The Flex Robotic System in Head and Neck Surgery: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meccariello, G.; Bianchi, G.; Calpona, S.; Parisi, E.; Cammaroto, G.; Iannella, G.; Sgarzani, R.; Montevecchi, F.; De Vito, A.; Capaccio, P.; et al. Trans oral robotic surgery versus definitive chemoradiotherapy for oropharyngeal cancer: 10-year institutional experience. Oral Oncol. 2020, 110, 104889. [Google Scholar] [CrossRef] [PubMed]
- Meccariello, G.; Cammaroto, G.; Iannella, G.; De Vito, A.; Ciorba, A.; Bianchini, C.; Corazzi, V.; Pelucchi, S.; Vicini, C.; Capaccio, P. Transoral robotic surgery for oropharyngeal cancer in the era of chemoradiation therapy. Auris. Nasus. Larynx 2022, 49, 535–546. [Google Scholar] [CrossRef]
- Orosco, R.K.; Arora, A.; Jeanon, J.P.; Holsinger, F.C. Next-Generation Robotic Head and Neck Surgery. ORL J. Otorhinolaryngol. Relat. Spec. 2018, 80, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedrich, D.T.; Scheithauer, M.O.; Greve, J.; Hoffmann, T.K.; Schuler, P.J. Recent advances in robot-assisted head and neck surgery. Int. J. Med. Robot. 2017, 13, e1744. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Kim, W.S.; Byeon, H.K.; Lee, S.Y.; Kim, S.H. Oncological and functional outcomes of transoral robotic surgery for oropharyngeal cancer. Br. J. Oral Maxillofac. Surg. 2013, 51, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, G.S.; Quon, H.; Newman, H.J.; Chalian, J.A.; Malloy, K.; Lin, A.; Desai, A.; Livolsi, V.A.; Montone, K.T.; Cohen, K.R.; et al. Transoral robotic surgery alone for oropharyngeal cancer: An analysis of local control. Arch. Otolaryngol. Head. Neck Surg. 2012, 138, 628–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hans, S.; Delas, B.; Gorphe, P.; Ménard, M.; Brasnu, D. Transoral robotic surgery in head and neck cancer. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2012, 129, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Liederbach, E.; Lewis, C.M.; Yao, K.; Brockstein, B.E.; Wang, C.H.; Lutfi, W.; Bhayani, M.K. A Contemporary Analysis of Surgical Trends in the Treatment of Squamous Cell Carcinoma of the Oropharynx from 1998 to 2012: A Report from the National Cancer Database. Ann. Surg. Oncol. 2015, 22, 4422–4431. [Google Scholar] [CrossRef]
- Rivera-Serrano, C.M.; Johnson, P.; Zubiate, B.; Kuenzler, R.; Choset, H.; Zenati, M.; Tully, S.; Duvvuri, U. A transoral highly flexible robot: Novel technology and application. Laryngoscope 2012, 122, 1067–1071. [Google Scholar] [CrossRef]
- Johnson, P.J.; Serrano, C.M.R.; Castro, M.; Kuenzler, R.; Choset, H.; Tully, S.; Duvvuri, U. Demonstration of transoral surgery in cadaveric specimens with the medrobotics flex system. Laryngoscope 2013, 123, 1168–1172. [Google Scholar] [CrossRef]
- Remacle, M.; Prasad, V.M.N.; Lawson, G.; Plisson, L.; Bachy, V.; Van der Vorst, S. Transoral robotic surgery (TORS) with the Medrobotics FlexTM System: First surgical application on humans. Eur. Arch. Otorhinolaryngol. 2015, 272, 1451–1455. [Google Scholar] [CrossRef] [PubMed]
- Mandapathil, M.; Duvvuri, U.; Güldner, C.; Teymoortash, A.; Lawson, G.; Werner, J.A. Transoral surgery for oropharyngeal tumors using the Medrobotics(®) Flex(®) System—A case report. Int. J. Surg. Case Rep. 2015, 10, 173–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuler, P.J.; Duvvuri, U.; Friedrich, D.T.; Rotter, N.; Scheithauer, M.O.; Hoffmann, T.K. First use of a computer-assisted operator-controlled flexible endoscope for transoral surgery. Laryngoscope 2015, 125, 645–648. [Google Scholar] [CrossRef]
- Mattheis, S.; Hasskamp, P.; Holtmann, L.; Schäfer, C.; Geisthoff, U.; Dominas, N.; Lang, S. Flex Robotic System in transoral robotic surgery: The first 40 patients. Head Neck 2017, 39, 471–475. [Google Scholar] [CrossRef]
- Lang, S.; Mattheis, S.; Hasskamp, P.; Lawson, G.; Güldner, C.; Mandapathil, M.; Schuler, P.; Hoffmann, T.; Scheithauer, M.; Remacle, M. A European multicenter study evaluating the flex robotic system in transoral robotic surgery. Laryngoscope 2017, 127, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Remacle, M.; Prasad, V.M.N. Preliminary experience in transoral laryngeal surgery with a flexible robotic system for benign lesions of the vocal folds. Eur. Arch. Otorhinolaryngol. 2018, 275, 761–765. [Google Scholar] [CrossRef]
- Tan Wen Sheng, B.; Wong, P.; Teo Ee Hoon, C. Transoral robotic excision of laryngeal papillomas with Flex® Robotic System—A novel surgical approach. Am. J. Otolaryngol. 2018, 39, 355–358. [Google Scholar] [CrossRef]
- Persky, M.J.; Issa, M.; Bonfili, J.R.; Goyal, N.; Goldenberg, D.; Duvvuri, U. Transoral surgery using the Flex Robotic System: Initial experience in the United States. Head Neck 2018, 40, 2482–2486. [Google Scholar] [CrossRef]
- Sethi, N.; Gouzos, M.; Padhye, V.; Ooi, E.H.; Foreman, A.; Krishnan, S.; Hodge, J.C. Transoral robotic surgery using the Medrobotic Flex ® system: The Adelaide experience. J. Robot. Surg. 2020, 14, 109–113. [Google Scholar] [CrossRef]
- Hussain, T.; Lang, S.; Haßkamp, P.; Holtmann, L.; Höing, B.; Mattheis, S. The Flex robotic system compared to transoral laser microsurgery for the resection of supraglottic carcinomas: First results and preliminary oncologic outcomes. Eur. Arch. Otorhinolaryngol. 2020, 277, 917–924. [Google Scholar] [CrossRef]
- Olaleye, O.; Jeong, B.; Switajewski, M.; Ooi, E.H.; Krishnan, S.; Foreman, A.; Hodge, J.C. Trans-oral robotic surgery for head and neck cancers using the Medrobotics Flex ® system: The Adelaide cohort. J. Robot. Surg. 2021, 16, 527–536. [Google Scholar] [CrossRef]
- Barbara, F.; Cariti, F.; De Robertis, V.; Barbara, M. Flexible transoral robotic surgery: The Italian experience. Acta Otorhinolaryngol. Ital. 2021, 41, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Capaccio, P.; Cammarota, R.; Riva, G.; Albera, A.; Albera, R.; Pecorari, G. Transoral robotic surgery for bilateral parenchymal submandibular stones: The Flex Robotic System. B-ENT 2021, 17, 45–48. [Google Scholar] [CrossRef]
- Capaccio, P.; Riva, G.; Cammarota, R.; Gaffuri, M.; Pecorari, G. Minimally invasive transoral robotic surgery for hiloparenchymal submandibular stone: Technical note on Flex Robotic System. Clin. Case Rep. 2022, 10, e04529. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, D.T.; Dürselen, L.; Mayer, B.; Hacker, S.; Schall, F.; Hahn, J.; Hoffmann, T.K.; Schuler, P.J.; Greve, J. Features of haptic and tactile feedback in TORS-a comparison of available surgical systems. J. Robot. Surg. 2018, 12, 103–108. [Google Scholar] [CrossRef] [PubMed]
Author, Year, Country | Study Design | Number of Patients | Sex | Age (Years) | Type of Lesion | Site | Treatment | Procedure Time (Minutes) | Hospital Stay (Days) | Outcomes | Adverse Events | Treatment of Adverse Events |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Remacle et al., 2015, Belgium [11] | Case series | 3 | M: 2 (67%) F: 1 (33%) | 48 (34–62) | Benign pathology (tongue base hypertrophy, vocal fold polyp) (n = 2) Carcinoma of the lateral edge of the tongue (stage NR) (n = 1) | Oral cavity (n = 1) Oropharynx (n = 1) Glottic larynx (n = 1) | Excisional biopsy of tongue and laryngeal lesions Tongue base resection | NR | NR | Surgical success 100% | No intra- and post-operative adverse events | / |
Mandapathil et al., 2015, Germany [12] | Case report | 1 | F: 1 (100%) | 74 | Carcinoma (stage I) | Oropharynx | Complete resection | NR | 6 | Surgical success | No intra- and post-operative adverse events | / |
Schuler et al., 2015, Germany [13] | Case report | 1 | M: 1 (100%) | 54 | Carcinoma (stage IVa) | Oropharynx | Complete resection | NR | NR | Surgical success | Minor arterial bleeding | Monopolar cautery |
Mattheis et al., 2017, Germany [14] | Prospective | 40 | M: 25 (62%) F: 15 (38%) | 59 (27–86) | Benign pathology (n = 10) Carcinoma (n = 30) (stage I-II) | Oropharynx (n = 14) Hypopharynx (n = 10) Supraglottic larynx (n = 16) | Biopsy (n = 11) Complete resection (n = 29) | NR Setup time: 12.4 (6–30) | NR | Visualization of the lesion 95% | Insufficient exposure (n = 2, supraglottic lesions) Dysphagia (n = 1) Superficial mucosal of pharynx and lips (n = 5) Post-operative pharyngeal oedema (n = 3) | Conversion to traditional surgery (n = 2) Positioning of a nasogastric feeding tube (n = 1) Prolonged intubation for 3 days (n = 1) |
Lang et al., 2017, Germany and Belgium [15] | Prospective | 79 | M: 44 (56%) F: 35 (44%) | 64 (range NR) | Benign and malignant lesions (stage NR) | Oropharynx (n = 39) Hypopharynx (n = 12) Supraglottic and glottic larynx (n = 21) | Biopsy (n = 31) Complete resection (n = 41) | 41 (5–131) Setup time: 11.2 | NR | Visualization of the lesion 95% Surgical success 91.1% | Insufficient exposure (n = 4) Dysphagia (n = 2) Intra-operative bleeding (n = 1) Superficial mucosal lesions of oropharynx or lips (n = 10) Post-operative pharyngeal oedema (n = 6) | Conversion to traditional surgery (n = 7) Positioning of a nasogastric feeding tube (n = 2) Prolonged intubation for 3 days (n = 1) |
Remacle et al., 2018, Luxembourg [16] | Case series | 4 | M: 1 (25%) F: 3 (75%) | 60 (49–79) | Benign pathology | Glottic and supraglottic larynx (n = 1) Glottic larynx (n = 3) | Complete resection | NR Setup time: 20 | 1 | Surgical success 100% | No intra- and post-operative adverse events | / |
Tan Wen Sheng et al., 2018, Singapore [17] | Case report | 1 | F: 1 (100%) | 36 | Benign pathology (recurrent laryngeal papillomatosis) | Supraglottic and glottic larynx | Complete resection | NR | 3 | No recurrence after 4 months | No intra- and post-operative adverse events | / |
Persky et al., 2018, USA [18] | Retrospective | 68 | M: 36 (53%) F: 32 (47%) | 56 (17–82) | Benign pathology (n = 37) Carcinoma (stage I-II) (n = 31) | Oral cavity (n = 1) Oropharynx (n = 46) Hypopharynx (n = 1) Supraglottic larynx (n = 18) Glottic larynx (n = 4) | Biopsy (n = 4) Complete resection (n = 64) | NR | 0.64 (0–4) for benign pathology 2.45 (0–7) for carcinoma | Surgical success 94.3% | Insufficient exposure (n = 6) Post-operative bleeding (n = 5) Dysphagia (n = 1) | Conversion to traditional surgery (n = 5) Readmission within 1 month (n = 6) |
Sethi et al., 2019, Australia [19] | Prospective | 20 | M: 14 (70%) F: 6 (30%) | 57 (19–79) | Benign pathology (n = 7) Carcinoma (stage I-IVa) (n = 13) | Oral cavity (n = 2) Oropharynx (n = 18) | Complete resection (n = 20) | NR | 4.5 (0–14) | Surgical success 100% | Post-operative bleeding (n = 1) Oro-cervical fistula (n = 1) | Conservative management |
Hussain et al., 2020, Germany [20] | Retrospective | Transoral laser microsurgery (TLM): 65 TORS: 19 | TLM: M: 49 (75%) F: 16 (25%) TORS: M: 13 (68%) F: 6 (32%) | TLM: 64.7 ± 9.1 TORS: 68.1 ± 8.9 | Carcinoma (stage: I-IVb) | Supraglottic larynx | Supraglottic laryngectomy | NR | NR | 2-year Disease Specific Survival: 64.9% in TLM vs. 71.4% in TORS (p > 0.05) | Post-operative bleeding: 10.8% in TLM vs. 15.7% in TORS (p > 0.05) Need for tracheostomy: 36.9% in TLM vs. 15.8% in TORS (p not reported) | Hemostasis under general anaesthesia 10.8% in TLM vs. 15.7% in TORS |
Olaleye et al., 2021, Australia [21] | Retrospective | 49 | M: 38 (78%) F: 11 (22%) | 60 (38–85) | Carcinoma (stage: I-IVc) (n = 49) | Oral cavity (n = 1) Oropharynx (n= 45) Hypopharynx (n = 1) Supraglottic larynx (n = 1) Glottic larynx (n = 1) | Complete resection | 160 (including neck dissection) Setup time: 30 | 1 (1–18) | 2-year Overall survival 94% Local cancer recurrence 6% | Post-operative bleeding (n = 1) Oro-cervical fistula (n = 1) Wound infection (n = 1) Tongue numbness (n = 1) Reversible cardio-respiratory event (n = 1) | Conservative management Transferred to laser resection (vocal cord) (n = 1) |
Barbara et al., 2021, Italy [22] | 41 | M: 28 (68%) F: 13 (32%) | 63 (36–90) | Benign pathology (n = 25) Malignant lesions (stage I-IVa) (n = 16) | Oropharynx (n = 6) Supraglottic larynx (n = 13) Glottic larynx (n = 20) Subglottic larynx (n = 2) | Complete resection | 32.78 (15–75) Setup time: 15.07 (7–40) | 1 | Surgical success 100% Post-operative pain score: 2.88 and 0.77 of 10, at 24 and 48 h | Post-operative arytenoid oedema (n = 1) Granuloma (n = 2) Para-commissural leukoplakia (n = 1) | Conservative management | |
Capaccio et al., 2021, Italy [23] | Case report | 1 | F: 1 (100%) | 68 | Benign pathology (bilateral submandibular salivary stones) | Submandibular gland | Transoral removal of hilo-parenchymal stones | 130 Setup time: 20 | 2 | No recurrence after 3 months | No intra- and post-operative adverse events | / |
Capaccio et al., 2022, Italy [24] | Case report | 1 | M: 1 (100%) | 56 | Benign pathology (submandibular salivary stone) | Submandibular gland | Transoral removal of hilo-parenchymal submandibular stone | 30 Setup time: 10 | 1 | No recurrence after 3 months | No intra- and post-operative adverse events | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riva, G.; Cravero, E.; Briguglio, M.; Capaccio, P.; Pecorari, G. The Flex Robotic System in Head and Neck Surgery: A Review. Cancers 2022, 14, 5541. https://doi.org/10.3390/cancers14225541
Riva G, Cravero E, Briguglio M, Capaccio P, Pecorari G. The Flex Robotic System in Head and Neck Surgery: A Review. Cancers. 2022; 14(22):5541. https://doi.org/10.3390/cancers14225541
Chicago/Turabian StyleRiva, Giuseppe, Ester Cravero, Marco Briguglio, Pasquale Capaccio, and Giancarlo Pecorari. 2022. "The Flex Robotic System in Head and Neck Surgery: A Review" Cancers 14, no. 22: 5541. https://doi.org/10.3390/cancers14225541
APA StyleRiva, G., Cravero, E., Briguglio, M., Capaccio, P., & Pecorari, G. (2022). The Flex Robotic System in Head and Neck Surgery: A Review. Cancers, 14(22), 5541. https://doi.org/10.3390/cancers14225541