The Association between Infectious Mononucleosis and Cancer: A Cohort Study of 24,190 Outpatients in Germany
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Database
2.2. Study Spopulation
2.3. Study Outcomes and Statistical Analyses
3. Results
3.1. Basic Characteristics of the Study Sample
3.2. Association between Infectious Mononucleosis and the Development of Cancer
3.3. Association between Infectious Mononucleosis and Different Cancer Entities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.L.M.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Tomorrow; International Agency for Research on Cancer: Lyon, France, 2020; Available online: https://gco.iarc.fr/tomorrow (accessed on 20 September 2022).
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Epstein-Barr Virus and Kaposi’s Sarcoma Herpesvirus/Human Herpesvirus 8. Lyon (FR): International Agency for Research on Cancer; 1997. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 70). Available online: https://www.ncbi.nlm.nih.gov/books/NBK385507/ (accessed on 15 November 2022).
- De Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef] [Green Version]
- Dunmire, S.K.; Verghese, P.S.; Balfour, H.H., Jr. Primary Epstein-Barr virus infection. J. Clin. Virol. 2018, 102, 84–92. [Google Scholar] [CrossRef]
- Khan, G.; Fitzmaurice, C.; Naghavi, M.; Ahmed, L.A. Global and regional incidence, mortality and disability-adjusted life-years for Epstein-Barr virus-attributable malignancies, 1990–2017. BMJ Open 2020, 10, e037505. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Rathmann, W.; Bongaerts, B.; Carius, H.J.; Kruppert, S.; Kostev, K. Basic characteristics and representativeness of the German Disease Analyzer database. Int. J. Clin. Pharmacol. Ther. 2018, 56, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Kap, E.J.; Konrad, M.; Kostev, K. Clinical characteristics and sick leave associated with infectious mononucleosis in a real-world setting in Germany. Int. J. Clin. Pract. 2021, 75, e14690. [Google Scholar] [CrossRef]
- Loosen, S.H.; Doege, C.; Meuth, S.G.; Luedde, T.; Kostev, K.; Roderburg, C. Infectious mononucleosis is associated with an increased incidence of multiple sclerosis: Results from a cohort study of 32,116 outpatients in Germany. Front. Immunol. 2022, 13, 937583. [Google Scholar] [CrossRef]
- Miller, R.W.; Beebe, G.W. Infectious mononucleosis and the empirical risk of cancer. J. Natl. Cancer Inst. 1973, 50, 315–321. [Google Scholar] [CrossRef]
- Hjalgrim, H.; Askling, J.; Sørensen, P.; Madsen, M.; Rosdahl, N.; Storm, H.H.; Hamilton-Dutoit, S.; Eriksen, L.S.; Frisch, M.; Ekbom, A.; et al. Risk of Hodgkin’s disease and other cancers after infectious mononucleosis. J. Natl. Cancer Inst. 2000, 92, 1522–1528. [Google Scholar] [CrossRef] [Green Version]
- Alexander, F.E.; Jarrett, R.F.; Lawrence, D.; Armstrong, A.A.; Freeland, J.; Gokhale, D.A.; Kane, E.; Taylor, G.M.; Wright, D.H.; Cartwright, R.A. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: Prior infection by EBV and other agents. Br. J. Cancer 2000, 82, 1117–1121. [Google Scholar] [CrossRef]
- Carter, C.D.; Brown, T.M., Jr.; Herbert, J.T.; Heath, C.W., Jr. Cancer incidence following infectious mononucleosis. Am. J. Epidemiol. 1977, 105, 30–36. [Google Scholar] [CrossRef]
- Connelly, R.R.; Christine, B.W. A cohort study of cancer following infectious mononucleosis. Cancer Res. 1974, 34, 1172–1178. [Google Scholar] [PubMed]
- Rosdahl, N.; Larsen, S.O.; Clemmesen, J. Hodgkin’s disease in patients with previous infectious mononucleosis: 30 years’ experience. Br. Med. J. 1974, 2, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, N.; Davidson, R.J.; Witthoff, B.; Ericsson, J.E.; De-Thé, G. Infectious mononucleosis and Hodgkin’s disease. Int. J. Cancer 1978, 22, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Kvåle, G.; Høiby, E.A.; Pedersen, E. Hodgkin’s disease in patients with previous infectious mononucleosis. Int. J. Cancer 1979, 23, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Gutensohn, N.; Cole, P. Childhood social environment and Hodgkin’s disease. New Engl. J. Med. 1981, 304, 135–140. [Google Scholar] [CrossRef]
- Glaser, S.L.; Jarrett, R.F. The epidemiology of Hodgkin’s disease. Baillieres Clin. Haematol. 1996, 9, 401–416. [Google Scholar] [CrossRef]
- Pallesen, G.; Hamilton-Dutoit, S.J.; Rowe, M.; Young, L.S. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet 1991, 337, 320–322. [Google Scholar] [CrossRef]
- Weiss, L.M.; Strickler, J.G.; Warnke, R.A.; Purtilo, D.T.; Sklar, J. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am. J. Pathol. 1987, 129, 86–91. [Google Scholar]
- Mueller, N.E. Hodgkin’s disease. In Cancer Epidemiology and Prevention, 2nd ed.; Schottenfeld, D., Fraumeni, J.J., Eds.; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Ahmed, K.; Sheikh, A.; Fatima, S.; Haider, G.; Ghias, K.; Abbas, F.; Mughal, N.; Abidi, S.H. Detection and characterization of latency stage of EBV and histopathological analysis of prostatic adenocarcinoma tissues. Sci. Rep. 2022, 12, 10399. [Google Scholar] [CrossRef]
- Tsao, S.W.; Tsang, C.M.; Lo, K.W. Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2017, 372, 20160270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naseem, M.; Barzi, A.; Brezden-Masley, C.; Puccini, A.; Berger, M.D.; Tokunaga, R.; Battaglin, F.; Soni, S.; McSkane, M.; Zhang, W.; et al. Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat. Rev. 2018, 66, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.C.; Blanco, R.; Corvalán, A.H.; Muñoz, J.P.; Calaf, G.M.; Aguayo, F. Epstein-Barr Virus Infection in Lung Cancer: Insights and Perspectives. Pathogens 2022, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Becnel, D.; Abdelghani, R.; Nanbo, A.; Avilala, J.; Kahn, J.; Li, L.; Lin, Z. Pathogenic Role of Epstein-Barr Virus in Lung Cancers. Viruses 2021, 13, 877. [Google Scholar] [CrossRef]
- Akahori, H.; Takeshita, Y.; Saito, R.; Kaneko, S.; Takamura, T. Graves’ disease associated with infectious mononucleosis due to primary Epstein-Barr virus infection: Report of 3 cases. Intern. Med. 2010, 49, 2599–2603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janegova, A.; Janega, P.; Rychly, B.; Kuracinova, K.; Babal, P. The role of Epstein-Barr virus infection in the development of autoimmune thyroid diseases. Endokrynol. Pol. 2015, 66, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Finkel, M.; Parker, G.W.; Fanselau, H.A. The Hepatitis of Infectious Mononucleosis: Experience with 235 cases. Mil. Med. 1964, 129, 533–538. [Google Scholar] [CrossRef]
- Ebell, M.H. Epstein-Barr virus infectious mononucleosis. Am. Fam. Physician 2004, 70, 1279–1287. [Google Scholar]
- Kofteridis, D.P.; Koulentaki, M.; Valachis, A.; Christofaki, M.; Mazokopakis, E.; Papazoglou, G.; Samonis, G. Epstein Barr virus hepatitis. Eur. J. Intern. Med. 2011, 22, 73–76. [Google Scholar] [CrossRef]
- Crawford, D.H.; Macsween, K.F.; Higgins, C.D.; Thomas, R.; McAulay, K.; Williams, H.; Harrison, N.; Reid, S.; Conacher, M.; Douglas, J.; et al. A cohort study among university students: Identification of risk factors for Epstein-Barr virus seroconversion and infectious mononucleosis. Clin. Infect. Dis. 2006, 43, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Walther, L.E.; Ilgner, J.; Oehme, A.; Schmidt, P.; Sellhaus, B.; Gudziol, H.; Beleites, E.; Westhofen, M. Infectious mononucleosis. Hno 2005, 53, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Rickinson, A.B.; Kieff, E. Epstein-Barr virus and its replication. In Field’s Virology; Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A., Martin, M.A., Roizman, B., Straus, S.E., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 2603–2654. [Google Scholar]
- Chang, C.M.; Yu, K.J.; Mbulaiteye, S.M.; Hildesheim, A.; Bhatia, K. The extent of genetic diversity of Epstein-Barr virus and its geographic and disease patterns: A need for reappraisal. Virus Res. 2009, 143, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.H.; Lin, X.; Shumilov, A.; Bernhardt, K.; Feederle, R.; Poirey, R.; Kopp-Schneider, A.; Pereira, B.; Almeida, R.; Delecluse, H.J. The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers. Oncotarget 2017, 8, 10238–10254. [Google Scholar] [CrossRef] [Green Version]
- Delecluse, H.J.; Feederle, R.; O’Sullivan, B.; Taniere, P. Epstein Barr virus-associated tumours: An update for the attention of the working pathologist. J. Clin. Pathol. 2007, 60, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Young, L.S.; Yap, L.F.; Murray, P.G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer 2016, 16, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Shannon-Lowe, C.; Rickinson, A. The Global Landscape of EBV-Associated Tumors. Front. Oncol. 2019, 9, 713. [Google Scholar] [CrossRef] [Green Version]
- Palser, A.L.; Grayson, N.E.; White, R.E.; Corton, C.; Correia, S.; Ba Abdullah, M.M.; Watson, S.J.; Cotten, M.; Arrand, J.R.; Murray, P.G.; et al. Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. J. Virol. 2015, 89, 5222–5237. [Google Scholar] [CrossRef] [Green Version]
- Feederle, R.; Klinke, O.; Kutikhin, A.; Poirey, R.; Tsai, M.H.; Delecluse, H.J. Epstein-Barr Virus: From the Detection of Sequence Polymorphisms to the Recognition of Viral Types. Curr. Top. Microbiol. Immunol. 2015, 390, 119–148. [Google Scholar] [CrossRef]
- Hsu, W.L.; Chen, J.Y.; Chien, Y.C.; Liu, M.Y.; You, S.L.; Hsu, M.M.; Yang, C.S.; Chen, C.J. Independent effect of EBV and cigarette smoking on nasopharyngeal carcinoma: A 20-year follow-up study on 9622 males without family history in Taiwan. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1218–1226. [Google Scholar] [CrossRef] [Green Version]
- Thorley-Lawson, D.A.; Allday, M.J. The curious case of the tumour virus: 50 years of Burkitt’s lymphoma. Nat. Rev. Microbiol. 2008, 6, 913–924. [Google Scholar] [CrossRef]
- Lu, S.J.; Day, N.E.; Degos, L.; Lepage, V.; Wang, P.C.; Chan, S.H.; Simons, M.; McKnight, B.; Easton, D.; Zeng, Y.; et al. Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature 1990, 346, 470–471. [Google Scholar] [CrossRef]
- Boye, H.; Rønne, M. Low cost internegatives from electron micrographs of metal shadowed objects. J. Microsc. 1978, 112, 353–358. [Google Scholar] [CrossRef]
- Young, K.A.; Chen, X.S.; Holers, V.M.; Hannan, J.P. Isolating the Epstein-Barr virus gp350/220 binding site on complement receptor type 2 (CR2/CD21). J. Biol. Chem. 2007, 282, 36614–36625. [Google Scholar] [CrossRef] [Green Version]
- Hutt-Fletcher, L.M. Epstein-Barr virus entry. J. Virol. 2007, 81, 7825–7832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, F.; Neugebauer, J.; Griese, J.; Liefold, N.; Kutz, H.; Briseño, C.; Kieser, A. The viral oncoprotein LMP1 exploits TRADD for signaling by masking its apoptotic activity. PLoS Biol. 2008, 6, e8. [Google Scholar] [CrossRef] [PubMed]
- Choy, E.Y.; Siu, K.L.; Kok, K.H.; Lung, R.W.; Tsang, C.M.; To, K.F.; Kwong, D.L.; Tsao, S.W.; Jin, D.Y. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J. Exp. Med. 2008, 205, 2551–2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, T.; Yuen, K.S.; Xu, R.; Tsao, S.W.; Chen, H.; Li, M.; Kok, K.H.; Jin, D.Y. Targeting of DICE1 tumor suppressor by Epstein-Barr virus-encoded miR-BART3* microRNA in nasopharyngeal carcinoma. Int. J. Cancer 2013, 133, 79–87. [Google Scholar] [CrossRef]
- Niedobitek, G.; Meru, N.; Delecluse, H.J. Epstein-Barr virus infection and human malignancies. Int. J. Exp. Pathol. 2001, 82, 149–170. [Google Scholar] [CrossRef]
Cohorts | Incidence among Individuals with Infectious Mononucleosis (Cases per 1000 Patient Years) | Incidence among Individuals without Infectious Mononucleosis (Cases per 1000 Patient Years) | Incidence Rate Ratios (95% CI) * | p-Values |
---|---|---|---|---|
Total | 5.3 | 4.4 | 1.17 (1.00–1.36) | 0.044 |
Age 14–20 | 1.1 | 1.2 | 0.96 (0.55–1.66) | 0.882 |
Age 21–30 | 2.2 | 2.6 | 0.83 (0.54–1.28) | 0.393 |
Age 31–40 | 4.3 | 3.4 | 1.25 (0.83–1.90) | 0.291 |
Age 41–50 | 8.7 | 6.9 | 1.22 (0.88–1.69) | 0.231 |
Age > 50 | 19.6 | 14.5 | 1.32 (1.04–1.67) | 0.021 |
Women | 4.1 | 4.6 | 1.04 (0.86–1.27) | 0.681 |
Men | 6.9 | 4.1 | 1.36 (1.07–1.72) | 0.011 |
Variable | Proportion Affected among Individuals with Infectious Mononucleosis (%) n = 12,095 | Proportion Affected among Individuals without Infectious Mononucleosis (%) n = 12,095 | p-Value |
---|---|---|---|
Age (Mean, SD) | 31.2 (14.6) | 31.3 (14.7) | 0.400 |
Age 14–20 | 32.4 | 30.9 | 0.121 |
Age 21–30 | 25.4 | 26.4 | |
Age 31–40 | 17.2 | 16.9 | |
Age 41–50 | 12.8 | 13.5 | |
Age >50 | 12.2 | 12.3 | |
Women | 58.6 | 58.6 | 1.000 |
Men | 41.4 | 41.4 | |
Yearly consultation frequency | 5.4 (4.5) | 5.4 (4.5) | 1.000 |
Diagnoses documented within 12 months prior to the index date | |||
Diabetes mellitus | 3.0 | 4.8 | <0.001 |
Obesity | 5.4 | 7.8 | <0.001 |
Thyroid gland disorders | 17.6 | 14.9 | <0.001 |
Diseases of esophagus, stomach and duodenum | 22.6 | 21.7 | 0.101 |
Diseases of liver | 8.9 | 4.4 | <0.001 |
Chronic bronchitis and COPD | 6.86 | 6.84 | 0.980 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roderburg, C.; Krieg, S.; Krieg, A.; Luedde, T.; Kostev, K.; Loosen, S.H. The Association between Infectious Mononucleosis and Cancer: A Cohort Study of 24,190 Outpatients in Germany. Cancers 2022, 14, 5837. https://doi.org/10.3390/cancers14235837
Roderburg C, Krieg S, Krieg A, Luedde T, Kostev K, Loosen SH. The Association between Infectious Mononucleosis and Cancer: A Cohort Study of 24,190 Outpatients in Germany. Cancers. 2022; 14(23):5837. https://doi.org/10.3390/cancers14235837
Chicago/Turabian StyleRoderburg, Christoph, Sarah Krieg, Andreas Krieg, Tom Luedde, Karel Kostev, and Sven H. Loosen. 2022. "The Association between Infectious Mononucleosis and Cancer: A Cohort Study of 24,190 Outpatients in Germany" Cancers 14, no. 23: 5837. https://doi.org/10.3390/cancers14235837
APA StyleRoderburg, C., Krieg, S., Krieg, A., Luedde, T., Kostev, K., & Loosen, S. H. (2022). The Association between Infectious Mononucleosis and Cancer: A Cohort Study of 24,190 Outpatients in Germany. Cancers, 14(23), 5837. https://doi.org/10.3390/cancers14235837