Modified BEST-J Score Model Predicts Bleeding after Endoscopic Submucosal Dissection with Fewer Factors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. ESD Procedure
2.4. Predictive Variables
2.5. Outcome Criteria
2.6. Statistical Analysis
3. Results
3.1. Patients in the Model Cohort
3.2. Post-ESD Bleeding in the Model Cohort
3.3. Comparison between the Modified BEST-J and BEST-J Scores in the Validation Cohort
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Abdelfatah, M.M.; Barakat, M.; Ahmad, D.; Ibrahim, M.; Ahmed, Y.; Kurdi, Y.; Grimm, I.S.; Othman, M.O. Long-term outcomes of endoscopic submucosal dissection versus surgery in early gastric cancer: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2019, 31, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ding, L.; Qiu, X.; Meng, F. Updated evaluation of endoscopic submucosal dissection versus surgery for early gastric cancer: A systematic review and meta-analysis. Int. J. Surg. 2020, 73, 28–41. [Google Scholar] [CrossRef]
- Toyokawa, T.; Inaba, T.; Omote, S.; Okamoto, A.; Miyasaka, R.; Watanabe, K.; Izumikawa, K.; Horii, J.; Fujita, I.; Ishikawa, S.; et al. Risk factors for perforation and delayed bleeding associated with endoscopic submucosal dissection for early gastric neoplasms: Analysis of 1123 lesions. J. Gastroenterol. Hepatol. 2012, 27, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.K.; Lee, J.H.; Lee, S.H.; Kim, S.J.; Cho, J.Y.; Cho, W.Y.; Hwangbo, Y.; Keum, B.R.; Park, J.J.; Chun, H.J.; et al. Therapeutic outcomes in 1000 cases of endoscopic submucosal dissection for early gastric neoplasms: Korean ESD study group multicenter study. Gastrointest. Endosc. 2009, 69, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chai, N.; Tang, X.; Linghu, E.; Wang, S. Risk factors of major intraoperative bleeding and postoperative bleeding associated with endoscopic submucosal dissection for gastric neoplasms. Chin. Med. J. 2022, 135, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Ota, K.; Harada, S.; Edogawa, S.; Kojima, Y.; Tokioka, S.; Umegaki, E.; Higuchi, K. The postoperative bleeding rate and its risk factors in patients on antithrombotic therapy who undergo gastric endoscopic submucosal dissection. BMC Gastroenterol. 2013, 13, 136. [Google Scholar] [CrossRef] [Green Version]
- Hatta, W.; Tsuji, Y.; Yoshio, T.; Kakushima, N.; Hoteya, S.; Doyama, H.; Nagami, Y.; Hikichi, T.; Kobayashi, M.; Morita, Y.; et al. Prediction model of bleeding after endoscopic submucosal dissection for early gastric cancer: BEST-J score. Gut 2021, 70, 476–484. [Google Scholar] [CrossRef]
- Thomas, M.N.; Kufeldt, J.; Kisser, U.; Hornung, H.M.; Hoffmann, J.; Andraschko, M.; Werner, J.; Rittler, P. Effects of malnutrition on complication rates, length of hospital stay, and revenue in elective surgical patients in the G-DRG-system. Nutrition 2016, 32, 249–254. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, E.; Hilsden, R.; Hawel, J.D.; Elnahas, A.I.; Schlachta, C.M.; Alkhamesi, N.A. Preoperative malnutrition in patients with colorectal cancer. Can. J. Surg. 2021, 64, E621–E629. [Google Scholar] [CrossRef]
- Aziz, E.F.; Javed, F.; Pratap, B.; Musat, D.; Nader, A.; Pulimi, S.; Alivar, C.L.; Herzog, E.; Kukin, M.L. Malnutrition as assessed by nutritional risk index is associated with worse outcome in patients admitted with acute decompensated heart failure: An ACAP-HF data analysis. Heart Int. 2011, 6, e2. [Google Scholar] [CrossRef]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar] [PubMed]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. (In Japanese) [Google Scholar]
- Takama, T.; Okano, K.; Kondo, A.; Akamoto, S.; Fujiwara, M.; Usuki, H.; Suzuki, Y. Predictors of postoperative complications in elderly and oldest old patients with gastric cancer. Gastric Cancer 2015, 18, 653–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Jiang, S.; Yang, X.; Li, X.; Wang, N. The significant value of preoperative prognostic nutritional index for survival in pancreatic cancers: A meta-analysis. Pancreas 2018, 47, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, R.; Sakamoto, Y.; Nakagawa, S.; Izumi, D.; Kosumi, K.; Taki, K.; Higashi, T.; Miyata, T.; Miyamoto, Y.; Yoshida, N.; et al. Comparison of systemic inflammatory and nutritional scores in colorectal cancer patients who underwent potentially curative resection. Int. J. Clin. Oncol. 2017, 22, 740–748. [Google Scholar] [CrossRef]
- Choe, Y.H.; Jung, D.H.; Park, J.C.; Kim, H.Y.; Shin, S.K.; Lee, S.K.; Lee, Y.C. Prediction model for bleeding after endoscopic submucosal dissection of gastric neoplasms from a high-volume center. J. Gastroenterol. Hepatol. 2021, 36, 2217–2223. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Ono, H.; Yao, K.; Fujishiro, M.; Oda, I.; Nimura, S.; Yahagi, N.; Iishi, H.; Oka, M.; Ajioka, Y.; Ichinose, M.; et al. Guidelines for endoscopic submucosal dissection and endoscopic mucosal resection for early gastric cancer. Dig. Endosc. 2016, 28, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Kawata, H.; Sunada, K.; Satoh, K.; Kaneko, Y.; Ido, K.; Sugano, K. Success rate of curative endoscopic mucosal resection with circumferential mucosal incision assisted by submucosal injection of sodium hyaluronate. Gastrointest. Endosc. 2002, 56, 507–512. [Google Scholar] [CrossRef]
- Yamamoto, H.; Kawata, H.; Sunada, K.; Sasaki, A.; Nakazawa, K.; Miyata, T.; Sekine, Y.; Yano, T.; Satoh, K.; Ido, K.; et al. Successful en-bloc resection of large superficial tumors in the stomach and colon using sodium hyaluronate and small-caliber-tip transparent hood. Endoscopy 2003, 35, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Yahagi, N.; Uraoka, T.; Ida, Y.; Hosoe, N.; Nakamura, R.; Kitagawa, Y.; Ogata, H.; Hibi, T. Endoscopic submucosal dissection using the Flex and the Dual knives. Tech. Gastrointest. Endosc. 2011, 13, 74–78. [Google Scholar] [CrossRef]
- Ono, H.; Hasuike, N.; Inui, T.; Takizawa, K.; Ikehara, H.; Yamaguchi, Y.; Otake, Y.; Matsubayashi, H. Usefulness of a novel electrosurgical knife, the insulation-tipped diathermic knife-2, for endoscopic submucosal dissection of early gastric cancer. Gastric Cancer 2008, 11, 47–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, K.; Fujishiro, M.; Kato, M.; Higuchi, K.; Iwakiri, R.; Sakamoto, C.; Uchiyama, S.; Kashiwagi, A.; Ogawa, H.; Murakami, K.; et al. Guidelines for gastroenterological endoscopy in patients undergoing antithrombotic treatment. Dig. Endosc. 2014, 26, 1–14. [Google Scholar] [CrossRef]
- Ono, S.; Fujishiro, M.; Ikeda, Y.; Komuro, I.; Koike, K. Recent clinical management of antithrombotic agents for gastrointestinal endoscopy after revision of guidelines in Japan. Dig. Endosc. 2015, 27, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Uedo, N.; Hokimoto, S.; Ieko, M.; Higuchi, K.; Murakami, K.; Fujimoto, K. Guidelines for gastroenterological endoscopy in patients undergoing antithrombotic treatment: 2017 appendix on anticoagulants including direct oral anticoagulants. Dig. Endosc. 2018, 30, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Kimura, K.; Takemoto, T. An endoscopic recognition of the atrophic border and its significance in chronic gastritis. Endoscopy 1969, 1, 87–97. [Google Scholar] [CrossRef]
- Matsumura, T.; Arai, M.; Maruoka, D.; Okimoto, K.; Minemura, S.; Ishigami, H.; Saito, K.; Nakagawa, T.; Katsuno, T.; Yokosuka, O. Risk factors for early and delayed postoperative bleeding after endoscopic submucosal dissection of gastric neoplasms, including patients with continued use of antithrombotic agents. BMC Gastroenterol. 2014, 14, 172. [Google Scholar] [CrossRef]
- Yang, L.; Qi, J.; Chen, W.; Guo, Q.; Xie, R.; Zhao, Z.; Qin, S.; Liu, A.; Den, M.; Fan, C.; et al. Low-dose PPI to prevent bleeding after ESD: A multicenter randomized controlled study. Biomed. Pharmacother. 2021, 136, 111251. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Lee, S.K. Preventing and controlling bleeding in gastric endoscopic submucosal dissection. Clin. Endosc. 2013, 46, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Hakoda, A.; Takeuchi, T.; Kojima, Y.; Fujiwara, Y.; Nagami, Y.; Naito, Y.; Fukuda, S.; Koike, T.; Sugimoto, M.; Hamada, K.; et al. Risk factors and prediction of bleeding after gastric endoscopic submucosal dissection in patients on antithrombotic therapy: Newly developed bleeding prediction application software, SAMURAI model. J. Clin. Biochem. Nutr. 2022, 70, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Alsulaiman, R.; Burtin, P.; Toubouti, Y.; Rahme, E.; Boivin, J.F.; Barkun, A.N. The safety of endoscopic sphincterotomy in patients receiving antiplatelet agents: A case-control study. Aliment. Pharmacol. Ther. 2007, 25, 579–584. [Google Scholar] [CrossRef]
- Mannen, K.; Tsunada, S.; Hara, M.; Yamaguchi, K.; Sakata, Y.; Fujise, T.; Noda, T.; Shimoda, R.; Sakata, H.; Ogata, S.; et al. Risk factors for complications of endoscopic submucosal dissection in gastric tumors: Analysis of 478 lesions. J. Gastroenterol. 2010, 45, 30–36. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, K.S.; Kim, Y.I.; Tamai, Y.; Nakahata, R.; Takami, H. A randomized crossover comparative study of aspirin, cilostazol and clopidogrel in normal controls: Analysis with quantitative bleeding time and platelet aggregation test. J. Clin. Neurosci. 2004, 11, 600–602. [Google Scholar] [CrossRef]
- Gotoh, F.; Tohgi, H.; Hirai, S.; Terashi, A.; Fukuuchi, Y.; Otomo, E.; Shinohara, Y.; Itoh, E.; Matsuda, T.; Sawada, T.; et al. Cilostazol stroke prevention study: A placebo-controlled double-blind trial for secondary prevention of cerebral infarction. J. Stroke Cerebrovasc. Dis. 2000, 9, 147–157. [Google Scholar] [CrossRef]
- Mori, T.; Asano, M.; Ohtake, H.; Bitoh, A.; Sekiguchi, S.; Matsuo, Y.; Aiba, M.; Yamada, M.; Kawada, T.; Takaba, T. Anticoagulant therapy after prosthetic valve replacement -optimal PT-INR in Japanese patients. Ann. Thorac. Cardiovasc. Surg. 2002, 8, 83–87. [Google Scholar]
- Choi, J.; Cho, S.J.; Na, S.H.; Lee, A.; Kim, J.L.; Chung, H.; Kim, S.G. Use of direct oral anticoagulants does not significantly increase delayed bleeding after endoscopic submucosal dissection for early gastric neoplasms. Sci. Rep. 2021, 11, 9399. [Google Scholar] [CrossRef]
- Chan, E.W.; Lau, W.C.; Mok, M.T.C.; He, Y.; Tong, T.S.M.; Wong, I.C.K. Prevention of dabigatran-related gastrointestinal bleeding with gastroprotective agents: A population-based study. Gastroenterology 2015, 149, 586–595.e3. [Google Scholar] [CrossRef] [Green Version]
- Ray, W.A.; Chung, C.P.; Murry, K.T.; Smalley, W.E.; Daugherty, J.R.; Dupont, W.D.; Stein, C.M. Association of oral anticoagulants and proton pump inhibitor cotherapy with hospitalization for upper gastrointestinal tract bleeding. JAMA 2018, 320, 2221–2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, P.A.; Waclawiak, I.; Georgii, J.L.; Fraga-Junior, V.D.S.; Barros, J.F.; Lemos, F.S.; Russo-Abrahão, T.; Saraiva, E.M.; Takiya, C.M.; Coutinho-Silva, R.; et al. Adenosine diphosphate improves wound healing in diabetic mice through P2Y12 receptor activation. Front. Immunol. 2021, 12, 651740. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.U.; Fan, G.H.; Hastie, D.J.; Addonizio, E.A.; Han, J.; Prakasam, V.N.; Karagozian, R. The clinical impact of malnutrition on the postoperative outcomes of patients undergoing gastrectomy for gastric cancer: Propensity score matched analysis of 2011–2017 hospital database. Clin. Nutr. ESPEN 2021, 46, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Toya, Y.; Endo, M.; Akasaka, R.; Morishita, T.; Yanai, S.; Nakamura, S.; Eizuka, M.; Sugimoto, R.; Uesugi, N.; Sugai, T.; et al. Prognostic nutritional index is an independent prognostic factor for older patients aged ≥ 85 years treated by gastric endoscopic submucosal dissection. BMC Gastroenterol. 2021, 21, 328. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, Y.; Wang, Z.; Lu, J. Evaluation of nutritional status and prognostic impact assessed by the prognostic nutritional index in children with chronic kidney disease. Medicine 2019, 98, e16713. [Google Scholar] [CrossRef]
- Doweiko, J.P.; Nompleggi, D.J. The role of albumin in human physiology and pathophysiology, Part Ⅲ: Albumin and disease states. JPEN J. Parenter. Enter. Nutr. 1991, 15, 476–483. [Google Scholar] [CrossRef]
- Schäffer, M.; Barbul, A. Lymphocyte function in wound healing and following injury. Br. J. Surg. 1998, 85, 444–460. [Google Scholar] [CrossRef]
- Mueller, S.A.; Mayer, C.; Bojaxhiu, B.; Aeberhard, C.; Schuetz, P.; Stanga, Z.; Giger, R. Effect of preoperative immunonutrition on complications after salvage surgery in head and neck cancer. J. Otolaryngol. Head Neck Surg. 2019, 48, 25. [Google Scholar] [CrossRef]
- Thomas, W.G. Duodeno-gastric reflex—A common factor in pathogenesis of gastric and duodenal ulcer. Lancet 1980, 2, 1166–1168. [Google Scholar] [CrossRef]
- Nam, H.S.; Choi, C.W.; Kim, S.J.; Kim, H.W.; Kang, D.H.; Park, S.B.; Ryu, D.G. Risk factors for delayed bleeding by onset time after endoscopic submucosal dissection for gastric neoplasm. Sci. Rep. 2019, 9, 2674. [Google Scholar] [CrossRef] [Green Version]
- Shiroma, S.; Hatta, W.; Tsuji, Y.; Yoshio, T.; Yabuuchi, Y.; Hoteya, S.; Tsuji, S.; Nagami, Y.; Hikichi, T.; Kobayashi, M.; et al. Timing of bleeding and thromboembolism associated with endoscopic submucosal dissection for gastric cancer in Japan. J. Gastroenterol. Hepatol. 2021, 36, 2769–2777. [Google Scholar] [CrossRef] [PubMed]
Model Cohort | Validation Cohort | p-Value � | |
---|---|---|---|
Total | 299 | 150 | |
Age, mean (SD) | 73 (9.04) | 74.1 (9.0) | 0.197 |
Males/females, n | 205/94 | 112/38 | 0.226 |
BMI, mean (SD) | 23.4 (3.38) | 23.3 (3.13) | 0.883 |
Charson Comorbidity Index, mean (SD) | 1.27 (1.29) | 1.44 (1.23) | 0.186 |
Undergoing dialysis, n (%) | 4 (1.34) | 3 (2.0) | 0.691 |
Antithrombotic agent use, n (%) | |||
LDA | 35 (11.7) | 12 (8.0) | 0.255 |
P2Y12RA | 15 (5.01) | 4 (2.67) | 0.323 |
PDE3 inhibitor | 9 (3.01) | 2 (1.33) | 0.349 |
warfarin | 10 (3.34) | 11 (7.33) | 0.094 |
DOAC | 8 (2.68) | 20 (13.3) | <0.001 |
Discontinuation of antithrombotic agent | 26 (8.7) | 26 (17.3) | 0.0117 |
Continuation of antithrombotic agent | 5 (1.67) | 15 (10.0) | <0.001 |
Replacement with LDA or heparin | 32 (10.7) | 6 (4.0) | 0.20 |
Lesion, n (%) | |||
Tumor size > 30 mm | 29 (9.7) | 11 (7.33) | 0.595 |
Location at lower 1/3 | 134 (44.5) | 58 (38.7) | 0.159 |
Multiple tumor | 24 (8.03) | 11 (7.33) | 0.854 |
Undifferentiated tumor | 3 (1.00) | 51(0.67) | 1 |
Pathologically beyond SM1 invasion | 28 (9.36) | 5 (3.33) | 0.021 |
ESD procedure, n (%) | |||
Cutting time > 120 minutes | 35 (11.7) | 33 (22) | 0.00529 |
Failure of en-bloc dissection | 9 (3.01) | 4 (2.67) | 0.758 |
Presence of mucosal atrophy | 295 (98.7) | 138 (92.0) | 0.00159 |
Change before and after ESD, mean (SD) | |||
Change in CRP (mg/dL), mean (SD) | 0.42 (1.05) | 0.35 (0.62) | 0.451 |
Change in WBC (/μL), mean (SD) | 3290 (2220) | 3550 (2250) | 0.289 |
PNI before ESD, mean (SD) | 49.6 (5.19) | 50.3 (5.25) | 0.206 |
Post-ESD Bleeding | Control | p-Value � | |
---|---|---|---|
(n = 25) | (n = 274) | ||
Age, mean ± SD | 73 ± 9.05 | 73 ± 9.17 | 0.902 |
Males/females, n | 16/9 | 189/85 | 0.654 |
BMI, mean ± SD | 22.5 ± 2.57 | 23.5 ± 3.43 | 0.28 |
Charson Comorbidity Index, mean ± SD | 1.52 ± 1.9 | 1.25 ± 1.22 | 0.214 |
Undergoing dialysis, n | 3 | 1 | 0.00197 |
Antithrombotic agent use, n | |||
LDA | 5 | 30 | 0.191 |
P2Y12RA | 6 | 9 | <0.001 |
PDE3 inhibitor | 1 | 8 | 0.549 |
warfarin | 1 | 9 | 0.588 |
DOAC | 0 | 8 | 1 |
Discontinuation of antithrombotic agent | 5 | 21 | 0.0527 |
Continuation of antithrombotic agent | 1 | 4 | 0.411 |
Replacement with LDA or heparin | 5 | 27 | 0.165 |
Lesion, n | |||
Tumor size > 30 mm | 7 | 21 | 0.00439 |
Location at lower 1/3 | 17 | 117 | 0.0199 |
Multiple tumor | 3 | 21 | 0.436 |
Undifferentiated tumor | 0 | 3 | 1 |
Pathologically beyond SM1 invasion | 3 | 25 | 0.716 |
ESD procedure, n | |||
Cutting time > 120 minutes | 6 | 29 | 0.0945 |
Failure of en-bloc dissection | 1 | 8 | 0.549 |
Presence of mucosal atrophy | 25 | 270 | 1 |
Change before and after ESD, mean (SD) | |||
Change in CRP (mg/dL), mean (SD) | 0.661 ± 1.53 | 0.393 ± 0.998 | 0.995 |
Change in WBC (/μL), mean (SD) | 3826 ± 2870 | 3262 ± 2155 | 0.495 |
PNI before ESD, mean ± SD | 46.2 ± 4.79 | 50 ± 5.12 | <0.001 |
PNI 47.9 ‡, n | 18 | 92 | <0.001 |
Predictor | OR (95% CI) | VIF | p Value | β Regression Coefficient | Score ‡ |
---|---|---|---|---|---|
P2Y12RA use | 10.5 (2.73–40.3) | 1.05 | <0.001 | 2.35 | 2 |
Tumor size > 30 mm | 6.79 (2.07–22.2) | 1.07 | 0.00157 | 1.91 | 2 |
Location at lower 1/3 | 3.49 (1.24–9.83) | 1.06 | 0.018 | 1.25 | 1 |
PNI 47.9 | 7.48 (2.39–23.4) | 1.07 | <0.001 | 2.01 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, T.; Mikamo, T.; Hamamoto, W.; Iwamoto, T.; Okamoto, T.; Maeda, K.; Yanagitani, A.; Tanaka, K.; Isomoto, H.; Yamaguchi, N. Modified BEST-J Score Model Predicts Bleeding after Endoscopic Submucosal Dissection with Fewer Factors. Cancers 2022, 14, 5555. https://doi.org/10.3390/cancers14225555
Okada T, Mikamo T, Hamamoto W, Iwamoto T, Okamoto T, Maeda K, Yanagitani A, Tanaka K, Isomoto H, Yamaguchi N. Modified BEST-J Score Model Predicts Bleeding after Endoscopic Submucosal Dissection with Fewer Factors. Cancers. 2022; 14(22):5555. https://doi.org/10.3390/cancers14225555
Chicago/Turabian StyleOkada, Tomoyuki, Tsuyoshi Mikamo, Wataru Hamamoto, Taku Iwamoto, Toshiaki Okamoto, Kazunori Maeda, Atsushi Yanagitani, Kiwamu Tanaka, Hajime Isomoto, and Naoyuki Yamaguchi. 2022. "Modified BEST-J Score Model Predicts Bleeding after Endoscopic Submucosal Dissection with Fewer Factors" Cancers 14, no. 22: 5555. https://doi.org/10.3390/cancers14225555
APA StyleOkada, T., Mikamo, T., Hamamoto, W., Iwamoto, T., Okamoto, T., Maeda, K., Yanagitani, A., Tanaka, K., Isomoto, H., & Yamaguchi, N. (2022). Modified BEST-J Score Model Predicts Bleeding after Endoscopic Submucosal Dissection with Fewer Factors. Cancers, 14(22), 5555. https://doi.org/10.3390/cancers14225555