Trop-2 as a Therapeutic Target in Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Trop-2 Expression in Breast Cancer
2.1. Trop-2 as an Oncogene in Breast Cancer
2.2. Trop-2 as Determinant for Breast Cancer Survival
3. Trop-2 as a Therapeutic Target: From Bench to Bedside
4. Anti-Trop-2 Antibody Drug Conjugates: An Exciting Path Forward
4.1. Sacituzumab Govitecan: The First FDA Approved Anti-Trop-2 ADC
4.1.1. Sacituzumab Govitecan in TNBC
4.1.2. Sacituzumab Govitecan in Hormone Receptor Positive Breast Cancer
4.2. Daptopotamab Deruxtecan
5. Ongoing Clinical Trials Involving Trop-2 Inhibition
5.1. Trials in the Metastatic Setting
5.1.1. Patients with CNS Disease
5.1.2. SKB264-01: A Novel Anti-Trop-2 ADC
5.2. Combination Therapy with ADCs in the Metastatic Setting
5.2.1. Immunotherapy + Anti-Trop-2 ADCs
5.2.2. PARP Inhibitors + Anti Trop-2 ADCs
5.2.3. Targeted Therapy + Anti-Trop-2 ADCs
5.3. Trop-2 Inhibition in the Early Stage Setting
5.3.1. Neoadjuvant Therapy with Sacituzumab Govitecan
5.3.2. Trop-2 Inhibition with Residual Disease after Neoadjuvant Chemotherapy
5.3.3. Trop-2 Inhibition with Immunotherapy for Residual Disease
6. Promising Anti-Trop-2 Therapeutics in the Pre-Clinical Pipeline
6.1. TrMab-6: A Novel Anti-Trop-2 Antibody
6.2. Bispecific T-Cell/Trop-2 Antibody Therapy
6.3. Anti-Trop-2 Antibody Nanoparticles
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cubas, R.; Li, M.; Chen, C.; Yao, Q. Trop2: A possible therapeutic target for late stage epithelial carcinomas. Biochim. et Biophys. Acta 2009, 1796, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, D.M.; Stein, R.; Sharkey, R.M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget 2018, 9, 28989–29006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaman, S.; Jadid, H.; Denson, A.C.; Gray, J.E. Targeting Trop-2 in solid tumors: Future prospects. OncoTargets Ther. 2019, 12, 1781–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.J.; Lu, Z.H.; Wang, G.Q.; Pan, Z.Z.; Zhou, Z.W.; Yun, J.P.; Zhang, M.F.; Wan, D.S. Elevated expressions of MMP7, TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer. Int. J. Color. Dis. 2009, 24, 875–884. [Google Scholar] [CrossRef]
- Fong, D.; Moser, P.; Krammel, C.; Gostner, J.; Margreiter, R.; Mitterer, M.; Gastl, G.; Spizzo, G. High expression of TROP2 correlates with poor prognosis in pancreatic cancer. Br. J. Cancer 2008, 99, 1290–1295. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Liu, S.; Stoyanova, T. The role of Trop2 in prostate cancer: An oncogene, biomarker, and therapeutic target. Am. J. Clin. Exp. Urol. 2021, 9, 73–87. [Google Scholar]
- Guerra, E.; Trerotola, M.; Dell’Arciprete, R.; Bonasera, V.; Palombo, B.; El-Sewedy, T.; Ciccimarra, T.; Crescenzi, C.; Lorenzini, F.; Rossi, C.; et al. A bicistronic CYCLIN D1-TROP2 mRNA chimera demonstrates a novel oncogenic mechanism in human cancer. Cancer Res. 2008, 68, 8113–8121. [Google Scholar] [CrossRef] [Green Version]
- Muhlmann, G.; Spizzo, G.; Gostner, J.; Zitt, M.; Maier, H.; Moser, P.; Gastl, G.; Muller, H.M.; Margreiter, R.; Ofner, D.; et al. TROP2 expression as prognostic marker for gastric carcinoma. J. Clin. Pathol. 2008, 62, 152–158. [Google Scholar] [CrossRef]
- Nakashima, K.; Shimada, H.; Ochiai, T.; Kuboshima, M.; Kuroiwa, N.; Okazumi, S.; Matsubara, H.; Nomura, F.; Takiguchi, M.; Hiwasa, T. Serological identification of TROP2 by recombinant cDNA expression cloning using sera of patients with esophageal squamous cell carcinoma. Int. J. Cancer 2004, 112, 1029–1035. [Google Scholar] [CrossRef]
- Tomiyama, E.; Fujita, K.; Nakano, K.; Kuwahara, K.; Minami, T.; Kato, T.; Hatano, K.; Kawashima, A.; Uemura, M.; Takao, T.; et al. Trop-2 in Upper Tract Urothelial Carcinoma. Curr. Oncol. 2022, 29, 3911–3921. [Google Scholar] [CrossRef]
- Heist, R.S.; Guarino, M.J.; Masters, G.; Purcell, W.T.; Starodub, A.N.; Horn, L.; Scheff, R.J.; Bardia, A.; Messersmith, W.A.; Berlin, J.; et al. Therapy of Advanced Non–Small-Cell Lung Cancer With an SN-38-Anti-Trop-2 Drug Conjugate, Sacituzumab Govitecan. J. Clin. Oncol. 2017, 35, 2790–2797. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Chen, M.B.; Zhou, L.N.; Tang, M.; Liu, C.Y.; Lu, P.H. Impact of TROP2 expression on prognosis in solid tumors: A Systematic Review and Meta-analysis. Sci. Rep. 2016, 6, 33658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, S.; Guo, S.; Xie, J.; Xu, Y.; Lu, X.; Chen, Y. TROP2 correlates with microvessel density and poor prognosis in hilar cholangiocarcinoma. J. Gastrointest. Surg. 2013, 17, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, Y.; Bao, X.; Tian, J.; Liu, Y.; Yang, X. Overexpression of TROP2 predicts poor prognosis of patients with cervical cancer and promotes the proliferation and invasion of cervical cancer cells by regulating ERK signaling pathway. PLoS ONE 2013, 8, e75864. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zhu, H.; Zhang, S.; Yong, H.; Wang, W.; Zhou, Y.; Wang, B.; Wen, J.; Qiu, Z.; Ding, G.; et al. Trop2 is overexpressed in gastric cancer and predicts poor prognosis. Oncotarget 2015, 7, 6136–6145. [Google Scholar] [CrossRef] [Green Version]
- Aslan, M.; Hsu, E.-C.; Garcia-Marques, F.J.; Bermudez, A.; Liu, S.; Shen, M.; West, M.; Zhang, C.A.; Rice, M.A.; Brooks, J.D.; et al. Oncogene-mediated metabolic gene signature predicts breast cancer outcome. NPJ Breast Cancer 2021, 7, 141. [Google Scholar] [CrossRef] [PubMed]
- Vidula, N.; Yau, C.; Rugo, H.S. Trop2 gene expression (Trop2e) in primary breast cancer (BC): Correlations with clinical and tumor characteristics. J. Clin. Oncol. 2017, 35, 1075. [Google Scholar] [CrossRef]
- Wang, J.; Day, R.; Dong, Y.; Weintraub, S.J.; Michel, L. Identification of Trop-2 as an oncogene and an attractive therapeutic target in colon cancers. Mol. Cancer Ther. 2008, 7, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Trerotola, M.; Cantanelli, P.; Guerra, E.; Tripaldi, R.; Aloisi, A.L.; Bonasera, V.; Lattanzio, R.; de Lange, R.; Weidle, U.H.; Piantelli, M.; et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene 2012, 32, 222–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripani, E.; Sacchetti, A.; Corda, D.; Alberti, S. Human Trop-2 is a tumor-associated calcium signal transducer. Int. J. Cancer 1998, 76, 671–676. [Google Scholar] [CrossRef]
- Guerra, E.; Trerotola, M.; Aloisi, A.L.; Tripaldi, R.; Vacca, G.; La Sorda, R.; Lattanzio, R.; Piantelli, M.; Alberti, S. The Trop-2 signalling network in cancer growth. Oncogene 2012, 32, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Cubas, R.; Zhang, S.; Li, M.; Chen, C.; Yao, Q. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway. Mol. Cancer 2010, 9, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faião-Flores, F.; Coelho, P.R.P.; Arruda-Neto, J.D.T.; Maria-Engler, S.S.; Tiago, M.; Capelozzi, V.L.; Giorgi, R.R.; Maria, D.A. Apoptosis through Bcl-2/Bax and cleaved caspase up-regulation in melanoma treated by boron neutron capture therapy. PLoS ONE 2013, 8, e59639. [Google Scholar] [CrossRef] [PubMed]
- Rajah, T.T.; Peine, K.J.; Du, N.; Serret, C.A.; Drews, N.R. Physiological concentrations of genistein and 17β-estradiol inhibit MDA-MB-231 breast cancer cell growth by increasing BAX/BCL-2 and reducing pERK1/2. Anticancer Res. 2012, 32, 1181–1191. [Google Scholar]
- Boucher, M.J.; Morisset, J.; Vachon, P.H.; Reed, J.C.; Lainé, J.; Rivard, N. MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J. Cell. Biochem. 2000, 79, 355–369. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, H.; Wang, J.; Lu, M.; Zheng, F.; Wang, C.; Tang, X.; Xu, N.; Chen, R.; Zhang, D.; et al. A novel human Fab antibody for Trop2 inhibits breast cancer growth in vitro and in vivo. Int. J. Cancer 2014, 134, 1239–1249. [Google Scholar] [CrossRef]
- Zhao, W.; Kuai, X.; Zhou, X.; Jia, L.; Wang, J.; Yang, X.; Tian, Z.; Wang, X.; Lv, Q.; Wang, B.; et al. Trop2 is a potential biomarker for the promotion of EMT in human breast cancer. Oncol. Rep. 2018, 40, 759–766. [Google Scholar] [CrossRef] [Green Version]
- Izci, H.; Punie, K.; Waumans, L.; Laenen, A.; Wildiers, H.; Verdoodt, F.; Desmedt, C.; Ardui, J.; Smeets, A.; Han, S.N.; et al. Correlation of Trop-2 expression with clinicopathological characteristics, sTILs, AR expression and outcome in primary TNBC. J. Clin. Oncol. 2021, 39, e12558. [Google Scholar] [CrossRef]
- Ambrogi, F.; Fornili, M.; Boracchi, P.; Trerotola, M.; Relli, V.; Simeone, P.; La Sorda, R.; Lattanzio, R.; Querzoli, P.; Pedriali, M.; et al. Trop-2 is a determinant of breast cancer survival. PLoS ONE 2014, 9, e96993. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Huang, J.-F.; Qiu, J.-R.; Zhang, H.-L.; Tang, X.-J.; Li, H.; Wang, C.-J.; Wang, Z.-C.; Feng, Z.-Q.; Zhu, J. Significantly upregulated TACSTD2 and Cyclin D1 correlate with poor prognosis of invasive ductal breast cancer. Exp. Mol. Pathol. 2013, 94, 73–78. [Google Scholar] [CrossRef]
- Huang, H.; Groth, J.; Sossey-Alaoui, K.; Hawthorn, L.; Beall, S.; Geradts, J. Aberrant expression of novel and previously described cell membrane markers in human breast cancer cell lines and tumors. Clin. Cancer Res. 2005, 11, 4357–4364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Wu, Y.; Wu, J.; Lin, T.; Wu, C.-T.; Chang, Y.-L.; Jou, Y.; Hong, T.; Yang, P. TROP2 is epigenetically inactivated and modulates IGF-1R signalling in lung adenocarcinoma. EMBO Mol. Med. 2012, 4, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Shin, S.; Rao, N.V.; Um, W.; Jeon, J.; Ko, H.; Deepagan, V.G.; Kwon, S.; Lee, J.Y.; Park, J.H. Anti-Trop2 antibody-conjugated bioreducible nanoparticles for targeted triple negative breast cancer therapy. Int. J. Biol. Macromol. 2018, 110, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.; Brown, S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep. 2015, 35. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Ho, M. DNA damaging agent-based antibody-drug conjugates for cancer therapy. Antib. Ther. 2018, 1, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Vankemmelbeke, M.; Durrant, L. Third-generation antibody drug conjugates for cancer therapy--a balancing act. Ther. Deliv. 2016, 7, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Staudacher, A.H.; Brown, M.P. Antibody drug conjugates and bystander killing: Is antigen-dependent internalisation required? Br. J. Cancer 2017, 117, 1736–1742. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-W.; Lim, S.-O.; Chung, E.M.; Kim, Y.-S.; Park, A.H.; Yao, J.; Cha, J.-H.; Xia, W.; Chan, L.-C.; Kim, T.; et al. Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1. Cancer Cell. 2018, 33, 187–201.e10. [Google Scholar] [CrossRef] [Green Version]
- Nejadmoghaddam, M.R.; Minai-Tehrani, A.; Ghahremanzadeh, R.; Mahmoudi, M.; Dinarvand, R.; Zarnani, A.H. Antibody-Drug Conjugates: Possibilities and Challenges. Avicenna J. Med. Biotechnol. 2019, 11, 3–23. [Google Scholar]
- Boni, V.; Sharma, M.R.; Patnaik, A. The Resurgence of Antibody Drug Conjugates in Cancer Therapeutics: Novel Targets and Payloads. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, e58–e74. [Google Scholar] [CrossRef]
- Spring, L.M.; Nakajima, E.; Hutchinson, J.; Viscosi, E.; Blouin, G.; Weekes, C.; Rugo, H.; Moy, B.; Bardia, A. Sacituzumab Govitecan for Metastatic Triple-Negative Breast Cancer: Clinical Overview and Management of Potential Toxicities. Oncologist 2021, 26, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Sun, Y.; Liang, X.; Gu, X.; Ning, J.; Xu, Y.; Chen, S.; Pan, L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target. Ther. 2022, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Mathijssen, R.H.; Van Alphen, R.J.; Verweij, J.; Loos, W.J.; Nooter, K.; Stoter, G.; Sparreboom, A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res. 2001, 7, 2182–2194. [Google Scholar] [PubMed]
- Sharkey, R.M.; McBride, W.J.; Cardillo, T.M.; Govindan, S.V.; Wang, Y.; Rossi, E.A.; Chang, C.-H.; Goldenberg, D.M. Enhanced Delivery of SN-38 to Human Tumor Xenografts with an Anti-Trop-2-SN-38 Antibody Conjugate (Sacituzumab Govitecan). Clin. Cancer Res. 2015, 21, 5131–5138. [Google Scholar] [CrossRef] [Green Version]
- Starodub, A.N.; Ocean, A.J.; Shah, M.A.; Guarino, M.J.; Picozzi, V.J.; Vahdat, L.T.; Thomas, S.S.; Govindan, S.V.; Maliakal, P.P.; Wegener, W.A.; et al. First-in-Human Trial of a Novel Anti-Trop-2 Antibody-SN-38 Conjugate, Sacituzumab Govitecan, for the Treatment of Diverse Metastatic Solid Tumors. Clin. Cancer Res. 2015, 21, 3870–3878. [Google Scholar] [CrossRef] [Green Version]
- Ocean, A.J.; Starodub, A.N.; Bardia, A.; Vahdat, L.T.; Isakoff, S.J.; Guarino, M.; Messersmith, W.A.; Picozzi, V.J.; Mayer, I.A.; Wegener, W.A.; et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: Safety and pharmacokinetics. Cancer 2017, 123, 3843–3854. [Google Scholar] [CrossRef] [Green Version]
- Bardia, A.; Mayer, I.A.; Vahdat, L.T.; Tolaney, S.M.; Isakoff, S.J.; Diamond, J.R.; O’Shaughnessy, J.; Moroose, R.L.; Santin, A.D.; Abramson, V.G.; et al. Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2019, 380, 741–751. [Google Scholar] [CrossRef]
- Bardia, A.; Messersmith, W.; Kio, E.; Berlin, J.; Vahdat, L.; Masters, G.; Moroose, R.; Santin, A.; Kalinsky, K.; Picozzi, V.; et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: Final safety and efficacy results from the phase I/II IMMU-132-01 basket trial. Ann. Oncol. 2021, 32, 746–756. [Google Scholar] [CrossRef]
- Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [Google Scholar] [CrossRef]
- Bardia, A.; Tolaney, S.M.; Punie, K.; Loirat, D.; Oliveira, M.; Kalinsky, K.; Zelnak, A.; Aftimos, P.; Dalenc, F.; Sardesai, S.; et al. Biomarker analyses in the phase III ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann. Oncol. 2021, 32, 1148–1156. [Google Scholar] [CrossRef]
- Kalinsky, K.; Diamond, J.; Vahdat, L.; Tolaney, S.; Juric, D.; O’Shaughnessy, J.; Moroose, R.; Mayer, I.; Abramson, V.; Goldenberg, D.; et al. Sacituzumab govitecan in previously treated hormone receptor-positive/HER2-negative metastatic breast cancer: Final results from a phase I/II, single-arm, basket trial. Ann. Oncol. 2020, 31, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Bardia, A.; Marmé, F.; Cortes, J.; Schmid, P.; Loirat, D.; Tredan, O.; Ciruelos, E.; Dalenc, F.; Pardo, P.G.; et al. Primary results from TROPiCS-02: A randomized phase 3 study of sacituzumab govitecan (SG) versus treatment of physician’s choice (TPC) in patients (Pts) with hormone receptor–positive/HER2-negative (HR+/HER2-) advanced breast cancer. J. Clin. Oncol. 2022, 40, LBA1001. [Google Scholar] [CrossRef]
- Rugo, H. LBA76- Overall survival (OS) results from the phase III TROPiCS-02 study of sacituzumab govitecan (SG) vs treatment of physician’s choice (TPC) in patients with HR+/HER2- metastatic breast cancer. Ann. Oncol. 2022, 33, S1386. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Krop, I.; Juric, D.; Shimizu, T.; Tolcher, A.; Spira, A.; Mukohara, T.; Lisberg, A.E.; Kogawa, T.; Papadopoulos, K.P.; Hamilton, E.; et al. Abstract GS1-05: Datopotamab deruxtecan in advanced/metastatic HER2- breast cancer: Results from the phase 1 TROPION-PanTumor01 study. Cancer Res. 2022, 82, GS1-05. [Google Scholar] [CrossRef]
- Okajima, D.; Yasuda, S.; Maejima, T.; Karibe, T.; Sakurai, K.; Aida, T.; Toki, T.; Yamaguchi, J.; Kitamura, M.; Kamei, R.; et al. Datopotamab Deruxtecan, a Novel TROP2-directed Antibody-drug Conjugate, Demonstrates Potent Antitumor Activity by Efficient Drug Delivery to Tumor Cells. Mol. Cancer Ther. 2021, 20, 2329–2340. [Google Scholar] [CrossRef]
- Shaffer, C. Trop2 deal heats up antibody–drug conjugate space in cancer. Nat. Biotechnol. 2021, 39, 128–130. [Google Scholar] [CrossRef]
- Liu, Y.; Lian, W.; Zhao, X.; Diao, Y.; Xu, J.; Xiao, L.; Qing, Y.; Xue, T.; Wang, J. SKB264 ADC: A first-in-human study of SKB264 in patients with locally advanced unresectable/metastatic solid tumors who are refractory to available standard therapies. J. Clin. Oncol. 2020, 38, TPS3659. [Google Scholar] [CrossRef]
- Uchimiak, K.; Badowska-Kozakiewicz, A.M.; Sobiborowicz-Sadowska, A.; Deptała, A. Current State of Knowledge on the Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer Treatment: Approaches, Efficacy, and Challenges. Clin. Med. Insights Oncol. 2022, 16, 11795549221099869. [Google Scholar] [CrossRef]
- Wahner, A. Magrolimab Plus Azacitidine May Be a Potential Treatment Option in High-Risk MDS. Available online: https://www.onclive.com/view/magrolimab-plus-azacitidine-may-be-a-potential-treatment-option-in-high-risk-mds (accessed on 9 October 2022).
- Schmid, P.; Im, S.-A.; Armstrong, A.; Park, Y.H.; Chung, W.-P.; Nowecki, Z.; Lord, S.; Wysocki, P.J.; Lu, Y.-S.; Dry, H.; et al. BEGONIA: Phase 1b/2 study of durvalumab (D) combinations in locally advanced/metastatic triple-negative breast cancer (TNBC)—Initial results from arm 1, d+paclitaxel (P), and arm 6, d+trastuzumab deruxtecan (T-DXd). J. Clin. Oncol. 2021, 39, 1023. [Google Scholar] [CrossRef]
- Bardia, A.; Coates, J.; Spring, L.; Sun, S.; Juric, D.; Thimmiah, N.; Niemierko, A.; Ryan, P.; Patridge, A.; Peppercorn, J.; et al. Abstract 2638: Sacituzumab Govitecan, combination with PARP inhibitor, Talazoparib, in metastatic triple negative breas cancer (TNBC): Translational investigation. Cancer Res. 2022, 82, 2638. [Google Scholar] [CrossRef]
- Pauls, M.; Chia, S.; LeVasseur, N. Current and New Novel Combination Treatments for Metastatic Triple-Negative Breast Cancer. Curr. Oncol. 2022, 29, 4748–4767. [Google Scholar] [CrossRef] [PubMed]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.Y.; Ma, W.L.; Lu, Y.S. Role of Alpelisib in the Treatment of PIK3CA-Mutated Breast Cancer: Patient Selection and Clinical Perspectives. Ther. Clin. Risk Manag. 2021, 17, 193–207. [Google Scholar] [CrossRef]
- Spring, L.; Tolaney, S.M.; Desai, N.V.; Fell, G.; Trippa, L.; Comander, A.H.; Mulvey, T.M.; McLaughlin, S.; Ryan, P.; Rosenstock, A.S.; et al. Phase 2 study of response-guided neoadjuvant sacituzumab govitecan (IMMU-132) in patients with localized triple-negative breast cancer: Results from the NeoSTAR trial. J. Clin. Oncol. 2022, 40, 512. [Google Scholar] [CrossRef]
- Marmé, F. Safety interim analysis (SIA) of the phase III postneoadjuvant SASCIA study evaluating sacituzumab govitecan (SG) in patients with primary HER2-negative breast cancer (BC) at high relapse risk after neoadjuvant treatment. Ann. Oncol. 2022, 33, S148–S149. [Google Scholar] [CrossRef]
- Tanaka, T.; Ohishi, T.; Asano, T.; Takei, J.; Nanamiya, R.; Hosono, H.; Sano, M.; Harada, H.; Kawada, M.; Kaneko, M.K.; et al. An anti-TROP2 monoclonal antibody TrMab-6 exerts antitumor activity in breast cancer mouse xenograft models. Oncol. Rep. 2021, 46. [Google Scholar] [CrossRef]
- Liu, H.; Bai, L.; Huang, L.; Ning, N.; Li, L.; Li, Y.; Dong, X.; Du, Q.; Xia, M.; Chen, Y.; et al. Bispecific antibody targeting TROP2xCD3 suppresses tumor growth of triple negative breast cancer. J. Immunother. Cancer 2021, 9. [Google Scholar] [CrossRef]
Clinical Trial | Clinical Outcomes | Full Population | Without Brain Metastases | ||
---|---|---|---|---|---|
Sacituzumab Govitecan | Chemotherapy | Sacituzumab Govitecan | Chemotherapy | ||
Metastatic TNBC ASCENT Trial | N = 267 | N = 262 | N = 235 | N = 233 | |
Median PFS, mo (95% CI) | 4.8 (4.1–5.8) | 1.7 (1.5–2.5) | 5.6 (4.3–6.3) | 1.7 (1.5–2.6) | |
Median OS, mo (95% CI) | 11.8 (10.5–13.8) | 6.9 (5.9–7.7) | 12.1 (10.7–14.0) | 6.7 (5.8–7.7) | |
Objective Response Rate no. of patients (%) | 83 (31) | 11 (4) | 82 (35) | 11 (5) | |
Clinical Benefit Rate * no. of patients (%) | 108 (40) | 21 (8) | 105 (45) | 20 (9) | |
Metastatic HR+HER2- TROPiCS-02 Trial | N = 272 | N = 271 | |||
Median PFS, mo (95% CI) | 5.5 (4.2–7.0) | 4.0 (3.1–4.4) | |||
6-month PFS rate (95% CI) | 46.1 (39.4–52.6) | 30.3 (23.6–37.3) | |||
9-month PFS rate (95% CI) | 32.5 (25.9–39.2) | 17.3 (11.5–23.2) | |||
12-month PFS rate (95% CI) | 21.3 (15.2–28.1) | 7.1 (2.8–13.9) | |||
Median OS, mo (95% CI) | 14.4 | 11.2 | |||
Objective Response Rate no. of patients (%) | 57 (21) | 38 (14) | |||
Median Duration of Response, mo (95% CI) | 8.1 (6.7–9.1) | 5.6 (3.8–7.9) |
Trial | Clinical Trials Identifier | Study Phase | Trop-2 Inhibitor | Study Design | Endpoints |
---|---|---|---|---|---|
SINGLE AGENTS | |||||
Triple Negative Breast Cancer | |||||
ASCENT * | NCT02574455 | III | Sacituzumab govitecan | SG vs. PCT | mPFS 5.6 mo SG vs. 1.7 mo chemo; mOS 12.1 mo SG vs. 6.7 mo chemo |
SG in CNS Disease | NCT04647916 | II | Sacituzumab govitecan | SG in HER2 negative patients with at least one brain met >1.0 cm | Primary: ORR; Secondary: PFS, OS, safety & tolerability in patients with CNS disease |
TROPION PanTUMOR01 | NCT03401385 | I | Daptopotamab deruxtecan | Dato-DXd in advanced tumors including TNBC | ORR 34% & disease control rate of 77% at 7.6 mo |
TROPION Breast02 | NCT05374512 | III | Daptopotamab deruxtecan | Dato-DXd vs. PCT in pts who are not candidates for PD-L1 inhibitor therapy | Primary: PFS, OS Secondary: ORR, DoR, TTD, TST |
SKB264-01 | NCT04152499 | I/II | SKB264-01 | SKB264-01 in advanced solid tumors including TNBC | MTD/RP2D, ORR |
Trial | Clinical Trial Identifier | Study Phase | Trop-2 Inhibitor | Study Design | Endpoints |
---|---|---|---|---|---|
Single Agent | |||||
Metastatic Hormone Receptor-Positive, HER2 Negative | |||||
TROPiCS-02 * | NCT03901339 | III | Sacituzumab govitecan | SG vs. PCT | ORR 57% SG vs. 38% chemo; PFS 5.5 mo SG vs. 4.0 chemo; OS 14.4 mo SG vs. 11.2 chemo |
TROPION-Breast01 | NCT05104866 | III | Daptopotamab deruxtecan | Dato-DXd | Primary: PFS, OS Secondary: ORR, DoR, DCR |
Combination with Immunotherapy | |||||
Saci-IO HR+ | NCT04448886 | II | Sacituzumab govitecan | SG +/− pembrolizumab | Primary: PFS Secondary: ORR, OS, CBR, TTP, DoR |
Trial | Clinical Trial Identifier | Study Phase | Trop-2 Inhibitor | Study Design | Endpoints |
---|---|---|---|---|---|
Combination with Immunotherapy | |||||
Triple Negative Breast Cancer | |||||
ASCENT-04 | NCT05382286 | III | Sacituzumab govitecan | SG + pembrolizumab vs. PCT + pembrolizumab in PDL-1 positive | Primary: PFS Secondary: OS, ORR, DoR, TTR |
Saci-IO | NCT04468061 | II | Sacituzumab govitecan | SG + pembrolizumab in PDL-1 negative | Primary: PFS; Secondary: OS, ORR, DoR, time to ORR, TTP, CBR |
InCITe | NCT03971409 | II | Sacituzumab govitecan | SG + avelumab | Primary: BORR Secondary: ORR, CBR, mPFS, mOS, PROMs |
SG + atezolizumab | NCT03424005 | I/II | Sacituzumab govitecan | SG + atezolizumab | Primary: ORR Secondary: PFS, DCR, OS, DOR |
SG + magrolimab | NCT04958785 | II | Sacituzumab govitecan | SG + magrolimab | % of pts with DLT, AEs, PFS, ORR |
BEGONIA * | NCT03742102 | II | Daptopotamab deruxtecan | Dato-DXd + durvalumab with or without paclitaxel | ORR 66.7% dato-DXd + durva vs. 58.3% durva + chemo |
Combination with Targeted Therapies | |||||
SG + PARPi | NCT04039230 | I/II | Sacituzumab govitecan | SG + talazoparib | Primary: DLTs; Secondary: time to tumor response, DoR, PFS, OS |
ASSET | NCT05143229 | I | Sacituzumab govitecan | SG + alpelisib | Primary: RP2D; Secondary: PKs, ORR |
EARLY STAGE SETTING | |||||
---|---|---|---|---|---|
Neoadjuvant | |||||
NeoSTAR * | NCT04230109 | II | Sacituzumab govitecan | SG in TNBC with at least 1 lesion > 1 cm or greater in size; combination cohort with SG + pembrolizumab followed by standard chemo | pCR at 12 weeks |
Adjuvant | |||||
SASCIA | NCT04595565 | III | Sacituzumab govitecan | SG vs. PCT (observation or capecitabine) in residual disease after NACT with high risk HER2 negative disease | Primary: iDFS; Secondary: OS, distant disease-free survival, locoregional recurrence-free survival |
ASPRIA | NCT04434040 | II | Sacituzumab govitecan | SG + atezolizumab if residual disease in breast or LN or presence of ctDNA after NACT | Primary: rate of undetectable ctDNA after 6 cycles; Secondary: rate of undetectable ctDNA after 1 and 3 cycles, IDF survival rate, distant metastasis free survival rate, OS at 3 years |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakach, E.; Sacks, R.; Kalinsky, K. Trop-2 as a Therapeutic Target in Breast Cancer. Cancers 2022, 14, 5936. https://doi.org/10.3390/cancers14235936
Sakach E, Sacks R, Kalinsky K. Trop-2 as a Therapeutic Target in Breast Cancer. Cancers. 2022; 14(23):5936. https://doi.org/10.3390/cancers14235936
Chicago/Turabian StyleSakach, Elizabeth, Ruth Sacks, and Kevin Kalinsky. 2022. "Trop-2 as a Therapeutic Target in Breast Cancer" Cancers 14, no. 23: 5936. https://doi.org/10.3390/cancers14235936
APA StyleSakach, E., Sacks, R., & Kalinsky, K. (2022). Trop-2 as a Therapeutic Target in Breast Cancer. Cancers, 14(23), 5936. https://doi.org/10.3390/cancers14235936