Reoperation with and without Gliadel® (n = 58)
4. Discussion
5. Limitations
6. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
References
- Ostrom, Q.T.; Cioffi, G.; Gittleman, H.; Patil, N.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro-Oncol. 2019, 21, v1–v100. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186. [Google Scholar] [CrossRef]
- Poon, M.T.C.; Sudlow, C.L.M.; Figueroa, J.D.; Brennan, P.M. Longer-Term (≥2 Years) Survival in Patients with Glioblastoma in Population-Based Studies Pre- and Post-2005: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 11622. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of Radiotherapy with Concomitant and Adjuvant Temozolomide versus Radiotherapy Alone on Survival in Glioblastoma in a Randomised Phase III Study: 5-Year Analysis of the EORTC-NCIC Trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Bette, S.; Barz, M.; Huber, T.; Straube, C.; Schmidt-Graf, F.; Combs, S.E.; Delbridge, C.; Gerhardt, J.; Zimmer, C.; Meyer, B.; et al. Retrospective Analysis of Radiological Recurrence Patterns in Glioblastoma, Their Prognostic Value and Association to Postoperative Infarct Volume. Sci. Rep. 2018, 8, 4561. [Google Scholar] [CrossRef]
- Rapp, M.; Baernreuther, J.; Turowski, B.; Steiger, H.-J.; Sabel, M.; Kamp, M.A. Recurrence Pattern Analysis of Primary Glioblastoma. World Neurosurg. 2017, 103, 733–740. [Google Scholar] [CrossRef]
- Yoo, J.; Yoon, S.-J.; Kim, K.H.; Jung, I.-H.; Lim, S.H.; Kim, W.; Yoon, H.I.; Kim, S.H.; Sung, K.S.; Roh, T.H.; et al. Patterns of Recurrence according to the Extent of Resection in Patients with IDH-Wild-Type Glioblastoma: A Retrospective Study. J. Neurosurg. 2021, 137, 533–543. [Google Scholar] [CrossRef]
- Birzu, C.; French, P.; Caccese, M.; Cerretti, G.; Idbaih, A.; Zagonel, V.; Lombardi, G. Recurrent Glioblastoma: From Molecular Landscape to New Treatment Perspectives. Cancers 2020, 13, 47. [Google Scholar] [CrossRef]
- Chaul-Barbosa, C.; Marques, D.F. How We Treat Recurrent Glioblastoma Today and Current Evidence. Curr. Oncol. Rep. 2019, 21, 94. [Google Scholar] [CrossRef]
- Fazzari, F.G.T.; Rose, F.; Pauls, M.; Guay, E.; Ibrahim, M.F.K.; Basulaiman, B.; Tu, M.; Hutton, B.; Nicholas, G.; Ng, T.L. The Current Landscape of Systemic Therapy for Recurrent Glioblastoma: A Systematic Review of Randomized-Controlled Trials. Crit. Rev. Oncol. Hematol. 2022, 169, 103540. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Costa, A.; Osório, L.; Lago, R.C.; Linhares, P.; Carvalho, B.; Caeiro, C. Current Standards of Care in Glioblastoma Therapy. In Glioblastoma; De Vleeschouwer, S., Ed.; Codon Publications: Brisbane, Australia, 2017; ISBN 978-0-9944381-2-6. [Google Scholar]
- McBain, C.; Lawrie, T.A.; Rogozińska, E.; Kernohan, A.; Robinson, T.; Jefferies, S. Treatment Options for Progression or Recurrence of Glioblastoma: A Network Meta-Analysis. Cochrane Database Syst. Rev. 2021, 5, CD013579. [Google Scholar] [CrossRef] [PubMed]
- Schritz, A.; Aouali, N.; Fischer, A.; Dessenne, C.; Adams, R.; Berchem, G.; Huiart, L.; Schmitz, S. Systematic Review and Network Meta-Analysis of the Efficacy of Existing Treatments for Patients with Recurrent Glioblastoma. Neuro-Oncol. Adv. 2021, 3, vdab052. [Google Scholar] [CrossRef] [PubMed]
- Seystahl, K.; Wick, W.; Weller, M. Therapeutic Options in Recurrent Glioblastoma—An Update. Crit. Rev. Oncol. Hematol. 2016, 99, 389–408. [Google Scholar] [CrossRef]
- Stupp, R.; Brada, M.; van den Bent, M.J.; Tonn, J.-C.; Pentheroudakis, G. ESMO Guidelines Working Group. High-Grade Glioma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014, 25 (Suppl. S3), iii93–iii101. [Google Scholar] [CrossRef]
- Clavreul, A.; Soulard, G.; Lemée, J.-M.; Rigot, M.; Fabbro-Peray, P.; Bauchet, L.; Figarella-Branger, D.; Menei, P.; FGB Network. The French Glioblastoma Biobank (FGB): A National Clinicobiological Database. J. Transl. Med. 2019, 17, 133. [Google Scholar] [CrossRef]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; Degroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef]
- Van Linde, M.E.; Brahm, C.G.; de Witt Hamer, P.C.; Reijneveld, J.C.; Bruynzeel, A.M.E.; Vandertop, W.P.; van de Ven, P.M.; Wagemakers, M.; van der Weide, H.L.; Enting, R.H.; et al. Treatment Outcome of Patients with Recurrent Glioblastoma Multiforme: A Retrospective Multicenter Analysis. J. Neurooncol. 2017, 135, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Alimohammadi, E.; Bagheri, S.R.; Taheri, S.; Dayani, M.; Abdi, A. The Impact of Extended Adjuvant Temozolomide in Newly Diagnosed Glioblastoma Multiforme: A Meta-Analysis and Systematic Review. Oncol. Rev. 2020, 14, 461. [Google Scholar] [CrossRef] [Green Version]
- Attarian, F.; Taghizadeh-Hesary, F.; Fanipakdel, A.; Javadinia, S.A.; Porouhan, P.; PeyroShabany, B.; Fazilat-Panah, D. A Systematic Review and Meta-Analysis on the Number of Adjuvant Temozolomide Cycles in Newly Diagnosed Glioblastoma. Front. Oncol. 2021, 11, 779491. [Google Scholar] [CrossRef]
- Huang, B.; Yu, Z.; Liang, R. Effect of Long-Term Adjuvant Temozolomide Chemotherapy on Primary Glioblastoma Patient Survival. BMC Neurol. 2021, 21, 424. [Google Scholar] [CrossRef] [PubMed]
- Fabbro-Peray, P.; Zouaoui, S.; Darlix, A.; Fabbro, M.; Pallud, J.; Rigau, V.; Mathieu-Daude, H.; Bessaoud, F.; Bauchet, F.; Riondel, A.; et al. Association of Patterns of Care, Prognostic Factors, and Use of Radiotherapy-Temozolomide Therapy with Survival in Patients with Newly Diagnosed Glioblastoma: A French National Population-Based Study. J. Neurooncol. 2019, 142, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschi, E.; Ermani, M.; Bartolini, S.; Bartolotti, M.; Poggi, R.; Tallini, G.; Marucci, G.; Fioravanti, A.; Tosoni, A.; Agati, R.; et al. Post Progression Survival in Glioblastoma: Where Are We? J. Neurooncol. 2015, 121, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhou, Z.-R.; Shi, M.; Chen, H.; Yu, Q.-Q.; Yang, Y.; Liu, L.; Zhang, L.; Guo, Y.; Zhou, X.; et al. Nomograms for Predicting Progression-Free Survival and Overall Survival after Surgery and Concurrent Chemoradiotherapy for Glioblastoma: A Retrospective Cohort Study. Ann. Transl. Med. 2021, 9, 571. [Google Scholar] [CrossRef] [PubMed]
- Audureau, E.; Chivet, A.; Ursu, R.; Corns, R.; Metellus, P.; Noel, G.; Zouaoui, S.; Guyotat, J.; Le Reste, P.-J.; Faillot, T.; et al. Prognostic Factors for Survival in Adult Patients with Recurrent Glioblastoma: A Decision-Tree-Based Model. J. Neurooncol. 2018, 136, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Polley, M.-Y.C.; Lamborn, K.R.; Chang, S.M.; Butowski, N.; Clarke, J.L.; Prados, M. Six-Month Progression-Free Survival as an Alternative Primary Efficacy Endpoint to Overall Survival in Newly Diagnosed Glioblastoma Patients Receiving Temozolomide. Neuro-Oncol. 2010, 12, 274–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, K.A.; Grossman, S.A.; Fisher, J.D.; Shaw, E.G. Prognostic Factors for Survival in Adult Patients with Recurrent Glioma Enrolled onto the New Approaches to Brain Tumor Therapy CNS Consortium Phase I and II Clinical Trials. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 2601–2606. [Google Scholar] [CrossRef] [PubMed]
- Gorlia, T.; Stupp, R.; Brandes, A.A.; Rampling, R.R.; Fumoleau, P.; Dittrich, C.; Campone, M.M.; Twelves, C.C.; Raymond, E.; Hegi, M.E.; et al. New Prognostic Factors and Calculators for Outcome Prediction in Patients with Recurrent Glioblastoma: A Pooled Analysis of EORTC Brain Tumour Group Phase I and II Clinical Trials. Eur. J. Cancer 2012, 48, 1176–1184. [Google Scholar] [CrossRef]
- Majewska, P.; Ioannidis, S.; Raza, M.H.; Tanna, N.; Bulbeck, H.; Williams, M. Postprogression Survival in Patients with Glioblastoma Treated with Concurrent Chemoradiotherapy: A Routine Care Cohort Study. CNS Oncol. 2017, 6, 307–313. [Google Scholar] [CrossRef]
- Zhao, Y.-H.; Wang, Z.-F.; Cao, C.-J.; Weng, H.; Xu, C.-S.; Li, K.; Li, J.-L.; Lan, J.; Zeng, X.-T.; Li, Z.-Q. The Clinical Significance of O6-Methylguanine-DNA Methyltransferase Promoter Methylation Status in Adult Patients With Glioblastoma: A Meta-Analysis. Front. Neurol. 2018, 9, 127. [Google Scholar] [CrossRef]
- Minniti, G.; Niyazi, M.; Alongi, F.; Navarria, P.; Belka, C. Current Status and Recent Advances in Reirradiation of Glioblastoma. Radiat. Oncol. 2021, 16, 36. [Google Scholar] [CrossRef]
- Seyve, A.; Lozano-Sanchez, F.; Thomas, A.; Mathon, B.; Tran, S.; Mokhtari, K.; Giry, M.; Marie, Y.; Capelle, L.; Peyre, M.; et al. Initial Surgical Resection and Long Time to Occurrence from Initial Diagnosis Are Independent Prognostic Factors in Resected Recurrent IDH Wild-Type Glioblastoma. Clin. Neurol. Neurosurg. 2020, 196, 106006. [Google Scholar] [CrossRef] [PubMed]
- Botros, D.; Dux, H.; Price, C.; Khalafallah, A.M.; Mukherjee, D. Assessing the Efficacy of Repeat Resections in Recurrent Glioblastoma: A Systematic Review. Neurosurg. Rev. 2021, 44, 1259–1271. [Google Scholar] [CrossRef]
- Brennan, P.M.; Borchert, R.; Coulter, C.; Critchley, G.R.; Hall, B.; Holliman, D.; Phang, I.; Jefferies, S.J.; Keni, S.; Lee, L.; et al. Second Surgery for Progressive Glioblastoma: A Multi-Centre Questionnaire and Cohort-Based Review of Clinical Decision-Making and Patient Outcomes in Current Practice. J. Neurooncol. 2021, 153, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Lu, V.M.; Jue, T.R.; McDonald, K.L.; Rovin, R.A. The Survival Effect of Repeat Surgery at Glioblastoma Recurrence and Its Trend: A Systematic Review and Meta-Analysis. World Neurosurg. 2018, 115, 453–459.e3. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-H.; Wang, Z.-F.; Pan, Z.-Y.; Péus, D.; Delgado-Fernandez, J.; Pallud, J.; Li, Z.-Q. A Meta-Analysis of Survival Outcomes Following Reoperation in Recurrent Glioblastoma: Time to Consider the Timing of Reoperation. Front. Neurol. 2019, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- García-Cabezas, S.; Rivin Del Campo, E.; Solivera-Vela, J.; Palacios-Eito, A. Re-Irradiation for High-Grade Gliomas: Has Anything Changed? World J. Clin. Oncol. 2021, 12, 767–786. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, F.; Soon, Y.Y.; Leong, Y.H.; Koh, W.Y.; Vellayappan, B. Re-Irradiation for Recurrent Glioblastoma (GBM): A Systematic Review and Meta-Analysis. J. Neurooncol. 2019, 142, 79–90. [Google Scholar] [CrossRef]
- Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef]
- Brandes, A.A.; Gil-Gil, M.; Saran, F.; Carpentier, A.F.; Nowak, A.K.; Mason, W.; Zagonel, V.; Dubois, F.; Finocchiaro, G.; Fountzilas, G.; et al. A Randomized Phase II Trial (TAMIGA) Evaluating the Efficacy and Safety of Continuous Bevacizumab Through Multiple Lines of Treatment for Recurrent Glioblastoma. Oncologist 2019, 24, 521–528. [Google Scholar] [CrossRef]
- Weathers, S.-P.; Han, X.; Liu, D.D.; Conrad, C.A.; Gilbert, M.R.; Loghin, M.E.; O’Brien, B.J.; Penas-Prado, M.; Puduvalli, V.K.; Tremont-Lukats, I.; et al. A Randomized Phase II Trial of Standard Dose Bevacizumab versus Low Dose Bevacizumab plus Lomustine (CCNU) in Adults with Recurrent Glioblastoma. J. Neurooncol. 2016, 129, 487–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.A.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab Alone and in Combination with Irinotecan in Recurrent Glioblastoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobsen, J.N.; Urup, T.; Grunnet, K.; Toft, A.; Johansen, M.D.; Poulsen, S.H.; Christensen, I.J.; Muhic, A.; Poulsen, H.S. Toxicity and Efficacy of Lomustine and Bevacizumab in Recurrent Glioblastoma Patients. J. Neurooncol. 2018, 137, 439–446. [Google Scholar] [CrossRef]
- Franceschi, E.; Lamberti, G.; Visani, M.; Paccapelo, A.; Mura, A.; Tallini, G.; Pession, A.; De Biase, D.; Minichillo, S.; Tosoni, A.; et al. Temozolomide Rechallenge in Recurrent Glioblastoma: When Is It Useful? Future Oncol. 2018, 14, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; Cloughesy, T.; Perry, J.R.; Wick, W. Standards of Care for Treatment of Recurrent Glioblastoma—Are We There Yet? Neuro-Oncol. 2013, 15, 4–27. [Google Scholar] [CrossRef] [Green Version]
- Weller, M.; Tabatabai, G.; Kästner, B.; Felsberg, J.; Steinbach, J.P.; Wick, A.; Schnell, O.; Hau, P.; Herrlinger, U.; Sabel, M.C.; et al. MGMT Promoter Methylation Is a Strong Prognostic Biomarker for Benefit from Dose-Intensified Temozolomide Rechallenge in Progressive Glioblastoma: The DIRECTOR Trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 2057–2064. [Google Scholar] [CrossRef] [Green Version]
- Seystahl, K.; Hentschel, B.; Loew, S.; Gramatzki, D.; Felsberg, J.; Herrlinger, U.; Westphal, M.; Schackert, G.; Thon, N.; Tatagiba, M.; et al. Bevacizumab versus Alkylating Chemotherapy in Recurrent Glioblastoma. J. Cancer Res. Clin. Oncol. 2020, 146, 659–670. [Google Scholar] [CrossRef]
- Gately, L.; McLachlan, S.A.; Philip, J.; Rathi, V.; Dowling, A. Molecular Profile of Long-Term Survivors of Glioblastoma: A Scoping Review of the Literature. J. Clin. Neurosci. 2019, 68, 1–8. [Google Scholar] [CrossRef]
- Clavreul, A.; Menei, P. Mesenchymal Stromal-Like Cells in the Glioma Microenvironment: What Are These Cells? Cancers 2020, 12, 2628. [Google Scholar] [CrossRef]
- Clavreul, A.; Lemée, J.-M.; Soulard, G.; Rousseau, A.; Menei, P. A Simple Preoperative Blood Count to Stratify Prognosis in Isocitrate Dehydrogenase-Wildtype Glioblastoma Patients Treated with Radiotherapy plus Concomitant and Adjuvant Temozolomide. Cancers 2021, 13, 5778. [Google Scholar] [CrossRef]
- Lemée, J.-M.; Clavreul, A.; Menei, P. Intratumoral Heterogeneity in Glioblastoma: Don’t Forget the Peritumoral Brain Zone. Neuro-Oncol. 2015, 17, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
All | Short TFR | Intermediate TFR | Long TFR | p-Value | |
---|---|---|---|---|---|
Number | 338 (100.0%) | 210 (62.0%) | 84 (25.0%) | 44 (13.0%) | |
Age (years) | 0.188 | ||||
Median (range) | 61 (18–81) | 62 (28–81) | 62 (18–79) | 59 (36–79) | |
≤61 | 172 (50.9%) | 102 (48.6%) | 42 (50.0%) | 28 (63.6%) | |
>61 | 166 (49.1%) | 108 (51.4%) | 42 (50.0%) | 16 (36.4%) | |
Sex | 0.563 | ||||
Male | 223 (66.0%) | 143 (68.1%) | 53 (63.1%) | 27 (61.4%) | |
Female | 115 (34.0%) | 67 (31.9%) | 31 (36.9%) | 17 (38.6%) | |
Preoperative KPS (%) | 0.599 | ||||
≤70 | 43 (12.7%) | 29 (13.8%) | 10 (11.9%) | 4 (9.1%) | |
>70 | 223 (66.0%) | 151 (71.9%) | 41 (48.8%) | 31 (70.5%) | |
Unknown | 72 (21.3%) | 30 (14.3%) | 33 (39.3%) | 9 (20.5%) | |
Tumor laterality | 0.009 * | ||||
Right | 187 (55.3%) | 112 (53.3%) | 57 (67.9%) | 18 (40.9%) | |
Left | 151 (44.7%) | 98 (46.7%) | 27 (32.1%) | 26 (59.1%) | |
Extent of tumor | 0.002 * | ||||
Unilobar | 211 (62.4%) | 118 (56.2%) | 56 (66.7%) | 37 (84.1%) | |
Multilobar | 127 (37.6%) | 92 (43.8%) | 28 (33.3%) | 7 (15.9%) | |
EOR1 | 0.027 * | ||||
PR/STR | 160 (47.3%) | 110 (52.4%) | 36 (42.9%) | 14 (31.8%) | |
GTR | 172 (50.9%) | 97 (46.2%) | 45 (53.6%) | 30 (68.2%) | |
Unknown | 6 (1.8%) | 3 (1.4%) | 3 (3.6%) | 0 (0.0%) | |
MGMT methylation status | <0.001 * | ||||
Without methylation | 96 (28.4%) | 67 (31.9%) | 21 (25.0%) | 8 (18.2%) | |
With methylation | 72 (21.3%) | 31 (14.8%) | 16 (19.0%) | 25 (56.8%) | |
Unknown | 170 (50.3%) | 112 (53.3%) | 47 (56.0%) | 11 (25.0%) | |
Adjuvant TMZ | <0.001 * | ||||
<6 cycles | 206 (60.9%) | 189 (90.0%) | 15 (17.9%) | 2 (4.5%) | |
=6 cycles | 71 (21.0%) | 19 (9.0%) | 35 (41.7%) | 17 (38.6%) | |
>6 cycles | 48 (14.2%) | 2 (1.0%) | 30 (35.7%) | 16 (36.4%) | |
>12 cycles | 13 (3.8%) | 0 (0.0%) | 4 (4.8%) | 9 (20.5%) | |
Min-Max | 0–25 | 0–7 | 0–17 | 1–25 | |
Recurrence location | 0.021 * | ||||
Local | 299 (88.5%) | 186 (88.6%) | 75 (89.3%) | 38 (86.4%) | |
Distant | 21 (6.2%) | 7 (3.3%) | 8 (9.5%) | 6 (13.6%) | |
Unknown | 18 (5.3%) | 17 (8.1%) | 1 (1.2%) | 0 (0.0%) | |
Second-line options | 0.357 | ||||
Supportive care | 37 (10.9%) | 30 (14.3%) | 5 (6.0%) | 2 (4.5%) | |
Treatment | 301 (89.1%) | 180 (85.7%) | 79 (94.0%) | 42 (95.5%) | |
Repeat radiotherapy | 12 (3.6%) | 3 (1.4%) | 5 (6.0%) | 4 (9.1%) | |
Alone | 3 (0.9%) | 1 (0.5%) | 1 (1.2%) | 1 (2.3%) | |
With reoperation +/− systemic treatment | 4 (1.2%) | 0 (0.0%) | 2 (2.4%) | 2 (4.5%) | |
With systemic treatment | 5 (1.5%) | 2 (1.0%) | 2 (2.4%) | 1 (2.3%) | |
Reoperation | 65 (19.2%) | 34 (16.2%) | 23 (27.4%) | 8 (18.2%) | |
Alone | 4 (1.2%) | 0 (0.0%) | 2 (2.4%) | 2 (4.5%) | |
With intratumoral treatment +/− systemic treatment | 26 (7.7%) | 14 (6.7%) | 8 (9.5%) | 4 (9.1%) | |
With systemic treatment | 35 (10.4%) | 20 (9.5%) | 13 (15.5%) | 2 (4.5%) | |
Systemic treatment alone | 206 (60.9%) | 135 (64.3%) | 43 (51.2%) | 28 (63.6%) | |
Inclusion in a clinical trial | 18 (5.3%) | 8 (3.8%) | 8 (9.5%) | 2 (4.5%) | |
Systemic treatment regimen | 0.001 * | ||||
TMZ rechallenge | 40 (11.8%) | 18 (8.6%) | 9 (10.7%) | 13 (29.5%) | |
Nitrosourea | 33 (9.8%) | 22 (10.5%) | 7 (8.3%) | 4 (9.1%) | |
Bevacizumab | 38 (11.2%) | 26 (12.4%) | 8 (9.5%) | 4 (9.1%) | |
Bevacizumab + TMZ | 15 (4.4%) | 7 (3.3%) | 2 (2.4%) | 6 (13.6%) | |
Bevacizumab + nitrosourea | 82 (24.3%) | 59 (28.1%) | 19 (22.6%) | 4 (9.1%) | |
Bevacizumab + irinotecan | 35 (10.4%) | 24 (11.4%) | 8 (9.5%) | 3 (6.8%) | |
Bevacizumab + other | 6 (1.8%) | 5 (2.4%) | 1 (1.2%) | 0 (0%) | |
PCV | 2 (0.6%) | 1 (0.5%) | 1 (1.2%) | 0 (0.0%) | |
Carboplatin +/− etoposide | 9 (2.7%) | 3 (1.4%) | 5 (6.0%) | 1 (2.3%) | |
Inclusion in a clinical trial | 15 (4.4%) | 7 (3.3%) | 7 (8.3%) | 1 (2.3%) | |
Survival outcome | |||||
After first surgery | |||||
PFS1 | <0.001 * | ||||
Median (months) (95% CI) | 7.8 (6.8–8.6) | 5.9 (5.4–6.3) | 13.6 (12.2–14.9) | 30.2 (27.4–37.1) | |
PFS1–12 rate (%) (95% CI) | 28.4 (24.0–33.6) | 0.0 (0.0–0.0) | 6.2 (5.2–7.3) | 100.0 (100.0–100.0) | |
OS1 | <0.001 * | ||||
Median (months) (95% CI) | 19.8 (18.5–22.0) | 15.2 (14.4–17.1) | 22.9 (21.2–25.1) | 44.3 (41.7–56.4) | |
OS1–36 rate (%) (95% CI) | 18.2 (14.0–23.5) | 5.6 (2.7–11.7) | 6.8 (2.8–16.6) | 78.9 (67.5–92.2) | |
After first progression | |||||
PFS2 | <0.001 * | ||||
Median (months) (95% CI) | 5.5 (4.8–6.0) | 5.9 (5.1–6.9) | 4.0 (3.5–4.9) | 7.0 (5.5–9.1) | |
PFS2–12 rate (%) (95% CI) | 13.0 (9.7–17.5) | 15.5 (11.0–21.8) | 3.8 (1.3–11.5) | 19.6 (10.6–36.4) | |
OS2 | 0.011 * | ||||
Median (months) (95% CI) | 9.9 (8.8–10.8) | 9.5 (8.3–11.2) | 8.5 (6.7–9.3) | 13.0 (11.2–17.7) | |
OS2–18 rate (%) (95% CI) | 21.4 (17.0–26.9) | 22.0 (16.4–29.4) | 16.3 (9.6–27.6) | 29.6 (18.4–47.5) |
Variable | OS1 | OS2 | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age (>61 years) | 1.42 | (1.10–1.84) | 0.007 * | 1.28 | (0.96–1.70) | 0.094 |
Sex (female) | 0.81 | (0.62–1.07) | 0.136 | 0.77 | (0.56–1.05) | 0.097 |
KPS (>70%) | 0.87 | (0.57–1.34) | 0.527 | |||
Tumor laterality (left) | 0.96 | (0.74–1.24) | 0.746 | 0.83 | (0.62–1.11) | 0.205 |
Tumor extent (multilobar) | 1.12 | (0.86–1.47) | 0.407 | |||
EOR1 (GTR) | 0.98 | (0.76–1.27) | 0.879 | |||
TFR | ||||||
Long | 1 | |||||
Short | 1.44 | (0.95–2.20) | 0.089 | |||
Intermediate | 1.41 | (0.86–2.31) | 0.172 | |||
Recurrence location (distant) | 1.50 | (0.86–2.62) | 0.153 | |||
Second-line treatment (treatment) | 0.28 | (0.19–0.42) | <0.001 * | 0.18 | (0.11–0.29) | <0.001 * |
Survival Outcome | |||||||
---|---|---|---|---|---|---|---|
PFS1 | PFS1–12 | OS1 | OS1–36 | PFS2 | PFS2–12 | OS2 | OS2–18 |
Median (months) | Rate (%) | Median (months) | Rate (%) | Median (months) | Rate (%) | Median (months) | Rate (%) |
(95% CI) | (95% CI) | (95% CI) | (95% CI) | (95% CI) | (95% CI) | (95% CI) | (95% CI) |
Supportive Care (n = 37) | |||||||
6.6 | 16.2 | 11.0 | 3.3 | NA | NA | 2.9 | 3.5 |
(5.2–8.6) | (7.8–33.7) | (9.4–13.2) | (0.5–22.5) | NA | NA | (2.2–4.1) | (0.5–23.5) |
Treatment (n = 301) | |||||||
8.0 | 29.9 | 21.2 | 19.9 | 5.7 | 13.7 | 10.6 | 23.5 |
(7.0–8.8) | (25.2–35.6) | (19.4–23.3) | (15.4–25.8) | (5.2–6.2) | (10.2–18.6) | (9.5–11.9) | (18.7–29.5) |
Systemic Treatment Alone (n = 195) | |||||||
6.7 | 28.2 | 20.5 | 21.9 | 6.0 | 12.8 | 10.8 | 20.1 |
(6.5–7.9) | (22.6–35.3) | (18.5–23.0) | (16.1–29.8) | (5.4–6.9) | (8.6–19.0) | (9.4–12.0) | (14.6–27.7) |
Reoperation + Systemic Treatment (n = 32) | |||||||
8.0 | 28.1 | 21.9 | 15.5 | 5.4 | 13.4 | 10.4 | 27.8 |
(6.8–10.2) | (16.2–48.9) | (18.0–29.8) | (6.3–37.9) | (4.4–7.2) | (5.4–33.3) | (8.8–18.0) | (15.0–51.4) |
Reoperation + Gliadel® (n = 26) | |||||||
8.6 | 26.9 | 24.4 | 17.8 | 5.9 | 20.0 | 14.8 | 39.4 |
(5.9–12.2) | (14.3–50.7) | (18.3–33.0) | (7.3–43.2) | (4.5–8.7) | (9.1–43.8) | (8.1–21.4) | (23.7–65.5) |
TMZ (n = 32) | |||||||
13.4 | 56.3 | 30.3 | 43.4 | 4.8 | 10.2 | 13.5 | 32.4 |
(6.2–22.6) | (41.4–76.4) | (23.5–44.3) | (28.3–66.5) | (3.7–8.3) | (3.5–29.7) | (12.0–20.8) | (18.7–56.2) |
Nitrosourea (n = 32) | |||||||
7.6 | 15.6 | 22.2 | 20.5 | 4.6 | 11.1 | 10.6 | 23.2 |
(6.5–9.2) | (7.0–35.0) | (16.2–33.5) | (8.7–48.1) | (3.6–7.1) | (3.8–31.8) | (8.2–14.2) | (10.9–49.5) |
Bevacizumab (n = 36) | |||||||
6.7 | 25.0 | 21.4 | 20.3 | 6.2 | 16.2 | 9.9 | 28.8 |
(5.5–10.4) | (14.2–44.0) | (17.6–35.4) | (9.0–45.7) | (4.6–10.8) | (6.8–38.9) | (7.5–18.7) | (15.9–52.1) |
Bevacizumab + TMZ (n = 14) | |||||||
10.5 | 42.9 | 34.6 | 42.3 | 7.9 | 21.4 | 12.4 | 17.5 |
(4.5–49.8) | (23.4–78.5) | (17.3-NA) | (21.8–82.0) | (7.0–16.5) | (7.9–58.4) | (10.1–NA) | (5.0–61.2) |
Bevacizumab + Nitrosourea (n = 80) | |||||||
6.7 | 22.5 | 18.2 | 7.0 | 5.6 | 9.0 | 8.8 | 13.4 |
(6.5–7.4) | (15.0–33.8) | (15.2–20.8) | (2.8–17.7) | (4.6–6.9) | (4.2–19.2) | (6.9–11.1) | (7.1–25.3) |
Bevacizumab + Irinotecan (n = 33) | |||||||
6.7 | 24.2 | 18.5 | 20.4 | 7.5 | 19.2 | 10.8 | 18.7 |
(5.6–10.6) | (13.3–44.3) | (16.2–28.0) | (9.6–43.5) | (5.9–9.6) | (9.4–39.3) | (9.1–17.4) | (8.3–42.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clavreul, A.; Autier, L.; Lemée, J.-M.; Augereau, P.; Soulard, G.; Bauchet, L.; Figarella-Branger, D.; Menei, P.; Network, F. Management of Recurrent Glioblastomas: What Can We Learn from the French Glioblastoma Biobank? Cancers 2022, 14, 5510. https://doi.org/10.3390/cancers14225510
Clavreul A, Autier L, Lemée J-M, Augereau P, Soulard G, Bauchet L, Figarella-Branger D, Menei P, Network F. Management of Recurrent Glioblastomas: What Can We Learn from the French Glioblastoma Biobank? Cancers. 2022; 14(22):5510. https://doi.org/10.3390/cancers14225510
Chicago/Turabian StyleClavreul, Anne, Lila Autier, Jean-Michel Lemée, Paule Augereau, Gwénaëlle Soulard, Luc Bauchet, Dominique Figarella-Branger, Philippe Menei, and FGB Network. 2022. "Management of Recurrent Glioblastomas: What Can We Learn from the French Glioblastoma Biobank?" Cancers 14, no. 22: 5510. https://doi.org/10.3390/cancers14225510
APA StyleClavreul, A., Autier, L., Lemée, J. -M., Augereau, P., Soulard, G., Bauchet, L., Figarella-Branger, D., Menei, P., & Network, F. (2022). Management of Recurrent Glioblastomas: What Can We Learn from the French Glioblastoma Biobank? Cancers, 14(22), 5510. https://doi.org/10.3390/cancers14225510