Radiotherapy of the Primary Disease for Synchronous Metastatic Cancer: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Rational
1.1.1. Biological Rational
1.1.2. Synchronous Metastatic Cancers
2. Irradiation of the Primary Disease for Synchronous Metastatic Breast Cancer
2.1. Retrospective Series
2.1.1. Impact of Local Treatment on Survival
2.1.2. Impact of Exclusive Irradiation on Survival
2.2. Prospective Studies
3. Irradiation of the Primary Tumor for Metastatic Prostate Cancer
3.1. HORRAD Trial
3.2. Stampede Trial
3.3. STOP-CAP Meta-Analysis
3.4. Ongoing Trials
4. Treatment of the Primitive Site in Metastatic Lung Cancer Patients
4.1. Palliative Radiotherapy
4.2. Oligometastatic NSCLC
4.2.1. NSCLC without Targetable Mutations
4.2.2. NSCLC with Targetable Mutations: EGFR, ALK, ROS1
4.3. Ongoing Trials for Oligometastatic NSCLC Patients
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hölzel, D.; Eckel, R.; Bauerfeind, I.; Baier, B.; Beck, T.; Braun, M.; Ettl, J.; Hamann, U.; Kiechle, M.; Mahner, S.; et al. Improved Systemic Treatment for Early Breast Cancer Improves Cure Rates, Modifies Metastatic Pattern and Shortens Post-Metastatic Survival: 35-Year Results from the Munich Cancer Registry. J. Cancer Res. Clin. Oncol. 2017, 143, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Ryckman, J.M.; Thomas, T.V.; Wang, M.; Wu, X.; Siva, S.; Spratt, D.E.; Slotman, B.; Pal, S.; Chapin, B.F.; Fitzal, F.; et al. Local Treatment of the Primary Tumor for Patients With Metastatic Cancer (PRIME-TX): A Meta-Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 919–935. [Google Scholar] [CrossRef] [PubMed]
- Paget, S. The Distribution of Secondary Growths in Cancer of the Breast. Cancer Metastasis Rev. 1989, 8, 98–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, R.N.; Rafii, S.; Lyden, D. Preparing the “Soil”: The Premetastatic Niche: Figure 1. Cancer Res. 2006, 66, 11089–11093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, R.N.; Psaila, B.; Lyden, D. Bone Marrow Cells in the “Pre-Metastatic Niche”: Within Bone and Beyond. Cancer Metastasis Rev. 2006, 25, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Haider, A.; Rashid, S.; Al-Nabet, A.D.M.H. Paget’s “Seed and Soil” Theory of Cancer Metastasis: An Idea Whose Time Has Come. Adv. Anat. Pathol. 2019, 26, 69–74. [Google Scholar] [CrossRef]
- Weidle, U.H.; Birzele, F.; Kollmorgen, G.; Rüger, R. The Multiple Roles of Exosomes in Metastasis. Cancer Genomics Proteomics 2017, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, Biogenesis and Function. Nat. Rev. Immunol. 2002, 2, 569–579. [Google Scholar] [CrossRef]
- Rashed, M.H.; Bayraktar, E.; Helal, G.K.; Abd-Ellah, M.; Amero, P.; Chavez-Reyes, A.; Rodriguez-Aguayo, C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int. J. Mol. Sci. 2017, 18, 538. [Google Scholar] [CrossRef] [Green Version]
- Soung, Y.H.; Nguyen, T.; Cao, H.; Lee, J.; Chung, J. Emerging Roles of Exosomes in Cancer Invasion and Metastasis. BMB Rep. 2016, 49, 18–25. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Oskarsson, T.; Acharyya, S.; Nguyen, D.X.; Zhang, X.H.-F.; Norton, L.; Massagué, J. Tumor Self-Seeding by Circulating Cancer Cells. Cell 2009, 139, 1315–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comen, E.; Norton, L.; Massagué, J. Clinical Implications of Cancer Self-Seeding. Nat. Rev. Clin. Oncol. 2011, 8, 369–377. [Google Scholar] [CrossRef]
- Bockel, S.; Antoni, D.; Deutsch, É.; Mornex, F. Immunothérapie et radiothérapie. Cancer/Radiothérapie 2017, 21, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.R.; Tang, C.; Zhang, J.; Blumenschein, G.R.; Hernandez, M.; Lee, J.J.; Ye, R.; Palma, D.A.; Louie, A.V.; Camidge, D.R.; et al. Local Consolidative Therapy Vs. Maintenance Therapy or Observation for Patients With Oligometastatic Non-Small-Cell Lung Cancer: Long-Term Results of a Multi-Institutional, Phase II, Randomized Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 1558–1565. [Google Scholar] [CrossRef] [PubMed]
- Harrow, S.; Palma, D.A.; Olson, R.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. Stereotactic Radiation for the Comprehensive Treatment of Oligometastases (SABR-COMET)–Extended Long-Term Outcomes. Int. J. Radiat. Oncol. 2022, 114, 611–616. [Google Scholar] [CrossRef]
- Fairweather, M.; Jiang, W.; Keating, N.L.; Freedman, R.A.; King, T.A.; Nakhlis, F. Morbidity of Local Therapy for Locally Advanced Metastatic Breast Cancer: An Analysis of the Surveillance, Epidemiology, and End Results (SEER)–Medicare Registry. Breast Cancer Res. Treat. 2018, 169, 287–293. [Google Scholar] [CrossRef]
- Khan, S.A.; Stewart, A.K.; Morrow, M. Does Aggressive Local Therapy Improve Survival in Metastatic Breast Cancer? Surgery 2002, 132, 620–627. [Google Scholar] [CrossRef]
- Rapiti, E.; Verkooijen, H.M.; Vlastos, G.; Fioretta, G.; Neyroud-Caspar, I.; Sappino, A.P.; Chappuis, P.O.; Bouchardy, C. Complete Excision of Primary Breast Tumor Improves Survival of Patients With Metastatic Breast Cancer at Diagnosis. J. Clin. Oncol. 2006, 24, 2743–2749. [Google Scholar] [CrossRef]
- Babiera, G.V.; Rao, R.; Feng, L.; Meric-Bernstam, F.; Kuerer, H.M.; Singletary, S.E.; Hunt, K.K.; Ross, M.I.; Gwyn, K.M.; Feig, B.W.; et al. Effect of Primary Tumor Extirpation in Breast Cancer Patients Who Present with Stage IV Disease and an Intact Primary Tumor. Ann. Surg. Oncol. 2006, 13, 776–782. [Google Scholar] [CrossRef]
- Gnerlich, J.; Jeffe, D.B.; Deshpande, A.D.; Beers, C.; Zander, C.; Margenthaler, J.A. Surgical Removal of the Primary Tumor Increases Overall Survival in Patients with Metastatic Breast Cancer: Analysis of the 1988-2003 SEER Data. Ann. Surg. Oncol. 2007, 14, 2187–2194. [Google Scholar] [CrossRef]
- Fields, R.C.; Jeffe, D.B.; Trinkaus, K.; Zhang, Q.; Arthur, C.; Aft, R.; Dietz, J.R.; Eberlein, T.J.; Gillanders, W.E.; Margenthaler, J.A. Surgical Resection of the Primary Tumor Is Associated with Increased Long-Term Survival in Patients with Stage IV Breast Cancer after Controlling for Site of Metastasis. Ann. Surg. Oncol. 2007, 14, 3345–3351. [Google Scholar] [CrossRef] [PubMed]
- Hazard, H.W.; Gorla, S.R.; Scholtens, D.; Kiel, K.; Gradishar, W.J.; Khan, S.A. Surgical Resection of the Primary Tumor, Chest Wall Control, and Survival in Women with Metastatic Breast Cancer. Cancer 2008, 113, 2011–2019. [Google Scholar] [CrossRef] [PubMed]
- Cady, B.; Nathan, N.R.; Michaelson, J.S.; Golshan, M.; Smith, B.L. Matched Pair Analyses of Stage IV Breast Cancer with or Without Resection of Primary Breast Site. Ann. Surg. Oncol. 2008, 15, 3384–3395. [Google Scholar] [CrossRef] [PubMed]
- Bafford, A.C.; Burstein, H.J.; Barkley, C.R.; Smith, B.L.; Lipsitz, S.; Iglehart, J.D.; Winer, E.P.; Golshan, M. Breast Surgery in Stage IV Breast Cancer: Impact of Staging and Patient Selection on Overall Survival. Breast Cancer Res. Treat. 2009, 115, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, D.K.; Shetty, P.B.; Hilsenbeck, S.G.; Elledge, R.M. Association of Surgery With Improved Survival in Stage IV Breast Cancer Patients. Ann. Surg. 2008, 247, 732–738. [Google Scholar] [CrossRef]
- Ruiterkamp, J.; Ernst, M.F.; van de Poll-Franse, L.V.; Bosscha, K.; Tjan-Heijnen, V.C.G.; Voogd, A.C. Surgical Resection of the Primary Tumour Is Associated with Improved Survival in Patients with Distant Metastatic Breast Cancer at Diagnosis. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2009, 35, 1146–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shien, T.; Kinoshita, T.; Shimizu, C.; Hojo, T.; Taira, N.; Doihara, H.; Akashi-Tanaka, S. Primary Tumor Resection Improves the Survival of Younger Patients with Metastatic Breast Cancer. Oncol. Rep. 2009, 21, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Neuman, H.B.; Morrogh, M.; Gonen, M.; Van Zee, K.J.; Morrow, M.; King, T.A. Stage IV Breast Cancer in the Era of Targeted Therapy: Does Surgery of the Primary Tumor Matter? Cancer 2010, 116, 1226–1233. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.H.A.; Truong, P.T.; Alexander, C.; Walter, C.V.; Hayashi, E.; Christie, J.; Lesperance, M. Can Locoregional Treatment of the Primary Tumor Improve Outcomes for Women with Stage IV Breast Cancer at Diagnosis? Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 39–45. [Google Scholar] [CrossRef]
- Lang, J.E.; Tereffe, W.; Mitchell, M.P.; Rao, R.; Feng, L.; Meric-Bernstam, F.; Bedrosian, I.; Kuerer, H.M.; Hunt, K.K.; Hortobagyi, G.N.; et al. Primary Tumor Extirpation in Breast Cancer Patients Who Present with Stage IV Disease Is Associated with Improved Survival. Ann. Surg. Oncol. 2013, 20, 1893–1899. [Google Scholar] [CrossRef]
- Thomas, A.; Khan, S.A.; Chrischilles, E.A.; Schroeder, M.C. Initial Surgery and Survival in Stage IV Breast Cancer in the United States, 1988-2011. JAMA Surg. 2016, 151, 424–431. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, J.W.; Choi, J.; Sohn, J.; Kim, S.I.; Park, S.; Park, H.S.; Jeong, J.; Suh, C.-O.; Keum, K.C.; et al. Locoregional Treatment of the Primary Tumor in Patients With De Novo Stage IV Breast Cancer: A Radiation Oncologist’s Perspective. Clin. Breast Cancer 2018, 18, e167–e178. [Google Scholar] [CrossRef] [PubMed]
- Le Scodan, R.; Stevens, D.; Brain, E.; Floiras, J.L.; Cohen-Solal, C.; De La Lande, B.; Tubiana-Hulin, M.; Yacoub, S.; Gutierrez, M.; Ali, D.; et al. Breast Cancer With Synchronous Metastases: Survival Impact of Exclusive Locoregional Radiotherapy. J. Clin. Oncol. 2009, 27, 1375–1381. [Google Scholar] [CrossRef]
- Bourgier, C.; Khodari, W.; Vataire, A.-L.; Pessoa, E.L.; Dunant, A.; Delaloge, S.; Uzan, C.; Balleyguier, C.; Mathieu, M.-C.; Marsiglia, H.; et al. Breast Radiotherapy as Part of Loco-Regional Treatments in Stage IV Breast Cancer Patients with Oligometastatic Disease. Radiother. Oncol. 2010, 96, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Mauro, G.P.; de Andrade Carvalho, H.; Stuart, S.R.; Mano, M.S.; Marta, G.N. Effects of Locoregional Radiotherapy in Patients with Metastatic Breast Cancer. Breast Edinb. Scotl. 2016, 28, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Pons-Tostivint, E.; Kirova, Y.; Lusque, A.; Campone, M.; Geffrelot, J.; Rivera, S.; Mailliez, A.; Pasquier, D.; Madranges, N.; Firmin, N.; et al. Radiation Therapy to the Primary Tumor for de Novo Metastatic Breast Cancer and Overall Survival in a Retrospective Multicenter Cohort Analysis. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2020, 145, 109–116. [Google Scholar] [CrossRef]
- Stahl, K.; Wong, W.; Dodge, D.; Brooks, A.; McLaughlin, C.; Olecki, E.; Lewcun, J.; Newport, K.; Vasekar, M.; Shen, C. Benefits of Surgical Treatment of Stage IV Breast Cancer for Patients With Known Hormone Receptor and HER2 Status. Ann. Surg. Oncol. 2021, 28, 2646–2658. [Google Scholar] [CrossRef]
- Thery, L.; Arsene-Henry, A.; Carroll, S.; Peurien, D.; Bazire, L.; Robilliard, M.; Fourquet, A.; Kirova, Y.M. Use of Helical Tomotherapy in Locally Advanced and/or Metastatic Breast Cancer for Locoregional Treatment. Br. J. Radiol. 2018, 91, 20170822. [Google Scholar] [CrossRef]
- Ali, A.; Hoyle, A.; Haran, Á.M.; Brawley, C.D.; Cook, A.; Amos, C.; Calvert, J.; Douis, H.; Mason, M.D.; Dearnaley, D.; et al. Association of Bone Metastatic Burden with Survival Benefit from Prostate Radiotherapy in Patients with Newly Diagnosed Metastatic Prostate Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2021, 7, 555–563. [Google Scholar] [CrossRef]
- Xiao, W.; Zou, Y.; Zheng, S.; Hu, X.; Liu, P.; Xie, X.; Yu, P.; Tang, H.; Xie, X. Primary Tumor Resection in Stage IV Breast Cancer: A Systematic Review and Meta-Analysis. Eur. J. Surg. Oncol. 2018, 44, 1504–1512. [Google Scholar] [CrossRef]
- Gera, R.; Chehade, H.E.L.H.; Wazir, U.; Tayeh, S.; Kasem, A.; Mokbel, K. Locoregional Therapy of the Primary Tumour in de Novo Stage IV Breast Cancer in 216 066 Patients: A Meta-Analysis. Sci. Rep. 2020, 10, 2952. [Google Scholar] [CrossRef] [Green Version]
- Khodari, W.; Sedrati, A.; Naisse, I.; Bosc, R.; Belkacemi, Y. Impact of Loco-Regional Treatment on Metastatic Breast Cancer Outcome: A Review. Crit. Rev. Oncol. Hematol. 2013, 87, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Badwe, R.; Hawaldar, R.; Nair, N.; Kaushik, R.; Parmar, V.; Siddique, S.; Budrukkar, A.; Mittra, I.; Gupta, S. Locoregional Treatment versus No Treatment of the Primary Tumour in Metastatic Breast Cancer: An Open-Label Randomised Controlled Trial. Lancet Oncol. 2015, 16, 1380–1388. [Google Scholar] [CrossRef] [PubMed]
- Soran, A.; Ozmen, V.; Ozbas, S.; Karanlik, H.; Muslumanoglu, M.; Igci, A.; Canturk, Z.; Utkan, Z.; Ozaslan, C.; Evrensel, T.; et al. Randomized Trial Comparing Resection of Primary Tumor with No Surgery in Stage IV Breast Cancer at Presentation: Protocol MF07-01. Ann. Surg. Oncol. 2018, 25, 3141–3149. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Zhao, F.; Goldstein, L.J.; Cella, D.; Basik, M.; Golshan, M.; Julian, T.B.; Pockaj, B.A.; Lee, C.A.; Razaq, W.; et al. Early Local Therapy for the Primary Site in De Novo Stage IV Breast Cancer: Results of a Randomized Clinical Trial (E2108). J. Clin. Oncol. 2022, 40, 978–987. [Google Scholar] [CrossRef]
- Shien, T.; Mizutani, T.; Tanaka, K.; Kinoshita, T.; Hara, F.; Fujisawa, T.; Masuda, N.; Tamura, K.; Hojo, T.; Kanbayashi, C.; et al. A Randomized Controlled Trial Comparing Primary Tumor Resection plus Systemic Therapy with Systemic Therapy Alone in Metastatic Breast Cancer (JCOG1017 PRIM-BC). J. Clin. Oncol. 2017, 35, TPS588. [Google Scholar] [CrossRef]
- Fitzal, F.; Bjelic-Radisic, V.; Knauer, M.; Steger, G.; Hubalek, M.; Balic, M.; Singer, C.; Bartsch, R.; Schrenk, P.; Soelkner, L.; et al. Impact of Breast Surgery in Primary Metastasized Breast Cancer: Outcomes of the Prospective Randomized Phase III ABCSG-28 POSYTIVE Trial. Ann. Surg. 2019, 269, 1163–1169. [Google Scholar] [CrossRef]
- Beddok, A.; Xu, H.P.; Henry, A.A.; Porte, B.; Fourquet, A.; Cottu, P.; Kirova, Y. Concurrent Use of Palbociclib and Radiation Therapy: Single-Centre Experience and Review of the Literature. Br. J. Cancer 2020, 123, 905–908. [Google Scholar] [CrossRef]
- Loap, P.; Loirat, D.; Berger, F.; Cao, K.; Ricci, F.; Jochem, A.; Raizonville, L.; Mosseri, V.; Fourquet, A.; Kirova, Y. Combination of Olaparib with Radiotherapy for Triple-negative Breast Cancers: One-year Toxicity Report of the RADIOPARP Phase I Trial. Int. J. Cancer 2021, 149, 1828–1832. [Google Scholar] [CrossRef]
- Zolcsák, Z.; Loirat, D.; Fourquet, A.; Kirova, Y.M. Adjuvant Trastuzumab Emtansine (T-DM1) and Concurrent Radiotherapy for Residual Invasive HER2-Positive Breast Cancer: Single-Center Preliminary Results. Am. J. Clin. Oncol. 2020, 43, 895–901. [Google Scholar] [CrossRef]
- Culp, S.H.; Schellhammer, P.F.; Williams, M.B. Might Men Diagnosed with Metastatic Prostate Cancer Benefit from Definitive Treatment of the Primary Tumor? A SEER-Based Study. Eur. Urol. 2014, 65, 1058–1066. [Google Scholar] [CrossRef]
- Fossati, N.; Trinh, Q.-D.; Sammon, J.; Sood, A.; Larcher, A.; Sun, M.; Karakiewicz, P.; Guazzoni, G.; Montorsi, F.; Briganti, A.; et al. Identifying Optimal Candidates for Local Treatment of the Primary Tumor among Patients Diagnosed with Metastatic Prostate Cancer: A SEER-Based Study. Eur. Urol. 2015, 67, 3–6. [Google Scholar] [CrossRef]
- Rusthoven, C.G.; Jones, B.L.; Flaig, T.W.; Crawford, E.D.; Koshy, M.; Sher, D.J.; Mahmood, U.; Chen, R.C.; Chapin, B.F.; Kavanagh, B.D.; et al. Improved Survival With Prostate Radiation in Addition to Androgen Deprivation Therapy for Men With Newly Diagnosed Metastatic Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 2835–2842. [Google Scholar] [CrossRef] [PubMed]
- Löppenberg, B.; Dalela, D.; Karabon, P.; Sood, A.; Sammon, J.D.; Meyer, C.P.; Sun, M.; Noldus, J.; Peabody, J.O.; Trinh, Q.-D.; et al. The Impact of Local Treatment on Overall Survival in Patients with Metastatic Prostate Cancer on Diagnosis: A National Cancer Data Base Analysis. Eur. Urol. 2017, 72, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Leyh-Bannurah, S.-R.; Gazdovich, S.; Budäus, L.; Zaffuto, E.; Briganti, A.; Abdollah, F.; Montorsi, F.; Schiffmann, J.; Menon, M.; Shariat, S.F.; et al. Local Therapy Improves Survival in Metastatic Prostate Cancer. Eur. Urol. 2017, 72, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Satkunasivam, R.; Kim, A.E.; Desai, M.; Nguyen, M.M.; Quinn, D.I.; Ballas, L.; Lewinger, J.P.; Stern, M.C.; Hamilton, A.S.; Aron, M.; et al. Radical Prostatectomy or External Beam Radiation Therapy vs No Local Therapy for Survival Benefit in Metastatic Prostate Cancer: A SEER-Medicare Analysis. J. Urol. 2015, 194, 378–385. [Google Scholar] [CrossRef] [Green Version]
- Parikh, R.R.; Byun, J.; Goyal, S.; Kim, I.Y. Local Therapy Improves Overall Survival in Patients With Newly Diagnosed Metastatic Prostate Cancer. Prostate 2017, 77, 559–572. [Google Scholar] [CrossRef]
- Cho, Y.; Chang, J.S.; Rha, K.H.; Hong, S.J.; Choi, Y.D.; Ham, W.S.; Kim, J.W.; Cho, J. Does Radiotherapy for the Primary Tumor Benefit Prostate Cancer Patients with Distant Metastasis at Initial Diagnosis? PLoS ONE 2016, 11, e0147191. [Google Scholar] [CrossRef]
- Boevé, L.M.S.; Hulshof, M.C.C.M.; Vis, A.N.; Zwinderman, A.H.; Twisk, J.W.R.; Witjes, W.P.J.; Delaere, K.P.J.; van Moorselaar, R.J.A.; Verhagen, P.C.M.S.; van Andel, G. Effect on Survival of Androgen Deprivation Therapy Alone Compared to Androgen Deprivation Therapy Combined with Concurrent Radiation Therapy to the Prostate in Patients with Primary Bone Metastatic Prostate Cancer in a Prospective Randomised Clinical Trial: Data from the HORRAD Trial. Eur. Urol. 2019, 75, 410–418. [Google Scholar] [CrossRef]
- Boevé, L.; Hulshof, M.C.C.M.; Verhagen, P.C.M.S.; Twisk, J.W.R.; Witjes, W.P.J.; de Vries, P.; van Moorselaar, R.J.A.; van Andel, G.; Vis, A.N. Patient-Reported Quality of Life in Patients with Primary Metastatic Prostate Cancer Treated with Androgen Deprivation Therapy with and Without Concurrent Radiation Therapy to the Prostate in a Prospective Randomised Clinical Trial; Data from the HORRAD Trial. Eur. Urol. 2021, 79, 188–197. [Google Scholar] [CrossRef]
- Parker, C.C.; James, N.D.; Brawley, C.D.; Clarke, N.W.; Hoyle, A.P.; Ali, A.; Ritchie, A.W.S.; Attard, G.; Chowdhury, S.; Cross, W.; et al. Radiotherapy to the Primary Tumour for Newly Diagnosed, Metastatic Prostate Cancer (STAMPEDE): A Randomised Controlled Phase 3 Trial. Lancet 2018, 392, 2353–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdett, S.; Boevé, L.M.; Ingleby, F.C.; Fisher, D.J.; Rydzewska, L.H.; Vale, C.L.; van Andel, G.; Clarke, N.W.; Hulshof, M.C.; James, N.D.; et al. Prostate Radiotherapy for Metastatic Hormone-Sensitive Prostate Cancer: A STOPCAP Systematic Review and Meta-Analysis. Eur. Urol. 2019, 76, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbato, F.; Fendler, W.P.; Rauscher, I.; Herrmann, K.; Wetter, A.; Ferdinandus, J.; Seifert, R.; Nader, M.; Rahbar, K.; Hadaschik, B.; et al. PSMA-PET for the Assessment of Metastatic Hormone-Sensitive Prostate Cancer Volume of Disease. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2021, 62, 1747–1750. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Foulon, S.; Carles, J.; Roubaud, G.; McDermott, R.; Fléchon, A.; Tombal, B.; Supiot, S.; Berthold, D.; Ronchin, P.; et al. Abiraterone plus Prednisone Added to Androgen Deprivation Therapy and Docetaxel in de Novo Metastatic Castration-Sensitive Prostate Cancer (PEACE-1): A Multicentre, Open-Label, Randomised, Phase 3 Study with a 2 × 2 Factorial Design. Lancet 2022, 399, 1695–1707. [Google Scholar] [CrossRef] [PubMed]
- UNICANCER. A Prospective Randomised Phase III Study Of Androgen Deprivation Therapy with or without Docetaxel with or without Local Radiotherapy with or Without Abiraterone Acetate and Prednisone in Patients with Metastatic Hormone-Naïve Prostate Cancer; Clinicaltrials.gov: Bethesda, MD, USA, 2021.
- MD Anderson Cancer Center. A Prospective, Multi-Institutional, Randomized, Phase II Trial of Best Systemic Therapy or Best Systemic Therapy (BST) Plus Definitive Treatment (Radiation or Surgery) of the Primary Tumor in Metastatic (M1) Prostate Cancer (PC); Clinicaltrials.gov: Bethesda, MD, USA, 2022.
- Canadian Cancer Trials Group. A Randomized Phase III Trial of Local Ablative Therapy for Hormone Sensitive Oligometastatic Prostate Cancer [PLATON]; Clinicaltrials.gov: Bethesda, MD, USA, 2022.
- University Hospital, Ghent. Cytoreductive Prostatectomy versus Cytoreductive Prostate Irradiation as a Local Treatment Option for Metastatic Prostate Cancer: A Multicentric Feasibility Trial; Clinicaltrials.gov: Bethesda, MD, USA, 2018.
- Frobe, A. Hormone Therapy with or without Definitive Radiotherapy in Metastatic Prostate Cancer; Clinicaltrials.gov: Bethesda, MD, USA, 2018.
- Imperial College London. Local Cytoreductive Treatments for Men with Newly Diagnosed Metastatic Prostate Cancer in Addition to Standard of Care Treatment; Clinicaltrials.gov: Bethesda, MD, USA, 2021.
- Southwest Oncology Group. Phase III Randomized Trial of Standard Systemic Therapy (SST) versus Standard Systemic Therapy Plus Definitive Treatment (Surgery or Radiation) of the Primary Tumor in Metastatic Prostate Cancer; Clinicaltrials.gov: Bethesda, MD, USA, 2021.
- UNICANCER. Prostate-Cancer Treatment Using Stereotactic Radiotherapy for Oligometastases Ablation in Hormone-Sensitive Patients—A GETUG-AFU Phase III Randomized Controlled Trial; Clinicaltrials.gov: Bethesda, MD, USA, 2022.
- Memorial Sloan Kettering Cancer Center. SAABR: Single Arm Phase II Study of Abiraterone + Atezolizumab + GnRH Analog and Stereotactic Body Radiotherapy (SBRT) to the Prostate in Men with Newly Diagnosed Hormone-Sensitive Metastatic Prostate Cancer; Clinicaltrials.gov: Bethesda, MD, USA, 2022.
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
- De Crevoisier, R.; Supiot, S.; Créhange, G.; Pommier, P.; Latorzeff, I.; Chapet, O.; Pasquier, D.; Blanchard, P.; Schick, U.; Marchesi, V.; et al. External Radiotherapy for Prostatic Cancers. Cancer/Radiothérapie 2022, 26, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2016, 11, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Borghaei, H.; Langer, C.J.; Paz-Ares, L.; Rodríguez-Abreu, D.; Halmos, B.; Garassino, M.C.; Houghton, B.; Kurata, T.; Cheng, Y.; Lin, J.; et al. Pembrolizumab plus Chemotherapy versus Chemotherapy Alone in Patients with Advanced Non–Small Cell Lung Cancer without Tumor PD-L1 Expression: A Pooled Analysis of 3 Randomized Controlled Trials. Cancer 2020, 126, 4867–4877. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus Docetaxel for Previously Treated, PD-L1-Positive, Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomised Controlled Trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Remon, J.; Steuer, C.E.; Ramalingam, S.S.; Felip, E. Osimertinib and Other Third-Generation EGFR TKI in EGFR-Mutant NSCLC Patients. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, i20–i27. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Zhou, C.; Liam, C.-K.; Wu, G.; Liu, X.; Zhong, Z.; Lu, S.; Cheng, Y.; Han, B.; Chen, L.; et al. First-Line Erlotinib versus Gemcitabine/Cisplatin in Patients with Advanced EGFR Mutation-Positive Non-Small-Cell Lung Cancer: Analyses from the Phase III, Randomized, Open-Label, ENSURE Study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2015, 26, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Hackshaw, A.; Feng, Q.; Fu, X.; Zhang, Y.; Mao, C.; Tang, J. Comparison of Gefitinib, Erlotinib and Afatinib in Non-Small Cell Lung Cancer: A Meta-Analysis. Int. J. Cancer 2017, 140, 2805–2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.-W.; Mok, T.; Polli, A.; et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N. Engl. J. Med. 2020, 383, 2018–2029. [Google Scholar] [CrossRef]
- Camidge, D.R.; Kim, H.R.; Ahn, M.-J.; Yang, J.C.-H.; Han, J.-Y.; Lee, J.-S.; Hochmair, M.J.; Li, J.Y.-C.; Chang, G.-C.; Lee, K.H.; et al. Brigatinib versus Crizotinib in ALK-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2027–2039. [Google Scholar] [CrossRef]
- Guckenberger, M.; Lievens, Y.; Bouma, A.B.; Collette, L.; Dekker, A.; deSouza, N.M.; Dingemans, A.-M.C.; Fournier, B.; Hurkmans, C.; Lecouvet, F.E.; et al. Characterisation and Classification of Oligometastatic Disease: A European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer Consensus Recommendation. Lancet Oncol. 2020, 21, e18–e28. [Google Scholar] [CrossRef] [Green Version]
- Giraud, N.; Abdiche, S.; Trouette, R. Stereotactic Radiotherapy in Targeted Therapy Treated Oligo-Metastatic Oncogene-Addicted (Non-Small-Cell) Lung Cancer. Cancer Radiother. J. Soc. Francaise Radiother. Oncol. 2019, 23, 346–354. [Google Scholar] [CrossRef]
- Al-Halabi, H.; Sayegh, K.; Digamurthy, S.R.; Niemierko, A.; Piotrowska, Z.; Willers, H.; Sequist, L.V. Pattern of Failure Analysis in Metastatic EGFR-Mutant Lung Cancer Treated with Tyrosine Kinase Inhibitors to Identify Candidates for Consolidation Stereotactic Body Radiation Therapy. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2015, 10, 1601–1607. [Google Scholar] [CrossRef] [Green Version]
- Slotman, B.J.; van Tinteren, H.; Praag, J.O.; Knegjens, J.L.; El Sharouni, S.Y.; Hatton, M.; Keijser, A.; Faivre-Finn, C.; Senan, S. Use of Thoracic Radiotherapy for Extensive Stage Small-Cell Lung Cancer: A Phase 3 Randomised Controlled Trial. Lancet Lond. Engl. 2015, 385, 36–42. [Google Scholar] [CrossRef]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; et al. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 2.2021. J. Natl. Compr. Cancer Netw. JNCCN 2021, 19, 254–266. [Google Scholar] [CrossRef]
- Topkan, E.; Yildirim, B.A.; Guler, O.C.; Parlak, C.; Pehlivan, B.; Selek, U. Safety and Palliative Efficacy of Single-Dose 8-Gy Reirradiation for Painful Local Failure in Patients with Stage IV Non-Small Cell Lung Cancer Previously Treated with Radical Chemoradiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 774–780. [Google Scholar] [CrossRef]
- Lupattelli, M.; Maranzano, E.; Bellavita, R.; Chionne, F.; Darwish, S.; Piro, F.; Latini, P. Short-Course Palliative Radiotherapy in Non-Small-Cell Lung Cancer: Results of a Prospective Study. Am. J. Clin. Oncol. 2000, 23, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yu, F.; Zhao, Y.; Zeng, Y.; Yang, X.; Chu, L.; Chu, X.; Li, Y.; Zou, L.; Guo, T.; et al. A Narrative Review of Evolving Roles of Radiotherapy in Advanced Non-Small Cell Lung Cancer: From Palliative Care to Active Player. Transl. Lung Cancer Res. 2020, 9, 2479–2493. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.; Roux, C.; Mercier, O.; Issard, J.; Botticella, A.; Barlesi, F.; Le Péchoux, C. Radiotherapy for oligometastatic non-small cell lung cancer patients. Cancer/Radiothérapie 2021, 25, 517–522. [Google Scholar] [CrossRef] [PubMed]
- De Ruysscher, D.; Wanders, R.; van Baardwijk, A.; Dingemans, A.-M.C.; Reymen, B.; Houben, R.; Bootsma, G.; Pitz, C.; van Eijsden, L.; Geraedts, W.; et al. Radical Treatment of Non-Small-Cell Lung Cancer Patients with Synchronous Oligometastases: Long-Term Results of a Prospective Phase II Trial (Nct01282450). J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2012, 7, 1547–1555. [Google Scholar] [CrossRef] [Green Version]
- Collen, C.; Christian, N.; Schallier, D.; Meysman, M.; Duchateau, M.; Storme, G.; De Ridder, M. Phase II Study of Stereotactic Body Radiotherapy to Primary Tumor and Metastatic Locations in Oligometastatic Nonsmall-Cell Lung Cancer Patients. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014, 25, 1954–1959. [Google Scholar] [CrossRef] [PubMed]
- Petty, W.J.; Urbanic, J.J.; Ahmed, T.; Hughes, R.; Levine, B.; Rusthoven, K.; Papagikos, M.; Ruiz, J.R.; Lally, B.E.; Chan, M.; et al. Long-Term Outcomes of a Phase 2 Trial of Chemotherapy With Consolidative Radiation Therapy for Oligometastatic Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, O.; Barrón, F.; Maldonado, F.; Cabrera, L.; Corona-Cruz, J.F.; Blake, M.; Ramírez-Tirado, L.A.; Zatarain-Barrón, Z.L.; Cardona, A.F.; García, O.; et al. Radical Consolidative Treatment Provides a Clinical Benefit and Long-Term Survival in Patients with Synchronous Oligometastatic Non-Small Cell Lung Cancer: A Phase II Study. Lung Cancer Amst. Neth. 2019, 130, 67–75. [Google Scholar] [CrossRef]
- Park, K.; Ahn, M.; Yu, C.; Kim, S.; Lin, M.; Sriuranpong, V.; Tsai, C.; Lee, J.; Kang, J.; Perez-Moreno, P.; et al. Aspiration: First-Line Erlotinib (E) Until and Beyond Recist Progression (Pd) in Asian Patients (Pts) with Egfr Mutation-Positive (Mut+) Nsclc. Ann. Oncol. 2014, 25, iv426. [Google Scholar] [CrossRef]
- Parikh, R.B.; Cronin, A.M.; Kozono, D.E.; Oxnard, G.R.; Mak, R.H.; Jackman, D.M.; Lo, P.C.; Baldini, E.H.; Johnson, B.E.; Chen, A.B. Definitive Primary Therapy in Patients Presenting with Oligometastatic Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 880–887. [Google Scholar] [CrossRef]
- Li, D.; Zhu, X.; Wang, H.; Qiu, M.; Li, N. Should Aggressive Thoracic Therapy Be Performed in Patients with Synchronous Oligometastatic Non-Small Cell Lung Cancer? A Meta-Analysis. J. Thorac. Dis. 2017, 9, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Petrelli, F.; Ghidini, A.; Cabiddu, M.; Tomasello, G.; De Stefani, A.; Bruschieri, L.; Vitali, E.; Ghilardi, M.; Borgonovo, K.; Barni, S.; et al. Addition of Radiotherapy to the Primary Tumour in Oligometastatic NSCLC: A Systematic Review and Meta-Analysis. Lung Cancer Amst. Neth. 2018, 126, 194–200. [Google Scholar] [CrossRef]
- Kagawa, Y.; Furuta, H.; Uemura, T.; Watanabe, N.; Shimizu, J.; Horio, Y.; Kuroda, H.; Inaba, Y.; Kodaira, T.; Masago, K.; et al. Efficacy of Local Therapy for Oligoprogressive Disease after Programmed Cell Death 1 Blockade in Advanced Non-Small Cell Lung Cancer. Cancer Sci. 2020, 111, 4442–4452. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.R.; Blumenschein, G.R.; Lee, J.J.; Hernandez, M.; Ye, R.; Camidge, D.R.; Doebele, R.C.; Skoulidis, F.; Gaspar, L.E.; Gibbons, D.L.; et al. Local Consolidative Therapy versus Maintenance Therapy or Observation for Patients with Oligometastatic Non-Small-Cell Lung Cancer without Progression after First-Line Systemic Therapy: A Multicentre, Randomised, Controlled, Phase 2 Study. Lancet Oncol. 2016, 17, 1672–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauml, J.M.; Mick, R.; Ciunci, C.; Aggarwal, C.; Davis, C.; Evans, T.; Deshpande, C.; Miller, L.; Patel, P.; Alley, E.; et al. Pembrolizumab After Completion of Locally Ablative Therapy for Oligometastatic Non-Small Cell Lung Cancer: A Phase 2 Trial. JAMA Oncol. 2019, 5, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET Phase II Randomized Trial. J. Clin. Oncol. 2020, 38, 2830–2838. [Google Scholar] [CrossRef]
- Iyengar, P.; Wardak, Z.; Gerber, D.E.; Tumati, V.; Ahn, C.; Hughes, R.S.; Dowell, J.E.; Cheedella, N.; Nedzi, L.; Westover, K.D.; et al. Consolidative Radiotherapy for Limited Metastatic Non-Small-Cell Lung Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2018, 4, e173501. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Z.; Cai, J.; Xu, P.; Liang, P.; Luo, Y.; Liu, A. Efficacy and Acquired Resistance for EGFR-TKI plus Thoracic SBRT in Patients with Advanced EGFR-Mutant Non-Small-Cell Lung Cancer: A Propensity-Matched Retrospective Study. BMC Cancer 2021, 21, 482. [Google Scholar] [CrossRef]
- Campo, M.; Al-Halabi, H.; Khandekar, M.; Shaw, A.T.; Sequist, L.V.; Willers, H. Integration of Stereotactic Body Radiation Therapy With Tyrosine Kinase Inhibitors in Stage IV Oncogene-Driven Lung Cancer. The Oncologist 2016, 21, 964–973. [Google Scholar] [CrossRef]
- Patel, S.; Rimner, A.; Foster, A.; Zhang, Z.-F.; Woo, K.; Yu, H.A.; Riely, G.; Wu, A. Pattern of Failure in Metastatic EGFR-Mutant NSCLC Treated With Erlotinib: A Role for Upfront Radiation Therapy? Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, S643. [Google Scholar] [CrossRef]
- Xu, Q.; Zhou, F.; Liu, H.; Jiang, T.; Li, X.; Xu, Y.; Zhou, C. Consolidative Local Ablative Therapy Improves the Survival of Patients With Synchronous Oligometastatic NSCLC Harboring EGFR Activating Mutation Treated With First-Line EGFR-TKIs. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2018, 13, 1383–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-S.; Bai, Y.-F.; Verma, V.; Yu, R.-L.; Tian, W.; Ao, R.; Deng, Y.; Xia, J.-L.; Zhu, X.-Q.; Liu, H.; et al. Randomized Trial of First-Line Tyrosine Kinase Inhibitor With or Without Radiotherapy for Synchronous Oligometastatic EGFR-Mutated Non-Small Cell Lung Cancer. JNCI J. Natl. Cancer Inst. 2022, 114, djac015. [Google Scholar] [CrossRef]
- Chan, O.S.H.; Lam, K.C.; Li, J.Y.C.; Choi, F.P.T.; Wong, C.Y.H.; Chang, A.T.Y.; Mo, F.K.F.; Wang, K.; Yeung, R.M.W.; Mok, T.S.K. ATOM: A Phase II Study to Assess Efficacy of Preemptive Local Ablative Therapy to Residual Oligometastases of NSCLC after EGFR TKI. Lung Cancer Amst. Neth. 2020, 142, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.; Kavanagh, B.D.; Deal, A.M.; Zagar, T.; Marks, L.B.; Stinchcombe, T.; Borghaei, H.; West, H.J.; Morris, D.E.; Villaruz, L.C.; et al. Phase II Study of Stereotactic Radiosurgery or Other Local Ablation Followed by Erlotinib for Patients with EGFR Mutation Who Have Previously Progressed on an EGFR Tyrosine Kinase Inhibitor (TKI). J. Clin. Oncol. 2017, 35, e20623. [Google Scholar] [CrossRef]
- Andrews Wright, N.M.; Goss, G.D. Third-Generation Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for the Treatment of Non-Small Cell Lung Cancer. Transl. Lung Cancer Res. 2019, 8, S247–S264. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Chu, Q.; Wang, H.; Zhou, F.; Gao, G.; Chen, X.; Li, X.; Zhao, C.; Xu, Q.; Li, W.; et al. EGFR-TKIs plus Local Therapy Demonstrated Survival Benefit than EGFR-TKIs Alone in EGFR-Mutant NSCLC Patients with Oligometastatic or Oligoprogressive Liver Metastases. Int. J. Cancer 2019, 144, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Borghetti, P.; Bonù, M.L.; Giubbolini, R.; Levra, N.G.; Mazzola, R.; Perna, M.; Visani, L.; Meacci, F.; Taraborrelli, M.; Triggiani, L.; et al. Concomitant Radiotherapy and TKI in Metastatic EGFR- or ALK-Mutated Non-Small Cell Lung Cancer: A Multicentric Analysis on Behalf of AIRO Lung Cancer Study Group. Radiol. Med. 2019, 124, 662–670. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, M. First-Line Tyrosine Kinase Inhibitor with or without Aggressive Upfront Local Radiation Therapy in Patients with EGFRm Oligometastatic Non-Small Cell Lung Cancer: Interim Results of a Randomized Phase III, Open-Label Clinical Trial (SINDAS) (NCT02893332). J. Clin. Oncol. 2020, 38, 9508. [Google Scholar] [CrossRef]
- Yu, H.A.; Sima, C.S.; Huang, J.; Solomon, S.B.; Rimner, A.; Paik, P.; Pietanza, M.C.; Azzoli, C.G.; Rizvi, N.A.; Krug, L.M.; et al. Local Therapy with Continued EGFR Tyrosine Kinase Inhibitor Therapy as a Treatment Strategy in EGFR-Mutant Advanced Lung Cancers That Have Developed Acquired Resistance to EGFR Tyrosine Kinase Inhibitors. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2013, 8, 346–351. [Google Scholar] [CrossRef]
- Yoshida, T.; Yoh, K.; Niho, S.; Umemura, S.; Matsumoto, S.; Ohmatsu, H.; Ohe, Y.; Goto, K. RECIST Progression Patterns during EGFR Tyrosine Kinase Inhibitor Treatment of Advanced Non-Small Cell Lung Cancer Patients Harboring an EGFR Mutation. Lung Cancer Amst. Neth. 2015, 90, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Doebele, R.C.; Pilling, A.B.; Aisner, D.L.; Kutateladze, T.G.; Le, A.T.; Weickhardt, A.J.; Kondo, K.L.; Linderman, D.J.; Heasley, L.E.; Franklin, W.A.; et al. Mechanisms of Resistance to Crizotinib in Patients with ALK Gene Rearranged Non-Small Cell Lung Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 1472–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conibear, J.; Chia, B.; Ngai, Y.; Bates, A.T.; Counsell, N.; Patel, R.; Eaton, D.; Faivre-Finn, C.; Fenwick, J.; Forster, M.; et al. Study Protocol for the SARON Trial: A Multicentre, Randomised Controlled Phase III Trial Comparing the Addition of Stereotactic Ablative Radiotherapy and Radical Radiotherapy with Standard Chemotherapy Alone for Oligometastatic Non-Small Cell Lung Cancer. BMJ Open 2018, 8, e020690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Number of Patients | Local Surgery Number of Patients (%) | Mastectomy Number of Patients or % | Positive Margins | Radiation Therapy | Survival Results with Local Treatment without Local Treatment | p Value | Characteristics Associated with Higher OS Rate in Multivariate Analysis | |
---|---|---|---|---|---|---|---|---|---|
Khan et al., 2002 [17] | 16 023 | 9162 (57%) | 61% | 25% | 63% | 27.7–31.8% (3 years) | 17.3% (3 years) | <0.0001 | Surgery, systemic treatment, number of metastatic sites |
Rapiti et al., 2006 [18] | 300 | 127 (42%) | 72% | 11% | 89% | 27% (5 years specific) | 12% (5 years) | 0.0002 | Age < 60 years, no N3 involvement, ER+, no visceral metastasis, no CNS metastasis, hormonal treatment, surgery with negative margins |
Babiera et al., 2006 [19] | 224 | 82 (37%) | 19 | 31 | 0 | 95% (3 years) | 79% (3 years) | 0.091 | Single metastatic site, HER2 +, Caucasian |
Gnerlich et al., 2007 [20] | 9734 | 4578 (47%) | 54% | NR | 41% | 36 months (median) | 21 months (median) | <0.001 | NR |
Fields et al., 2007 [21] | 409 | 187 (46) | 54% | 33% | 0 | 26.8 months (median) | 12.6 months (median) | 0.0005 | Surgery, exclusive bone metastatic disease |
Hazard et al., 2008 [22] | 111 | 47 (42.3%) | 67% | 29% | 67% | 43% (3 years) | 37% (3 years) | NR | NR |
Cady et al., 2008 [23] | 622 | 234 (38%) | NA | NR | NR | 44% (3 years) | 24% (3 years) | <0.0001 | Young patient, HR+, exclusive metastatic bone involvement |
Bafford et al., 2008 [24] | 147 | 61 (41%) | 65% | NR | NR | 42.2 months (median) | 28.3 months (median) | 0.093 | Surgery, no CNS metastasis, HR+, HER 2+++. |
Blanchard et al., 2008 [25] | 395 | 242 (61%) | 77.7% | NR | 99.7% | 27.1 months (median) | 16.8 months (median) | <0.0001 | Surgery, ER+, PR+, number of metastatic sites |
Ruiterkamp et al., 2009 [26] | 728 | 288 (39.6%) | 6 6% | NR | 34% | 24.5% (5 years) | 13.1% (5 years) | <0.0001 | Surgery, age, no more than one metastatic site, no concurrent disease (p = 0.06), systemic therapy |
Shien et al., 2009 [27] | 344 | 160 (47) | 84% | NR | 0 | 27 months (median) | 22 months (median) | 0.049 | Surgery, age <50 years, soft tissue or bone metastases |
Neuman et al., 2010 [28] | 186 | 69 (37%) | 40% | 41% | 13% | NR | NR | NR | ER+, PR+, HER2+++ |
Nguyen et al., 2012 [29] | 733 | 255 (67%) | 48.6% | 24.3% | RT alone: 22% surgery followed by RT: 11% | 21% (5 years) | 14% (5 years) | <0.001 | Age < 50 years, T1 tumor, RE+, R0 surgery, chemotherapy, hormone therapy, locoregional treatment |
Lang et al., 2013 [30] | 208 | 134 (64.4%) | 30.6% | NR | 32% | 56.1 months (median) | 37.2 months (median) | 0.002 | Chemotherapy |
Thomas et al., 2016 [31] | 21372 | 13042 (61%) | NR | NR | NA | 9.6% (10 years) | 2.9% (10 years) | <0.001 | NR |
Choi et al., 2018 [32] | 245 | 82 (34%) | 78% | NR | 66% | 71% (5 years) | 40% (5 years) | <0.001 | Endocrine therapy |
Le Scodan et al., 2009 [33] | 598 | 320 (55%) | 71 (21%) | 49 Gy breast/chest wall Boost 22 Gy | RT alone: 78% surgery followed by RT: 13% | 43.4% (3 years) | 26.7% (3 years) | 0.00002 | Single metastatic site, young age, locoregional treatment, no visceral metastases, N0 |
Bourgier et al., 2010 [34] | 308 | 239 (80%) | 92 (38%) | 50 Gy breast/wall with or without boost | RT alone: 62% | RT alone: 39% (3 years) surgery followed by RT: 57% (3 years) | NR | NR | |
Mauro et al., 2016 [35] | 125 | 125 | 0 | 50 Gy or hypofractionated 42 Gy: 56% 30 Gy 10 fractions: 40% | RT alone: 100% | 23.4 months (median) | NR | NR | Karnofsky, number of metastatic sites, hormone therapy |
Pons-Tostivint et al., 2018 [36] | 4276 | 1706 (40%) | 55% | NR | RT alone: 31% surgery followed by RT: 43% | 63 months (survivors > 1 year) | 43.9 months (survivors > 1 an) | 0.006 | Locoregional treatment; HR+/HER2-; HER2 +++. |
Trial | Number of Patients | Age (Median) | Local Surgery | Mastectomy | Radiation Therapy | Survival Results with Local Treatment without Local Treatment | p Value | Locoregional Progression with Local Treatment without Local Treatment | Low Metastatic Burden * OS HR (95%CI) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Badwe et al., 2015 [43] | 350 | 48 years | 173 | 72% | 80% | Median survival: 19.2 months Survival at 2 years: 41.9% | Median survival: 20.5 months Survival at 2 years: 43%. | HR 1.04, (95% CI 0.81–1.34) p = 0.79 | 5.3% | 10.6% | 1.16 (0.69–1.95) |
Soran et al., 2018 [44] | 274 | 52 years | 138 | 46% | 54% | Survival at 3 years: 60% Survival at 5 years 41.6% (46 months) | Survival at 3 years: 51% Survival at 5 years: 24.4% (37 months) | p = 0.10 p = 0.05 | 1% | 11% | Solitary bone metastases:0.55 (0.36–0.86) Solitary liver/pulmonary metastases: 0.69 (0.37–1.29 |
Khan et al., 2022 [45] | 256 | 56 years | 125 | 70% | 84% | Survival at 3 years: 68.4% (54.9 months) | Survival at 3 years: 67.9% (53.1 months) | HR 1.11, (90% CI 0.82–1.52); p = 0.57 | 16,3% | 39.8% | 1.18 (0.38–3.67) |
Author | Number of Patients and Follow Up | Treatment Modalities | Results |
---|---|---|---|
Culp et al., 2014 [51] | n = 8185 | LT = 374 | 5 years OS |
Median follow-up: 16 months | RP (n = 245) | 67.4% | |
BT (n = 129) | 52.6% | ||
NLT (n = 7811) | 22.5% (p < 0.001) | ||
RP is associated with CSM in MVA: | |||
(0.38, CI 0.27–0.53 p < 0.001) | |||
Fossati et al., 2015 [52] | n = 8197 | LT (n = 628) (either RP or RT) | Interaction LT and CSM (p < 0.0001) |
Median follow-up: 36 months LT, 31 months NLT | NLT (n = 7569) | Reduction in CSM for LT with a predicted 3-year mortality < 40% (p < 0.0001) | |
Satkunasivam et al., 2015 [56] | n = 4069 Median follow-up: 20 months | LT = 242 RP (n = 47) | 3- year OS 73% |
IMRT (n = 88) | 72% | ||
CRT (n = 107) | 37% | ||
NLT (n = 3827) | 34% | ||
IMRT was associated with a reduction of CSM | |||
(HR 0.38 CI 0.24–0.61 p < 0.001) | |||
Rusthoven et al., 2016 [53] | n = 6382 Median follow-up: 5.1 years | LT = 538 RP (n = 69) | 5-year OS 49% |
NLT, ADT alone (n = 5844) | 25% | ||
p < 0.001 | |||
Löppenberg et al., 2016 [54] | n = 15501 Median follow-up: 39 months | LT = 1470 RT (n = 1131) | 3-year OS 60% |
RP (n = 294) | 78% | ||
BT (n = 45) | 80% | ||
NLT (n = 14031) | 48% | ||
p < 0.001 | |||
LT was associated with a 39% risk reduction of mortality compared with NLT in MVA adjusted for PSA | |||
Gleason score, TNM stage, age | |||
Leyh-Bannurah et al., 2017 [55] | n = 13692 Median follow-up: 43.5 months LT, 31 months NLT | LT = 474, NLT = 13218 RT (n = 161) RP (n = 313) | LT was associated with lower CSM compared with NLT (HR 0.4 IC95% 0.32–0.5) |
Parikh et al., 2017 [57] | n = 6051 | LT = 827 | 2-year OS 5-year OS |
Median follow-up: 22 months | RP (n = 622) | 72.5% 45.7% LT | |
IMRT (n = 52) | 80.6% 17.1% NLT (p < 0.01) | ||
CRT (n = 153) | 47.6% | ||
NLT (n = 5224) | 48.9% | ||
p < 0.0001 | |||
Cho et al., 2016 [58] | n = 140 | LT = 38 | 3-year OS |
Median follow-up: 34 months | RT (n = 38) | 69% | |
NLT = 102 | 43% | ||
p = 0.004 |
Phase III | Location | Patients Included | Intervention | Outcome | End of Study |
---|---|---|---|---|---|
PEACE-1 [65] | France | 1173 | Arm A: ADT + docetaxel Arm B: AA+ADT + docetaxel Arm C: RT+ADT + docetaxel Arm D: AA+RT+ADT + docetaxel | OS PFS | 2032 |
SWOG NCT03678025 [71] | USA | 1273 | Arm I: Systemic treatment Arm II: Systemic treatment + (RP/RT) | OS | 2031 |
PRESTO [72] | France | 350 | Arm A: RT + Soc Arm B: Soc | TCR | 2027 |
Phase I I | |||||
PLATON [67] | Canada | 410 | Arm 1: Systemic treatment + prostate directed therapy if low metastatic burden | PFS | 2025 |
Arm 2: Systemic treatment+ local treatment of all sites | |||||
LoMPII [68] | Belgium | 1273 | Arm I: RP+/-ADT | Randomization feasibility | 2021 |
Arm II: RT+/-ADT | |||||
UHSeste NCT02913859 [69] | Croatia | 60 | Experimental arm: ADT + LHRHa +/- aA + prostate-pelvic RT | PFS | 2020 |
Standard arm: ADT alone | |||||
IP2 ATLANTA [70] | UK | 918 | Arm 1: Systemic treatment | pCR | 2024 |
Arm 2: Systemic treatment + TAMI | Adverse events | ||||
Arm 3: Systemic treatment + RP/RT +’metastases | PFS | ||||
MSKCC NCT04262154 [73] | USA | 44 | Atezolizumab + RT + (aA, prednisone, leuprolide) | 2-year FFS | September 2023 |
MD Anderson NCT01751438 [66] | USA | 180 | Arm 1: Systemic treatment | PFS | February 2023 |
Arm 2: Systemic treatment + RP/RT |
Author | Study Type | Number of Patients | Clinical Stage | Percentage of Patients with Targetable Mutations | Modality of RT | Irradiation of the Primitive and/or Metastases | Control Arm | Percentage of Treated Brain Metastases | Follow-Up | Median PFS | Median OS |
---|---|---|---|---|---|---|---|---|---|---|---|
Gomez et al. [14] | Randomized phase II | 49 | Synchronous | 12–20% | 48% SBRT | Primitive and all residual metastatic sites | Maintenance chemotherapy or watching | 25% | 38.8 months | 14.2 vs. 4.4 months (p = 0.02) | 41.2 vs. 18.9 months (p = 0.02) |
Palma et al. [106] | Randomized phase II | 18/99 | Metachronous Controlled primary | Not defined | 100% SBRT | All metastatic sites | Standard | 2% | 51 months | 11.6 vs. 5.4 months (p = 0.001) | 50.0 vs. 28.0 (p = 0.006) |
Iyengar et al. [107] | Randomized phase II | 29 | Synchronous | 0% | 100% SBRT | Primitive and all metastatic sites | No control arm (concomitant chemotherapy) | 0% | 9.6 months | 9.7 vs. 3.5 months (p = 0.1) | Not reached vs. 17 months |
Bauml et al. [105] | Single arm phase II | 45 | Synchronous or Metachronous | Not defined | 67% SBRT | Primitive and all metastatic sites | No control arm (concomitant pembrolizumab) | 36% | 25 months | 18.7 months | 41.6 months |
De Ruysscher et al. [95] | Single arm phase II | 39 | Synchronous | 7.7% | 0% SBRT to the primitive | Primitive and all metastatic sites | No control arm | 43.6% | 27.7 months | 12.1 months | 13.5 months |
Collen et al. [96] | Single arm phase II | 26 | Synchronous or Metachronous | 7.7% | 100% SBRT | Primitive and all metastatic sites | No control arm | 13% | 16.4 months | 11.2 months | 23 months |
Petty et al. [97] | Single arm phase II | 27 | Synchronous | Not defined | Not defined | All sites of residual disease | No control arm | 41% | 24.2 months | 11.2 months | 28.4 months |
Arrieta et al. [98] | Single arm phase II | 37 | Synchronous | 43.2% | 18.9% SBRT | Primitive and all metastatic sites | No control arm | 43.2% | 32.5 months | 23.5 months | Not reached |
Wang et al. [108] | Randomized phase II | 127 | Synchronous | 100% mEGFR | 100% SBRT | Primitive and all metastatic sites | Standard: first-line TKI | 0% | 23.6 months | 20.2 vs. 12.5 months (p < 0.001) | 25.5 vs. 17.4 months (p < 0.001) |
NCT | Clinical Setting | Definition of the Oligometastatic Stage | Study Type | Interventional Arm | Control Arm | Primary Endpoint |
---|---|---|---|---|---|---|
NCT03965468 | Synchronous oligometastatic and not-mutated NSCLC | ≤3 distant metastases One metastasis must be extra-cerebral | Phase II single arm | First phase:
PD-L1 inhibitor (durvalumab)Carboplatin + paclitaxelSBRT to all oligometastatic lesions Restaging at 3 months: if no progression, normofractionated to the primary | No control arm | 12 months PFS |
NCT05278052 | Synchronous oligometastatic and not-mutated NSCLC | 1–5 metastatic sites ≤3 metastases per organ | Phase III | Standard maintenance therapy + Local RT to all oligometastatic sites including the primary loco-regional disease | Standard maintenance therapy | OS |
NCT03391869 | Metastatic and not-mutated NSCLC | Not restricted to oligometastatic NSCLC | Phase III | Nivolumab + ipilimumab + local treatment of the primary (surgery of RT) after 2 cycles of immunotherapy | Nivolumab + Ipilimumab | OS |
NCT05222087 | Metastatic and not-mutated NSCLC | Not restricted to oligometastatic NSCLC | Phase II/III | First-line chemo-immunotherapy +/- SBRT to the primary | Chemo-immunotherapy | OS |
NCT02417662 | Synchronous oligometastatic and not-mutated NSCLC | 1–5 metastatic sites ≤3 metastases per organ | Phase III | Platinum-doublet chemotherapy + RT to the primary and the metastatic sites | Platinum-doublet chemotherapy | OS |
NCT03774732 | Advanced and not-mutated NSCLC | Not restricted to oligometastatic NSCLC | Phase III | Pembrolizumab + chemotherapy + RT to the primary and the metastatic sites | Pembrolizumab + chemotherapy | OS |
NCT04908956 | Synchronous oligometastatic and EGFR mutated NSCLC | 1–5 metastatic sites | Phase II single arm | Osimertinib + SBRT to the primary tumor and all metastatic sites | No control arm | Safety |
NCT05277844 | Synchronous oligometastatic and EGFR mutated NSCLC | 1–5 metastatic sites ≤3 metastases per organ | Randomized phase II | TKI + SBRT to the primary tumor and all metastatic sites | TKI alone | PFS |
NCT03410043 | Advanced and EGFR mutated NSCLC | Not restricted to oligometastatic NSCLC | Randomized phase II | Osimertinib + Local treatment (Surgery or RT) to the primary and/or metastatic sites | Osimertinib | PFS |
NCT03705403 | Oligometastatic NSCLC | 1–5 metastatic sites ≤2 brain metastases | Randomized phase II | RT to all metastatic sites + immunocytokine L19-IL2 (darleukin) | Standard of care: systemic treatment or local treatment (RT or surgery) or wait and see | PFS |
NCT05111197 | Oligopersistent and not-mutated EGFR | 1–5 metastatic sites ≤3 brain metastases | Randomized phase III | PD-1 or PD-L1 inhibitor + SBRT to metastatic and persistent sites | PD-1 or PD-L1 inhibitor | OS |
NCT03827577 | Oligopersistent or oligorecurrent with controlled primary | 1–3 metastatic sites | Randomized phase III | Standard medical treatment + LAT (SBRT, RFA or surgery) | Standard medical treatment | OS |
NCT03862911 | Oligopersistent or oligorecurrent with controlled primary | 1–3 metastatic sites | Randomized phase III | Standard medical treatment + SBRT to metastatic and persistent sites | Standard medical treatment | OS |
NCT03721341 | Oligopersistent or oligorecurrent with controlled primary | 4–10 metastatic sites | Randomized phase III | Standard medical treatment + SBRT to metastatic and persistent sites | Standard medical treatment | OS |
NCT03137771 | Metastatic NSCLC stable under standard medical treatment | Not restricted to oligometastatic NSCLC | Randomized phase II/III | Maintenance therapy + SBRT/RT to a single extracranial site | Maintenance therapy | Phase II: PFS Phase III: OS |
NCT03256981 | Oligoprogressive mutated EGFR | 1–3 oligoprogressive sites | Randomized II | Continued TKI therapy + SBRT | Continued TKI therapy | PFS |
NCT04405401 | Oligoprogression on ICI or TKI | 1–5 metastatic sites | Randomized II | Continued therapy + SBRT | Standard medical treatment | PFS/OS |
NCT02756793 | Oligoprogressive NSCLC | 1–5 metastatic sites | Randomized II | Continued therapy + SBRT | Standard medical treatment | PFS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghannam, Y.; Laville, A.; Kirova, Y.; Latorzeff, I.; Levy, A.; Zhou, Y.; Bourbonne, V. Radiotherapy of the Primary Disease for Synchronous Metastatic Cancer: A Systematic Review. Cancers 2022, 14, 5929. https://doi.org/10.3390/cancers14235929
Ghannam Y, Laville A, Kirova Y, Latorzeff I, Levy A, Zhou Y, Bourbonne V. Radiotherapy of the Primary Disease for Synchronous Metastatic Cancer: A Systematic Review. Cancers. 2022; 14(23):5929. https://doi.org/10.3390/cancers14235929
Chicago/Turabian StyleGhannam, Youssef, Adrien Laville, Youlia Kirova, Igor Latorzeff, Antonin Levy, Yuedan Zhou, and Vincent Bourbonne. 2022. "Radiotherapy of the Primary Disease for Synchronous Metastatic Cancer: A Systematic Review" Cancers 14, no. 23: 5929. https://doi.org/10.3390/cancers14235929
APA StyleGhannam, Y., Laville, A., Kirova, Y., Latorzeff, I., Levy, A., Zhou, Y., & Bourbonne, V. (2022). Radiotherapy of the Primary Disease for Synchronous Metastatic Cancer: A Systematic Review. Cancers, 14(23), 5929. https://doi.org/10.3390/cancers14235929