SNP-Target Genes Interaction Perturbing the Cancer Risk in the Post-GWAS
Abstract
:Simple Summary
Abstract
1. Introduction
2. Functional Mechanisms of Coding Region SNPs
3. Functional Mechanisms of Non-Coding Region SNPs
3.1. Genetic Variants That Alter Promoters
3.2. Genetic Variants That Alter Enhancers
3.2.1. Breast Cancer
3.2.2. Prostate Cancer
3.2.3. Colorectal Cancer
3.3. Genetic Variants That Affect Promoter–Enhancer Interactions
3.4. Genetic Variants That Alter 3D Genome Architecture
3.5. Genetic Variants That Influence the Binding of miRNA
4. Bioinformatic Methods for SNP Functional Analysis
5. The Variables of Tumor Risk
6. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- CP, W.; E, W.; BW, S. World Cancer Report: Cancer Research for Cancer Prevention. ISBN 978-92-832-0447-3.
- Zheng, R.; Zhang, S.; Zeng, H.; Wang, S.; Sun, K.; Chen, R.; Li, L.; Wei, W.; He, J. Cancer incidence and mortality in China. J. Natl. Cancer Cent. 2022, 2, 1–9. [Google Scholar] [CrossRef]
- Turnbull, C.; Hodgson, S. Genetic predisposition to cancer. Clin. Med. 2005, 5, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, P.; Holm, N.V.; Verkasalo, P.K.; Iliadou, A.; Kaprio, J.; Koskenvuo, M.; Pukkala, E.; Skytthe, A.; Hemminki, K. Environmental and Heritable Factors in the Causation of Cancer—Analyses of Cohorts of Twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 2000, 343, 78–85. [Google Scholar] [CrossRef]
- Sud, A.; Kinnersley, B.; Houlston, R. Genome-wide association studies of cancer: Current insights and future perspectives. Nat. Cancer 2017, 17, 692–704. [Google Scholar] [CrossRef]
- Brookes, A.J. The essence of SNPs. Gene 1999, 234, 177–186. [Google Scholar] [CrossRef]
- Shastry, B.S. SNPs: Impact on Gene Function and Phenotype. In Single Nucleotide Polymorphisms: Methods and Protocols; Komar, A.A., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 3–22. [Google Scholar]
- Brown, T.A. Mutation, Repair and Recombination; Wiley-Liss: Hoboken, NJ, USA, 2002. [Google Scholar]
- Eeles, R.A.; The COGS–Cancer Research UK GWAS–ELLIPSE (part of GAME-ON) Initiative; Olama, A.A.A.; Benlloch, S.; Saunders, E.J.; Leongamornlert, D.; Tymrakiewicz, M.; Ghoussaini, M.; Luccarini, C.; Dennis, J.; et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat. Genet. 2013, 45, 385–391. [Google Scholar] [CrossRef]
- Amundadottir, L.; Sulem, P.; Gudmundsson, J.; Helgason, A.; Baker, A.; Agnarsson, B.A.; Sigurdsson, A.; Benediktsdottir, K.R.; Cazier, J.-B.; Sainz, J.; et al. A common variant associated with prostate cancer in European and African populations. Nat. Genet. 2006, 38, 652–658. [Google Scholar] [CrossRef]
- Eeles, A.R.; The UK Genetic Prostate Cancer Study Collaborators; Kote-Jarai, Z.; Giles, G.; Al Olama, A.A.; Guy, M.; Jugurnauth, S.K.; Mulholland, S.; Leongamornlert, D.; Edwards, S.M.; et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet. 2008, 40, 316–321. [Google Scholar] [CrossRef]
- Michailidou, K.; Beesley, J.; Lindstrom, S.; Canisius, S.; Dennis, J.; Lush, M.J.; Maranian, M.J.; Bolla, M.K.; Wang, Q.; Shah, M.; et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat. Genet. 2015, 47, 373–380. [Google Scholar] [CrossRef]
- Garcia-Closas, M.; Couch, F.J.; Lindstrom, S.; Michailidou, K.; Schmidt, M.K.; Brook, M.N.; Orr, N.; Rhie, S.K.; Riboli, E.; Buring, J.E.; et al. Genome-wide association studies identify four ER negative–specific breast cancer risk loci. Nat. Genet. 2013, 45, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Couch, F.J.; Kuchenbaecker, K.B.; Michailidou, K.; Mendoza-Fandino, G.A.; Nord, S.; Lilyquist, J.; Olswold, C.; Hallberg, E.; Agata, S.; Ahsan, H.; et al. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nat. Commun. 2016, 7, 11375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, P.J.; The PRACTICAL consortium; Timofeeva, M.; Fernandez-Rozadilla, C.; Broderick, P.; Studd, J.; Fernandez-Tajes, J.; Farrington, S.; Svinti, V.; Palles, C.; et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat. Commun. 2019, 10, 2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, C.; Matsuda, K.; Jia, W.-H.; Chang, J.; Kweon, S.-S.; Xiang, Y.-B.; Shin, A.; Jee, S.H.; Kim, D.-H.; Zhang, B.; et al. Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk. Gastroenterology 2016, 150, 1633–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Kweon, S.-S.; Tanikawa, C.; Jia, W.-H.; Xiang, Y.-B.; Cai, Q.; Zeng, C.; Schmit, S.L.; Shin, A.; Matsuo, K.; et al. Large-Scale Genome-Wide Association Study of East Asians Identifies Loci Associated with Risk for Colorectal Cancer. Gastroenterology 2019, 156, 1455–1466. [Google Scholar] [CrossRef] [Green Version]
- Schmit, S.L.; Edlund, C.K.; Schumacher, F.R.; Gong, J.; Harrison, T.A.; Huyghe, J.R.; Qu, C.; Melas, M.; Van Den Berg, D.J.; Wang, H.; et al. Novel Common Genetic Susceptibility Loci for Colorectal Cancer. J. Natl. Cancer Inst. 2019, 111, 146–157. [Google Scholar] [CrossRef]
- Hu, Z.; Wu, C.; Shi, Y.; Guo, H.; Zhao, X.; Yin, Z.; Yang, L.; Dai, J.; Hu, L.; Tan, W.; et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat. Genet. 2011, 43, 792–796. [Google Scholar] [CrossRef]
- Shiraishi, K.; Kunitoh, H.; Daigo, Y.; Takahashi, A.; Goto, K.; Sakamoto, H.; Ohnami, S.; Shimada, Y.; Ashikawa, K.; Saito, A.; et al. A genome-wide association study identifies two new susceptibility loci for lung adenocarcinoma in the Japanese population. Nat. Genet. 2012, 44, 900–903. [Google Scholar] [CrossRef]
- Dong, J.; Hu, Z.; Wu, C.; Guo, H.; Zhou, B.; Lv, J.; Lu, D.; Chen, K.; Shi, Y.; Chu, M.; et al. Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population. Nat. Genet. 2012, 44, 895–899. [Google Scholar] [CrossRef]
- Lan, Q.; Hsiung, C.A.; Matsuo, K.; Hong, Y.-C.; Seow, A.; Wang, Z.; Hosgood, H.D.; Chen, K.; Wang, J.-C.; Chatterjee, N.; et al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat. Genet. 2012, 44, 1330–1335. [Google Scholar] [CrossRef]
- Amos, C.I.; Wu, X.; Broderick, P.; Gorlov, I.P.; Gu, J.; Eisen, T.; Dong, Q.; Zhang, Q.; Gu, X.; Vijayakrishnan, J.; et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25. Nat. Genet. 2008, 40, 616–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Hu, Z.; Wu, C.; Dai, J.; Li, H.; Dong, J.; Wang, M.; Miao, X.; Zhou, Y.; Lu, F.; et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13. Nat. Genet. 2011, 43, 1215–1218. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Wang, Z.; Song, X.; Wei, L.; Kim, B.S.; Freedman, N.D.; Baek, J.; Burdette, L.; Chang, J.; Chung, C.; et al. Genome-wide association study of gastric adenocarcinoma in Asia: A comparison of associations between cardia and non-cardia tumours. Gut 2016, 65, 1611–1618. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dai, J.; Hu, N.; Miao, X.; Abnet, C.; Yang, M.; Freedman, N.D.; Chen, J.; Burdette, L.; Zhu, X.; et al. Identification of new susceptibility loci for gastric non-cardia adenocarcinoma: Pooled results from two Chinese genome-wide association studies. Gut 2017, 66, 581–587. [Google Scholar] [CrossRef]
- Yan, C.; Zhu, M.; Ding, Y.; Yang, M.; Wang, M.; Li, G.; Ren, C.; Huang, T.; Yang, W.; He, B.; et al. Meta-analysis of genome-wide association studies and functional assays decipher susceptibility genes for gastric cancer in Chinese populations. Gut 2020, 69, 641–651. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Sulem, P.; Gudbjartsson, D.; Masson, G.; Petursdottir, V.; Hardarson, S.; Gudjonsson, S.A.; Johannsdottir, H.; Helgadottir, H.; Stacey, S.N.; et al. A common variant at 8q24.21 is associated with renal cell cancer. Nat. Commun. 2013, 4, 2776. [Google Scholar] [CrossRef] [Green Version]
- Scelo, G.; Purdue, M.P.; Brown, K.M.; Johansson, M.; Wang, Z.; Eckel-Passow, J.E.; Ye, Y.; Hofmann, J.; Choi, J.; Foll, M.; et al. Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nat. Commun. 2017, 8, 15724. [Google Scholar] [CrossRef] [Green Version]
- Purdue, M.; Johansson, M.; Zelenika, D.; Toro, J.R.; Scelo, G.; Moore, L.E.; Prokhortchouk, E.; Wu, X.; Kiemeney, L.; Gaborieau, V.; et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13. Nat. Genet. 2011, 43, 60–65. [Google Scholar] [CrossRef]
- Pharoah, P.D.P.; Australian Cancer Study; Tsai, Y.-Y.; Ramus, S.; Phelan, C.M.; Goode, E.L.; Lawrenson, K.; Buckley, M.; Fridley, B.L.; Tyrer, J.P.; et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat. Genet. 2013, 45, 362–370. [Google Scholar] [CrossRef]
- Kuchenbaecker, K.B.; Ramus, S.J.; Tyrer, J.; Lee, A.; Shen, H.C.; Beesley, J.; Lawrenson, K.; McGuffog, L.; Healey, S.; Lee, J.M.; et al. Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nat. Genet. 2015, 47, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, J.; Thorleifsson, G.; Sigurdsson, J.K.; Stefansdottir, L.; Jonasson, J.G.; Gudjonsson, S.A.; Gudbjartsson, D.F.; Masson, G.; Johannsdottir, H.; Halldorsson, G.H.; et al. A genome-wide association study yields five novel thyroid cancer risk loci. Nat. Commun. 2017, 8, 14517. [Google Scholar] [CrossRef] [Green Version]
- Kinnersley, B.; Labussière, M.; Holroyd, A.; Di Stefano, A.-L.; Broderick, P.; Vijayakrishnan, J.; Mokhtari, K.; Delattre, J.-Y.; Gousias, K.; Schramm, J.; et al. Genome-wide association study identifies multiple susceptibility loci for glioma. Nat. Commun. 2015, 6, 8559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, D.T.; Demenais, F.; Iles, M.; Harland, M.; Taylor, J.C.; Corda, E.; Randerson-Moor, J.; Aitken, J.; Avril, M.-F.; Azizi, E.; et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat. Genet. 2009, 41, 920–925. [Google Scholar] [CrossRef]
- Genome-Wide Association Study Identifies Three New Melanoma Susceptibility Loci—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/21983787/ (accessed on 26 August 2022).
- Law, M.H.; Bishop, D.T.; Lee, J.E.; Brossard, M.; Martin, N.G.; Moses, E.K.; Song, F.; Barrett, J.H.; Kumar, R.; Easton, D.F.; et al. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nat. Genet. 2015, 47, 987–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, M.L.; Monteiro, A.N.A.; Gayther, S.A.; Coetzee, G.A.; Risch, A.; Plass, C.; Casey, G.; De Biasi, M.; Carlson, C.; Duggan, D.; et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nat. Genet. 2011, 43, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, S.L.; Beesley, J.; French, J.D.; Dunning, A.M. Beyond GWASs: Illuminating the Dark Road from Association to Function. Am. J. Hum. Genet. 2013, 93, 779–797. [Google Scholar] [CrossRef] [Green Version]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.H.; Shatkay, H. F-SNP: Computationally predicted functional SNPs for disease association studies. Nucleic Acids Res. 2008, 36, D820–D824. [Google Scholar] [CrossRef]
- Ritchie, G.R.; Flicek, P. Computational approaches to interpreting genomic sequence variation. Genome Med. 2014, 6, 1760. [Google Scholar] [CrossRef] [Green Version]
- Theodoratou, E.; Farrington, S.M.; Timofeeva, M.; Din, F.V.; Svinti, V.; Tenesa, A.; Liu, T.; Lindblom, A.; Gallinger, S.; Campbell, H.; et al. Genome-wide scan of the effect of common nsSNPs on colorectal cancer survival outcome. Br. J. Cancer 2018, 119, 988–993. [Google Scholar] [CrossRef]
- Timofeeva, M.N.; Kinnersley, B.; Farrington, S.M.; Whiffin, N.; Palles, C.; Svinti, V.; Lloyd, A.; Gorman, M.; Ooi, L.-Y.; Hosking, F.; et al. Recurrent Coding Sequence Variation Explains Only a Small Fraction of the Genetic Architecture of Colorectal Cancer. Sci. Rep. 2015, 5, 16286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; McKay, J.D.; Rafnar, T.; Wang, Z.; Timofeeva, M.N.; Broderick, P.; Zong, X.; Laplana, M.; Wei, Y.; Han, Y.; et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat. Genet. 2014, 46, 736–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michailidou, K.; The Breast and Ovarian Cancer Susceptibility Collaboration; Hall, P.; Gonzalez-Neira, A.; Ghoussaini, M.; Dennis, J.; Milne, R.L.; Schmidt, M.; Chang-Claude, J.; Bojesen, S.E.; et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 2013, 45, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Stacey, S.N.; Sulem, P.; Jonasdottir, A.; Masson, G.; Gudmundsson, J.; Gudbjartsson, D.F.; Magnusson, O.T.; Gudjonsson, S.A.; Sigurgeirsson, B.; Thorisdottir, K.; et al. A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat. Genet. 2011, 43, 1098–1103. [Google Scholar] [CrossRef]
- Enciso-Mora, V.; Hosking, F.J.; Di Stefano, A.L.; Zelenika, D.; Shete, S.; Broderick, P.; Idbaih, A.; Delattre, J.-Y.; Hoang-Xuan, K.; Marie, Y.; et al. Low penetrance susceptibility to glioma is caused by the TP53 variant rs. Br. J. Cancer 2013, 108, 2178–2185. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Chen, C.; Rao, M.; Zhang, M.; Lu, Z.; Cai, Y.; Ying, P.; Li, B.; Wang, H.; Wang, L.; et al. Aberrant RNA Splicing Is a Primary Link between Genetic Variation and Pancreatic Cancer Risk. Cancer Res. 2022, 82, 2084–2096. [Google Scholar] [CrossRef]
- Li, J.; Zou, L.; Zhou, Y.; Li, L.; Yang, Y.; Gong, Y.; Lou, J.; Ke, J.; Zhang, Y.; Tian, J.; et al. A low-frequency variant in SMAD7 modulates TGF-β signaling and confers risk for colorectal cancer in Chinese population. Mol. Carcinog. 2017, 56, 1798–1807. [Google Scholar] [CrossRef]
- Roundtree, I.A.; Evans, M.E.; Pan, T.; He, C. Dynamic RNA Modifications in Gene Expression Regulation. Cell 2017, 169, 1187–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frye, M.; Harada, B.T.; Behm, M.; He, C. RNA modifications modulate gene expression during development. Science 2018, 361, 1346–1349. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Liu, J.; He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015, 29, 1343–1355. [Google Scholar] [CrossRef]
- Tian, J.; Ying, P.; Ke, J.; Zhu, Y.; Yang, Y.; Gong, Y.; Zou, D.; Peng, X.; Yang, N.; Wang, X.; et al. ANKLE1N6-Methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability. Int. J. Cancer 2020, 146, 3281–3293. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Tian, J.; Yang, Y.; Zhong, R.; Li, J.; Zhai, K.; Ke, J.; Lou, J.; Chen, W.; Zhu, B.; et al. A Rare Missense Variant in TCF7L2 Associates with Colorectal Cancer Risk by Interacting with a GWAS-Identified Regulatory Variant in the MYC Enhancer. Cancer Res. 2018, 78, 5164–5172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurano, M.T.; Humbert, R.; Rynes, E.; Thurman, R.E.; Haugen, E.; Wang, H.; Reynolds, A.P.; Sandstrom, R.; Qu, H.; Brody, J.; et al. Systematic Localization of Common Disease-Associated Variation in Regulatory DNA. Science 2012, 337, 1190–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, G.-H.; Liu, D.-P.; Liang, C.-C. Charting gene regulatory networks: Strategies, challenges and perspectives. Biochem. J. 2004, 381, 1–12. [Google Scholar] [CrossRef]
- Wei, G.H.; Liu, D.P.; Liang, C.C. Chromatin domain boundaries: Insulators and beyond. Cell Res. 2005, 15, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Haberle, V.; Stark, A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat. Rev. Mol. Cell Biol. 2018, 19, 621–637. [Google Scholar] [CrossRef]
- Wu, S.; Meng, Q.; Zhang, C.; Sun, H.; Lu, R.; Gao, N.; Yang, H.; Li, X.; Aschner, M.; Chen, R. DR4 mediates the progression, invasion, metastasis and survival of colorectal cancer through the Sp1/NF1 switch axis on genomic locus. Int. J. Cancer 2018, 143, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Wu, S.; Wang, Y.; Xu, J.; Sun, H.; Lu, R.; Gao, N.; Yang, H.; Li, X.; Tang, B.; et al. MPO Promoter Polymorphism rs2333227 Enhances Malignant Phenotypes of Colorectal Cancer by Altering the Binding Affinity of AP-2α. Cancer Res. 2018, 78, 2760–2769. [Google Scholar] [CrossRef] [Green Version]
- Lou, H.; Yeager, M.; Li, H.; Bosquet, J.G.; Hayes, R.B.; Orr, N.; Yu, K.; Hutchinson, A.; Jacobs, K.B.; Kraft, P.; et al. Fine mapping and functional analysis of a common variant in MSMB on chromosome 10q11.2 associated with prostate cancer susceptibility. Proc. Natl. Acad. Sci. USA 2009, 106, 7933–7938. [Google Scholar] [CrossRef] [Green Version]
- Hua, J.T.; Ahmed, M.; Guo, H.; Zhang, Y.; Chen, S.; Soares, F.; Lu, J.; Zhou, S.; Wang, M.; Li, H.; et al. Risk SNP-Mediated Promoter-Enhancer Switching Drives Prostate Cancer through lncRNA PCAT. Cell 2018, 174, 564–575. [Google Scholar] [CrossRef]
- Bojesen, S.E.; Pooley, K.A.; Johnatty, S.E.; Beesley, J.; Michailidou, K.; Tyrer, J.P.; Edwards, S.L.; Pickett, H.A.; Shen, H.C.; Smart, C.E.; et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet. 2013, 45, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Michailidou, K.; Lindstrom, S.; Dennis, J.; Beesley, J.; Hui, S.; Kar, S.; Lemacon, A.; Soucy, P.; Glubb, D.; Rostamianfar, A.; et al. Association analysis identifies 65 new breast cancer risk loci. Nature 2017, 551, 92–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noncoding Genetic Variation in GATA3 Increases Acute Lymphoblastic Leukemia Risk through Local and Global Changes in Chromatin Conformation|Nature Genetics. Available online: https://www.nature.com/articles/s41588-021-00993-x (accessed on 11 October 2022).
- Williamson, I.; Hill, R.E.; Bickmore, W.A. Enhancers: From Developmental Genetics to the Genetics of Common Human Disease. Dev. Cell 2011, 21, 17–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Ruan, X.; Auerbach, R.K.; Sandhu, K.S.; Zheng, M.; Wang, P.; Poh, H.M.; Goh, Y.; Lim, J.; Zhang, J.; et al. Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation. Cell 2012, 148, 84–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sur, I.; Taipale, I.S.J. The role of enhancers in cancer. Nat. Cancer 2016, 16, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Chen, S.-A.A.; Local, A.; Liu, T.; Qiu, Y.; Dorighi, K.M.; Preissl, S.; Rivera, C.M.; Wang, C.; Ye, Z.; et al. Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res. 2018, 28, 204–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corradin, O.; Scacheri, P.C. Enhancer variants: Evaluating functions in common disease. Genome Med. 2014, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Ward, L.D.; Kellis, M. Interpreting noncoding genetic variation in complex traits and human disease. Nat. Biotechnol. 2012, 30, 1095–1106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, X.; Li, L.; Yang, Y.; Yang, J.; Wang, Y.; Wu, J.; Wu, X.; Shan, L.; Pei, F.; et al. SNP rs4971059 predisposes to breast carcinogenesis and chemoresistance via TRIM46-mediated HDAC1 degradation. EMBO J. 2021, 40, e107974. [Google Scholar] [CrossRef]
- Yang, H.; Ting, X.; Geng, Y.-H.; Xie, Y.; Nierenberg, J.L.; Huo, Y.-F.; Zhou, Y.-T.; Huang, Y.; Yu, Y.-Q.; Yu, X.-Y.; et al. The risk variant rs11836367 contributes to breast cancer onset and metastasis by attenuating Wnt signaling via regulating NTN4 expression. Sci. Adv. 2022, 8, eabn3509. [Google Scholar] [CrossRef]
- Tian, P.; Zhong, M.; Wei, G.-H. Mechanistic insights into genetic susceptibility to prostate cancer. Cancer Lett. 2021, 522, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Whitington, T.; Gao, P.; Lindberg, J.; Yang, Y.; Sun, J.; Väisänen, M.-R.; Szulkin, R.; Annala, M.; Yan, J.; et al. A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding. Nat. Genet. 2014, 46, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Xia, J.-H.; Sipeky, C.; Dong, X.-M.; Zhang, Q.; Yang, Y.; Zhang, P.; Cruz, S.P.; Zhang, K.; Zhu, J.; et al. Biology and Clinical Implications of the 19q13 Aggressive Prostate Cancer Susceptibility Locus. Cell 2018, 174, 576–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Lei, T.; Jin, G.; Guo, H.; Zhang, N.; Chai, J.; Xie, M.; Xu, Y.; Wang, T.; Liu, J.; et al. LncPSCA in the 8q24.3 risk locus drives gastric cancer through destabilizing DDX. EMBO Rep. 2021, 22, e52707. [Google Scholar] [CrossRef] [PubMed]
- Hepatocellular Carcinoma Risk Variant Modulates lncRNA HLA-DQB1-AS1 Expression via a Long-Range Enhancer–Promoter Interaction|Carcinogenesis|Oxford Academic. Available online: https://academic.oup.com/carcin/article/42/11/1347/ (accessed on 25 August 2022).
- Schödel, J.; Bardella, C.; Sciesielski, L.; Brown, J.M.; Pugh, C.; Buckle, V.; Tomlinson, I.P.; Ratcliffe, P.; Mole, D.R. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat. Genet. 2012, 44, 420–425. [Google Scholar] [CrossRef]
- Yu, C.-Y.; Han, J.-X.; Zhang, J.; Jiang, P.; Shen, C.; Guo, F.; Tang, J.; Yan, T.; Tian, X.; Zhu, X.; et al. A 16q22.1 variant confers susceptibility to colorectal cancer as a distal regulator of ZFP. Oncogene 2020, 39, 1347–1360. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Chang, J.; Gong, J.; Lou, J.; Fu, M.; Li, J.; Ke, J.; Zhu, Y.; Gong, Y.; Yang, Y.; et al. Systematic Functional Interrogation of Genes in GWAS Loci Identified ATF1 as a Key Driver in Colorectal Cancer Modulated by a Promoter-Enhancer Interaction. Am. J. Hum. Genet. 2019, 105, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Lou, J.; Cai, Y.; Rao, M.; Lu, Z.; Zhu, Y.; Zou, D.; Peng, X.; Wang, H.; Zhang, M.; et al. Risk SNP-Mediated Enhancer–Promoter Interaction Drives Colorectal Cancer through Both FADS2 and AP002754. Cancer Res. 2020, 80, 1804–1818. [Google Scholar] [CrossRef] [Green Version]
- Capturing Chromosome Conformation|Science. Available online: https://www.science.org/doi/10.1126/science.1067799?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (accessed on 25 August 2022).
- Tolhuis, B.; Palstra, R.-J.; Splinter, E.; Grosveld, F.; de Laat, W. Looping and Interaction between Hypersensitive Sites in the Active β-globin Locus. Mol. Cell 2002, 10, 1453–1465. [Google Scholar] [CrossRef]
- Giambartolomei, C.; Seo, J.-H.; Schwarz, T.; Freund, M.K.; Johnson, R.D.; Spisak, S.; Baca, S.C.; Gusev, A.; Mancuso, N.; Pasaniuc, B.; et al. H3K27ac HiChIP in prostate cell lines identifies risk genes for prostate cancer susceptibility. Am. J. Hum. Genet. 2021, 108, 2284–2300. [Google Scholar] [CrossRef]
- Zhu, Y.; Gujar, A.D.; Wong, C.-H.; Tjong, H.; Ngan, C.Y.; Gong, L.; Chen, Y.-A.; Kim, H.; Liu, J.; Li, M.; et al. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell 2021, 39, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 2019, 20, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Gorkin, D.U.; Leung, D.; Ren, B. The 3D Genome in Transcriptional Regulation and Pluripotency. Cell Stem Cell 2014, 14, 762–775. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Li, W.; Liyanarachchi, S.; Srinivas, M.; Wang, Y.; Akagi, K.; Wang, Y.; Wu, D.; Wang, Q.; Jin, V.; et al. Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proc. Natl. Acad. Sci. USA 2015, 112, 6128–6133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Cowper-Sal·lari, R.; Bailey, S.D.; Moore, J.H.; Lupien, M. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res. 2012, 22, 1437–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, J.Q.; Li, T.; Hu, J.F.; Vu, T.H.; Chen, H.L.; Qiu, X.W.; Cherry, A.M.; Hoffman, A.R. CTCF Mediates Interchromosomal Colocalization Between Igf2/H19 and Wsb1/Nf1. Science 2006, 312, 269–272. [Google Scholar] [CrossRef]
- Insulators: Exploiting Transcriptional and Epigenetic Mechanisms|Nature Reviews Genetics. Available online: https://www.nature.com/articles/nrg (accessed on 26 August 2022).
- Yusufzai, T.M.; Tagami, H.; Nakatani, Y.; Felsenfeld, G. CTCF Tethers an Insulator to Subnuclear Sites, Suggesting Shared Insulator Mechanisms across Species. Mol. Cell 2004, 13, 291–298. [Google Scholar] [CrossRef]
- Ahmed, M.; Soares, F.; Xia, J.-H.; Yang, Y.; Li, J.; Guo, H.; Su, P.; Tian, Y.; Lee, H.J.; Wang, M.; et al. CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nat. Commun. 2021, 12, 1781. [Google Scholar] [CrossRef]
- Statkiewicz, M.; Maryan, N.; Kulecka, M.; Kuklinska, U.; Ostrowski, J.; Mikula, M.; Czyżowska, A.; Barbasz, A. Functional analyses of a low-penetrance risk variant rs6702619/1p21.2 associating with colorectal cancer in Polish population. Acta Biochim. Pol. 2019, 66, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Claussnitzer, M.; Cho, J.H.; Collins, R.; Cox, N.J.; Dermitzakis, E.T.; Hurles, M.E.; Kathiresan, S.; Kenny, E.E.; Lindgren, C.M.; MacArthur, D.G.; et al. A brief history of human disease genetics. Nature 2020, 577, 179–189. [Google Scholar] [CrossRef]
- Rahman, M.A.; Krainer, A.R.; Abdel-Wahab, O. SnapShot: Splicing Alterations in Cancer. Cell 2020, 180, 208–208.e1. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Esquela-Kerscher, A.; Slack, F. Oncomirs—MicroRNAs with a role in cancer. Nat. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.E.; Zheng, T.; Yi, C.; Leaderer, D.; Weidhaas, J.; Slack, F.; Zhang, Y.; Paranjape, T.; Zhu, Y. microRNA miR-196a-2 and Breast Cancer: A Genetic and Epigenetic Association Study and Functional Analysis. Cancer Res. 2009, 69, 5970–5977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Jiang, Y.; Zhou, J.; Liu, S.; Qin, N.; Du, J.; Jin, G.; Hu, Z.; Ma, H.; Shen, H.; et al. Evaluation of CpG-SNPs in miRNA promoters and risk of breast cancer. Gene 2018, 651, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Xiong, X.; Pan, W.; Yang, X.; Zhou, C.; Yuan, Q.; Zhou, L.; Yang, M. A Regulatory MDM4 Genetic Variant Locating in the Binding Sequence of Multiple MicroRNAs Contributes to Susceptibility of Small Cell Lung Cancer. PLoS ONE 2015, 10, e0135647. [Google Scholar] [CrossRef]
- Wu, X.-M.; Yang, H.-G.; Zheng, B.-A.; Cao, H.-F.; Hu, Z.-M.; Wu, W.-D. Functional Genetic Variations at the microRNA Binding-Site in the CD44 Gene Are Associated with Risk of Colorectal Cancer in Chinese Populations. PLoS ONE 2015, 10, e0127557. [Google Scholar] [CrossRef] [Green Version]
- Ke, J.; Tian, J.; Li, J.; Gong, Y.; Yang, Y.; Zhu, Y.; Zhang, Y.; Zhong, R.; Chang, J.; Gong, J. Identification of a Functional Polymorphism Affecting Microrna Binding in the Susceptibility Locus 1q25.3 for Colorectal Cancer. Wiley Online Library, 2021. Available online: https://onlinelibrary.wiley.com/doi.org/10.1002/mc.22649 (accessed on 26 August 2022).
- Shen, C.; Yan, T.; Wang, Z.; Su, H.-C.; Zhu, X.; Tian, X.; Fang, J.-Y.; Chen, H.; Hong, J. Variant of SNP rs1317082 at CCSlnc362 (RP11-362K14.5) creates a binding site for miR-4658 and diminishes the susceptibility to CRC. Cell Death Dis. 2018, 9, 1177. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Feng, N.; Zhu, T.; Li, Q.; Zhang, Q.; Wang, Y.; Gao, M.; Zhou, B.; Yu, H.; Zheng, M.; et al. A SNP-mediated lncRNA (LOC146880) and microRNA (miR-539-5p) interaction and its potential impact on the NSCLC risk. J. Exp. Clin. Cancer Res. 2020, 39, 157. [Google Scholar] [CrossRef]
- Wang, J.; Zou, Y.; Du, B.; Li, W.; Yu, G.; Li, L.; Zhou, L.; Gu, X.; Song, S.; Liu, Y.; et al. SNP-mediated lncRNA-ENTPD3-AS1 upregulation suppresses renal cell carcinoma via miR-155/HIF-1α signaling. Cell Death Dis. 2021, 12, 672. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Cui, J.; Yang, G.; Peng, S.; Mi, W.; Yin, X.; Yu, Y.; Jiang, J.; Liu, Q.; et al. SNP rs12982687 affects binding capacity of lncRNA UCA1 with miR-873-5p: Involvement in smoking-triggered colorectal cancer progression. Cell Commun. Signal. 2020, 18, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.; Zhou, M.; Li, Y.; Tian, T.; Sun, X.; Chen, M.; Xu, W.; Lu, M. Risk SNP-mediated LINC01614 upregulation drives head and neck squamous cell carcinoma progression via PI3K/AKT signaling pathway. Mol. Carcinog. 2022, 61, 797–811. [Google Scholar] [CrossRef]
- The International HapMap Consortium A haplotype map of the human genome. Nature 2005, 437, 1299–1320. [CrossRef] [PubMed] [Green Version]
- The 1000 Genomes Project Consortium A map of human genome variation from population-scale sequencing. Nature 2010, 467, 1061–1073. [CrossRef] [Green Version]
- Lander, E.S. Initial impact of the sequencing of the human genome. Nature 2011, 470, 187–197. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Martin, F.J.; Amode, M.R.; Aneja, A.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Flicek, P. Ensembl. Nucleic Acids. Res. 2022, gkac958. [Google Scholar] [CrossRef]
- McLaren, W.; Pritchard, B.; Rios, D.; Chen, Y.; Flicek, P.; Cunningham, F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 2010, 26, 2069–2070. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.H.; Lichtenstein, L.; Gupta, M.; Lawrence, M.S.; Pugh, T.J.; Saksena, G.; Meyerson, M.; Getz, G. Oncotator: Cancer Variant Annotation Tool. Hum. Mutat. 2015, 36, E2423–E2429. [Google Scholar] [CrossRef]
- Pan-Cancer Analysis Demonstrates that Integrating Polygenic Risk Scores with Modifiable Risk Factors Improves Risk Prediction|Nature Communications. Available online: https://www.nature.com/articles/s41467-020-19600- (accessed on 3 November 2022).
- Schottenfeld, D.; Beebe-Dimmer, J.L.; Buffler, P.A.; Omenn, G.S. Current Perspective on the Global and United States Cancer Burden Attributable to Lifestyle and Environmental Risk Factors. Annu. Rev. Public Health 2013, 34, 97–117. [Google Scholar] [CrossRef]
- Im, P.K.; Millwood, I.Y.; Kartsonaki, C.; Guo, Y.; Chen, Y.; Turnbull, I.; Yu, C.; Du, H.; Pei, P.; Lv, J.; et al. Alcohol drinking and risks of liver cancer and non-neoplastic chronic liver diseases in China: A 10-year prospective study of 0.5 million adults. BMC Med. 2021, 19, 216. [Google Scholar] [CrossRef] [PubMed]
- Dam, M.K.; Hvidtfeldt, U.A.; Tjonneland, A.; Overvad, K.; Grønbæk, M.K.; Tolstrup, J. Five year change in alcohol intake and risk of breast cancer and coronary heart disease among postmenopausal women: Prospective cohort study. BMJ 2016, 353, i2314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loftfield, E.; Stepien, M.; Viallon, V.; Trijsburg, L.; Rothwell, J.A.; Robinot, N.; Biessy, C.; Bergdahl, I.A.; Bodén, S.; Schulze, M.B.; et al. Novel Biomarkers of Habitual Alcohol Intake and Associations with Risk of Pancreatic and Liver Cancers and Liver Disease Mortality. JNCI J. Natl. Cancer Inst. 2021, 113, 1542–1550. [Google Scholar] [CrossRef] [PubMed]
- Mayén, A.-L.; Viallon, V.; Botteri, E.; Proust-Lima, C.; Bagnardi, V.; Batista, V.; Cross, A.J.; Laouali, N.; MacDonald, C.J.; Severi, G.; et al. A longitudinal evaluation of alcohol intake throughout adulthood and colorectal cancer risk. Eur. J. Epidemiol. 2022, 37, 915–929. [Google Scholar] [CrossRef] [PubMed]
- Key, T.J.; Reeves, G.K. Alcohol, Diet, and Risk of Breast Cancer—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/27170004/ (accessed on 7 November 2022).
- Boffetta, P.; Hashibe, M. Alcohol and Cancer. Lancet Oncol. 2006, 7, 149–156. [Google Scholar] [CrossRef]
- Gomella, L.G. Prostate Cancer: Alcohol, Cancer and 5α-Reductase Inhibitors-Is There a Link? Nat. Rev. Urol 2014, 11, 253–254. [Google Scholar] [CrossRef]
- Kuper, H.; Boffetta, P.; Adami, H. Tobacco Use and Cancer Causation: Association by Tumour Type. J. Intern. Med. 2002, 252. [Google Scholar] [CrossRef] [Green Version]
- Hecht, S.S.; Hatsukami, D.K. Smokeless Tobacco and Cigarette Smoking: Chemical Mechanisms and Cancer Prevention. Nat. Rev. Cancer 2022, 22, 143–155. [Google Scholar] [CrossRef]
- Malhotra, J.; Malvezzi, M.; Negri, E.; Vecchia, C.L.; Boffetta, P. Risk Factors for Lung Cancer Worldwide. Eur. Respir. J. 2016, 48, 889–902. [Google Scholar] [CrossRef] [Green Version]
- Little, M.P.; Wakeford, R.; Zablotska, L.B.; Borrego, D.; Griffin, K.T.; Allodji, R.S.; de Vathaire, F.; Lee, C.; Brenner, A.V.; Miller, J.S.; et al. Lymphoma and Multiple Myeloma in Cohorts of Persons Exposed to Ionising Radiation at a Young Age. Leukemia 2021, 35, 2906–2916. [Google Scholar] [CrossRef]
- Grady, W.M.; Russell, K. Ionizing Radiation and Rectal Cancer: Victims of Our Own Success. Gastroenterology 2005, 128, 1114–1117. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Trabert, B. Adolescent and Adult Risk Factors for Testicular Cancer. Nat. rev. Urol. 2012, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiller, T.W.R.; O’Sullivan, D.E.; Brenner, D.R.; Peters, C.E.; King, W.D. Solar Ultraviolet Radiation and Breast Cancer Risk: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2020, 128, 16002. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Yu, Y.; Li, S.; Huang, Y.; Xu, D.; Tao, X.; Fan, Y. Ultraviolet Radiation and Basal Cell Carcinoma: An Environmental Perspective. Front. Public Health 2021, 9, 666528. [Google Scholar] [CrossRef]
- Iyengar, N.M.; Gucalp, A.; Dannenberg, A.J.; Hudis, C.A. Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation. J. Clin. Oncol. 2016, 34, 4270–4276. [Google Scholar] [CrossRef]
- Avgerinos, K.I.; Spyrou, N.; Mantzoros, C.S.; Dalamaga, M. Obesity and Cancer Risk: Emerging Biological Mechanisms and Perspectives—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/30445141/ (accessed on 7 November 2022).
- Bardou, M.; Barkun, A.N.; Martel, M. Obesity and Colorectal Cancer. Gut 2013, 62, 933–947. [Google Scholar] [CrossRef] [Green Version]
- Lega, I.C.; Lipscombe, L.L. Review: Diabetes, Obesity, and Cancer-Pathophysiology and Clinical Implications. Endocr. Rev. 2020, 41, bnz014. [Google Scholar] [CrossRef]
- Shibata, T.; Lieblong, B.J.; Sasagawa, T.; Nakagawa, M. The Promise of Combining Cancer Vaccine and Checkpoint Blockade for Treating HPV-Related Cancer. Cancer Treat. Rev. 2019, 78, 8–16. [Google Scholar] [CrossRef]
- Leemans, C.R.; Braakhuis, B.J.M.; Brakenhoff, R.H. The Molecular Biology of Head and Neck Cancer. Nat. Rev. Cancer 2011, 11, 9–22. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Engels, E.A.; Pfeiffer, R.M.; Hernandez, B.Y.; Xiao, W.; Kim, E.; Jiang, B.; Goodman, M.T.; Sibug-Saber, M.; Cozen, W.; et al. Human Papillomavirus and Rising Oropharyngeal Cancer Incidence in the United States—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/21969503/ (accessed on 7 November 2022).
- Levrero, M.; Zucman-Rossi, J. Mechanisms of HBV-Induced Hepatocellular Carcinoma. J. Hepatol. 2016, 64, S84–S101. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. 1), 4–13. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.-H. EBV and Human Cancer. Exp. Mol. Med. 2015, 47, e130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Zhang, Y.; Dai, S.; Zhou, P.; Luo, W.; Wang, Z.; Chen, X.; Cheng, P.; Zheng, G.; Ren, J.; et al. Molecular Characteristics of Primary Pulmonary Lymphoepithelioma-like Carcinoma Based on Integrated Genomic Analyses. Signal Transduct Target Ther. 2021, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.G.; Young, L.S. An Etiological Role for the Epstein-Barr Virus in the Pathogenesis of Classical Hodgkin Lymphoma. Blood 2019, 134, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Raderer, M.; Kiesewetter, B.; Ferreri, A.J.M. Clinicopathologic Characteristics and Treatment of Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue (MALT Lymphoma). CA Cancer J. Clin. 2016, 66, 153–171. [Google Scholar] [CrossRef]
- Kao, Y.-S.; Chen, C.-W.; Wei, J.C.-C. Helicobacter Pylori Infection and Risk of Gastric Cancer. Lancet Public Health 2022, 7, e302. [Google Scholar] [CrossRef]
- Yang, L.; Kartsonaki, C.; Yao, P.; de Martel, C.; Plummer, M.; Chapman, D.; Guo, Y.; Clark, S.; Walters, R.G.; Chen, Y.; et al. The Relative and Attributable Risks of Cardia and Non-Cardia Gastric Cancer Associated with Helicobacter Pylori Infection in China: A Case-Cohort Study. Lancet Public Health 2021, 6, e888–e896. [Google Scholar] [CrossRef]
- Würtz, E.T.; Hansen, J.; Røe, O.D.; Omland, Ø. Asbestos Exposure and Haematological Malignancies: A Danish Cohort Study. Eur. J. Epidemiol. 2020, 35, 949–960. [Google Scholar] [CrossRef] [Green Version]
- Pelucchi, C.; La Vecchia, C.; Bosetti, C.; Boyle, P.; Boffetta, P. Exposure to Acrylamide and Human Cancer--a Review and Meta-Analysis of Epidemiologic Studies. Ann. Oncol. 2011, 22, 1487–1499. [Google Scholar] [CrossRef]
- Li, P.; Deng, S.-S.; Wang, J.-B.; Iwata, A.; Qiao, Y.-L.; Dai, X.-B.; Boffetta, P. Occupational and Environmental Cancer Incidence and Mortality in China. Occup Med 2012, 62, 281–287. [Google Scholar] [CrossRef]
- Bosetti, C.; Boffetta, P.; La Vecchia, C. Occupational Exposures to Polycyclic Aromatic Hydrocarbons, and Respiratory and Urinary Tract Cancers: A Quantitative Review to 2005. Ann. Oncol. 2007, 18, 431–446. [Google Scholar] [CrossRef] [PubMed]
Cancer-Risk Factors | Cancer Site | References |
---|---|---|
Environmental Exposure | - | |
Alcohol | Oral cavity, oropharynx, and hypopharynx; larynx; esophagus; liver; colon and rectum; and female breast | [121,122,123,124,125,126,127] |
Smoking | Lung and bronchus, pancreas, stomach, liver, myeloid leukemia | [120,128,129,130] |
Ionizing Radiation | Chronic lymphocytic leukemia, Hodgkin lymphoma, malignant melanoma, uterine cervical cancer, testicular cancer, and rectal cancer | [120,131,132,133] |
Solar Radiation | Cutaneous squamous cell carcinoma; cutaneous and ocular melanoma and basal cell carcinoma | [120,134,135] |
Obesity | Stomach; colorectal; breast; endometrial; kidney | [136,137,138,139] |
Infectious Agents | - | |
HPV | Uterine cervix, oropharyngeal, anogenital | [140,141,142] |
HBV/HCV | Liver | [143,144] |
EBV | Lymphoid tissues; Epithelial tissues; nasopharynx | [120,145,146,147] |
Helicobacter pylori | Stomach; B-cell MALT lymphoma | [148,149,150] |
Occupational Exposure | Urinary bladder, bone marrow (leukemia), lung, pleura/peritoneum (mesothelioma), nasal sinus, and liver (angiosarcoma) | [151,152,153,154] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Zhang, T.; Song, X.; Dong, G.; Xu, L.; Jiang, F. SNP-Target Genes Interaction Perturbing the Cancer Risk in the Post-GWAS. Cancers 2022, 14, 5636. https://doi.org/10.3390/cancers14225636
Yang W, Zhang T, Song X, Dong G, Xu L, Jiang F. SNP-Target Genes Interaction Perturbing the Cancer Risk in the Post-GWAS. Cancers. 2022; 14(22):5636. https://doi.org/10.3390/cancers14225636
Chicago/Turabian StyleYang, Wenmin, Te Zhang, Xuming Song, Gaochao Dong, Lin Xu, and Feng Jiang. 2022. "SNP-Target Genes Interaction Perturbing the Cancer Risk in the Post-GWAS" Cancers 14, no. 22: 5636. https://doi.org/10.3390/cancers14225636
APA StyleYang, W., Zhang, T., Song, X., Dong, G., Xu, L., & Jiang, F. (2022). SNP-Target Genes Interaction Perturbing the Cancer Risk in the Post-GWAS. Cancers, 14(22), 5636. https://doi.org/10.3390/cancers14225636