Immunological and Genomic Analysis Reveals Clinically Relevant Distinctions between Angiosarcoma Subgroups
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Objectives
2.2. Patients
2.3. Tumor Microenvironment
2.4. Genomic Analysis
2.5. Statistical Analysis
3. Results
3.1. Higher Immune Infiltration in sAS
3.2. Genomic Landscape
3.3. Combined Immunological and Genomic Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AS | Angiosarcoma |
DDR | DNA damage response |
FFPE | Formalin-Fixed Paraffin Embedded |
ICI | Immune Checkpoint Inhibition |
IQR | Interquartile Range |
mIHC | Multiplex immunohistochemistry (mIHC) |
NK | Natural Killer |
pAS | Primary Angiosarcoma |
PD-1 | Programmed Cell Death Ligand 1 |
PFS | Progression Free Survival |
OS | Overall survival |
PARP | Poly (ADP-ribose) polymerase |
RT | Radiotherapy |
sAS | Secondary Angiosarcoma |
STS | Soft Tissue Sarcoma |
TIL | Tumor Infiltrating Lymphocyte |
TME | Tumor Microenvironment |
TMA | Tissue microarrays |
TMB | Tumor Mutational Burden |
TSO500 | Trusight Oncology 500 |
UV | Ultra-violet |
References
- Young, R.J.; Brown, N.J.; Reed, M.W.; Hughes, D.; Woll, P.J. Angiosarcoma. Lancet Oncol. 2010, 11, 983–991. [Google Scholar] [CrossRef]
- Fayette, J.; Martin, E.; Piperno-Neumann, S.; Le Cesne, A.; Robert, C.; Bonvalot, S.; Ranchère, D.; Pouillart, P.; Coindre, J.M.; Blay, J.Y. Angiosarcomas, a heterogeneous group of sarcomas with specific behavior depending on primary site: A retrospective study of 161 cases. Ann. Oncol. 2007, 18, 2030–2036. [Google Scholar] [CrossRef] [PubMed]
- Berebichez-Fridman, R.; Deutsch, Y.E.; Joyal, T.M.; Olvera, P.M.; Benedetto, P.W.; Rosenberg, A.E.; Kett, D.H. Stewart-Treves Syndrome: A Case Report and Review of the Literature. Case Rep. Oncol. 2016, 9, 205–211. [Google Scholar] [CrossRef]
- van der Graaf, W.T.; Blay, J.Y.; Chawla, S.P.; Kim, D.-W.; Bui-Nguyen, B.; Casali, P.G.; Schöffski, P.; Aglietta, M.; Staddon, A.P.; Beppu, Y.; et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012, 379, 1879–1886. [Google Scholar] [CrossRef]
- Kollár, A.; Jones, R.L.; Stacchiotti, S.; Gelderblom, H.; Guida, M.; Grignani, G.; Steeghs, N.; Safwat, A.; Katz, D.; Duffaud, F.; et al. Pazopanib in advanced vascular sarcomas: An EORTC Soft Tissue and Bone Sarcoma Group (STBSG) retrospective analysis. Acta Oncol. 2016, 56, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Florou, V.; Wilky, B.A. Current and Future Directions for Angiosarcoma Therapy. Curr. Treat. Options Oncol. 2018, 19, 14. [Google Scholar] [CrossRef] [PubMed]
- Lahat, G.; Dhuka, A.R.; Hallevi, H.; Xiao, L.; Zou, C.; Smith, K.D.; Phung, T.L.; Pollock, R.E.; Benjamin, R.; Hunt, K.K.; et al. Angiosarcoma: Clinical and molecular insights. Ann. Surg. 2010, 251, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Weidema, M.E.; Flucke, U.E.; Van Der Graaf, W.T.A.; Ho, V.K.Y.; Hillebrandt-Roeffen, M.H.S.; Versleijen-Jonkers, Y.M.H.; Husson, O.; Desar, I.M.E. Dutch Nationwide Network and Registry of Histo- and Cytopathology (PALGA)-Group Prognostic Factors in a Large Nationwide Cohort of Histologically Confirmed Primary and Secondary Angiosarcomas. Cancers 2019, 11, 1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Postow, M.A.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N. Engl. J. Med. 2015, 372, 2006–2017. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Burgess, M.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Hu, J.; D’Angelo, S.; Attia, S.; Riedel, R.F.; Priebat, D.A.; et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): A multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.M.; Shenasa, E.; Nielsen, T.O. Sarcomas: Immune biomarker expression and checkpoint inhibitor trials. Cancer Treat. Rev. 2020, 91, 102115. [Google Scholar] [CrossRef] [PubMed]
- Florou, V.; Rosenberg, A.E.; Wieder, E.; Komanduri, K.V.; Kolonias, D.; Uduman, M.; Castle, J.C.; Buell, J.S.; Trent, J.S.; Wilky, B.A.; et al. Angiosarcoma patients treated with immune checkpoint inhibitors: A case series of seven patients from a single institution. J. Immunother. Cancer 2019, 7, 213. [Google Scholar] [CrossRef] [Green Version]
- Momen, S.; Fassihi, H.; Davies, H.R.; Nikolaou, C.; Degasperi, A.; Stefanato, C.M.; Dias, J.; Dasgupta, D.; Craythorne, E.; Sarkany, R.; et al. Dramatic response of metastatic cutaneous angiosarcoma to an immune checkpoint inhibitor in a patient with xeroderma pigmentosum: Whole-genome sequencing aids treatment decision in end-stage disease. Mol. Case Stud. 2019, 5, a004408. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, S.; Gimber, L.H.; Cranmer, L.; McBride, A.; Kraft, A.S. Angiosarcoma treated successfully with anti-PD-1 therapy—A case report. J. Immunother. Cancer 2017, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, E.; Antonescu, C.R.; Smith, S.; Bradic, M.; Kashani, D.; Richards, A.L.; Donoghue, M.; Kelly, C.M.; Nacev, B.; Chan, J.; et al. Clinical, genomic, and transcriptomic correlates of response to immune checkpoint blockade-based therapy in a cohort of patients with angiosarcoma treated at a single center. J. Immunother. Cancer 2022, 10, e004149. [Google Scholar] [CrossRef]
- Hamacher, R.; Kämpfe, D.; Reuter-Jessen, K.; Pöttgen, C.; Podleska, L.E.; Farzaliyev, F.; Steinau, H.-U.; Schuler, M.; Schildhaus, H.-U.; Bauer, S. Dramatic Response of a PD-L1–Positive Advanced Angiosarcoma of the Scalp to Pembrolizumab. JCO Precis. Oncol. 2018, 2, 1–7. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Richards, A.L.; Conley, A.P.; Woo, H.J.; Dickson, M.A.; Gounder, M.; Kelly, C.; Keohan, M.L.; Movva, S.; Thornton, K.; et al. Pilot study of bempegaldesleukin in combination with nivolumab in patients with metastatic sarcoma. Nat. Commun. 2022, 13, 3477. [Google Scholar] [CrossRef]
- Davis, A.A.; Patel, V.G. The role of PD-L1 expression as a predictive biomarker: An analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer 2019, 7, 1–8. [Google Scholar] [CrossRef]
- Lu, S.; Stein, J.E.; Rimm, D.L.; Wang, D.W.; Bell, J.M.; Johnson, D.B.; Sosman, J.A.; Schalperet, K.A.; Anders, R.A.; Wang, W.; et al. Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade: A Systematic Review and Meta-analysis. JAMA Oncol. 2019, 5, 1195–1204. [Google Scholar] [CrossRef]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Taube, J.M. Unleashing the immune system: PD-1 and PD-Ls in the pre-treatment tumor microenvironment and correlation with response to PD-1/PD-L1 blockade. Oncoimmunology 2014, 3, e963413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petitprez, F.; de Reyniès, A.; Keung, E.Z.; Chen, T.W.-W.; Sun, C.-M.; Calderaro, J.; Jeng, Y.-M.; Hsiao, L.-P.; Lacroix, L.; Bougoüin, A.; et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020, 577, 556–560. [Google Scholar] [CrossRef]
- Vikas, P.; Borcherding, N.; Chennamadhavuni, A.; Garje, R. Therapeutic Potential of Combining PARP Inhibitor and Immunotherapy in Solid Tumors. Front. Oncol. 2020, 10, 570. [Google Scholar] [CrossRef] [PubMed]
- Painter, C.A.; Jain, E.; Tomson, B.N.; Dunphy, M.; Stoddard, R.E.; Thomas, B.S.; Damon, A.L.; Shah, S.; Kim, D.; Gómez Tejeda Zañudo, J.; et al. The Angiosarcoma Project: Enabling genomic and clinical discoveries in a rare cancer through patient-partnered research. Nat. Med. 2020, 26, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Espejo-Freire, A.P.; Elliott, A.; Rosenberg, A.; Costa, P.A.; Barreto-Coelho, P.; Jonczak, E.; D’Amato, G.; Subhawong, T.; Arshad, J.; Diaz-Perez, J.A.; et al. Genomic Landscape of Angiosarcoma: A Targeted and Immunotherapy Biomarker Analysis. Cancers 2021, 13, 4816. [Google Scholar] [CrossRef] [PubMed]
- Gorris, M.A.J.; Halilovic, A.; Rabold, K.; van Duffelen, A.; Wickramasinghe, I.N.; Verweij, D.; Wortel, I.M.N.; Textor, J.C.; de Vries, I.J.M.; Figdor, C.G. Eight-Color Multiplex Immunohistochemistry for Simultaneous Detection of Multiple Immune Checkpoint Molecules within the Tumor Microenvironment. J. Immunol. 2017, 200, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Gorris, M.A.J.; van der Woude, L.L.; Kroeze, L.; Bol, K.; Verrijp, K.; Amir, A.L.; Meek, J.; Textor, J.; Figdor, C.G.; de Vries, I.J.M. Paired primary and metastatic lesions of patients with ipilimumab-treated melanoma: High variation in lymphocyte infiltration and HLA-ABC expression whereas tumor mutational load is similar and correlates with clinical outcome. J. Immunother. Cancer 2022, 10, e004329. [Google Scholar] [CrossRef]
- Sultan, S.; Gorris, M.A.G.; van der Woude, L.L.; Buytenhuijs, F.; Martynova, E.; van Wilpe, S.; Verrijp, K.; Figdor, C.G.; de Vries, I.G.M.; Textor, J. A Segmentation-Free Machine Learning Architecture for Immune Land-scape Phenotyping in Solid Tumors by Multichannel Imaging. bioRxiv 2021. [Google Scholar] [CrossRef]
- Kroeze, L.I.; de Voer, R.M.; Kamping, E.J.; von Rhein, D.; Jansen, E.A.; Hermsen, M.J.; Barberis, M.C.; Botling, J.; Garrido-Martin, E.M.; Haller, F.; et al. Evaluation of a Hybrid Capture–Based Pan-Cancer Panel for Analysis of Treatment Stratifying Oncogenic Aberrations and Processes. J. Mol. Diagn. 2020, 22, 757–769. [Google Scholar] [CrossRef]
- de Bitter, T.J.J.; Kroeze, L.I.; de Reuver, P.R.; van Vliet, S.; Vink-Börger, E.; von Rhein, D.; Jansen, E.A.M.; Nagtegaal, I.D.; Ligtenberg, M.J.L.; van der Post, R.S. Unraveling Neuroendocrine Gallbladder Cancer: Comprehensive Clinicopathologic and Molecular Characterization. JCO Precis Oncol. 2021, 5, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boxberg, M.; Steiger, K.; Lenze, U.; Rechl, H.; von Eisenhart-Rothe, R.; Wörtler, K.; Weichert, W.; Langer, R.; Specht, K. PD-L1 and PD-1 and characterization of tumor-infiltrating lymphocytes in high grade sarcomas of soft tissue—Prognostic implications and rationale for immunotherapy. OncoImmunology 2017, 7, e1389366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.Y.; Lim, J.Q.; Yeong, J.; Ravi, V.; Guan, P.; Boot, A.; Tay, T.K.Y.; Selvarajan, S.; Nasir, N.D.; Loh, J.H.; et al. Multiomic analysis and immunoprofiling reveal distinct subtypes of human angiosarcoma. J. Clin. Investig. 2020, 130, 5833–5846. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Ng, A.W.T.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; et al. The repertoire of mutational signatures in human cancer. Nature 2020, 578, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Weidema, M.E.; Van De Geer, E.; Flucke, U.E.; Koelsche, C.; Desar, I.M.E.; Kemmeren, P.; Hillebrandt-Roeffen, M.H.S.; Ho, V.K.Y.; Van Der Graaf, W.T.A.; Versleijen-Jonkers, Y.M.H.; et al. DNA Methylation Profiling Identifies Distinct Clusters in Angiosarcomas. Clin. Cancer Res. 2020, 26, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Jia, M.; He, Z.; Liu, X.-S. APOBEC3B and APOBEC mutational signature as potential predictive markers for immunotherapy response in non-small cell lung cancer. Oncogene 2018, 37, 3924–3936. [Google Scholar] [CrossRef]
- Brown, J.S.; Sundar, R.; Lopez, J. Combining DNA damaging therapeutics with immunotherapy: More haste, less speed. Br. J. Cancer 2017, 118, 312–324. [Google Scholar] [CrossRef] [Green Version]
- Conway, J.R.; Kofman, E.; Mo, S.S.; Elmarakeby, H.; Van Allen, E. Genomics of response to immune checkpoint therapies for cancer: Implications for precision medicine. Genome Med. 2018, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Zhang, Q.; Wang, R.; Li, Y.; Sun, Y.; Yang, L. Targeting DNA Damage Repair for Immune Checkpoint Inhibition: Mechanisms and Potential Clinical Applications. Front. Oncol. 2021, 11, 648687. [Google Scholar] [CrossRef]
- Teo, M.Y.; Seier, K.; Ostrovnaya, I.; Regazzi, A.M.; Kania, B.E.; Moran, M.M.; Cipolla, C.K.; Bluth, M.J.; Chaim, J.; Al-Ahmadie, H.; et al. Alterations in DNA Damage Response and Repair Genes as Potential Marker of Clinical Benefit From PD-1/PD-L1 Blockade in Advanced Urothelial Cancers. J. Clin. Oncol. 2018, 36, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Peyraud, F.; Italiano, A. Combined PARP Inhibition and Immune Checkpoint Therapy in Solid Tumors. Cancers 2020, 12, 1502. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Jain, A.D.; Truica, M.I.; Izquierdo-Ferrer, J.; Anker, J.F.; Lysy, B.; Sagar, V.; Luan, Y.; Chalmers, Z.R.; Unno, K.; et al. Small-Molecule MYC Inhibitors Suppress Tumor Growth and Enhance Immunotherapy. Cancer Cell 2019, 36, 483–497.e15. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, R.; Lin, Z.; Zhang, S.; Chen, Y.; Tang, J.; Hong, J.; Zhou, X.; Zong, Y.; Xu, Y.; et al. CDK7 inhibitor THZ1 enhances antiPD-1 therapy efficacy via the p38α/MYC/PD-L1 signaling in non-small cell lung cancer. J. Hematol. Oncol. 2020, 13, 1–16. [Google Scholar] [CrossRef]
- Tomassen, T.; Weidema, M.E.; Hillebrandt-Roeffen, M.H.S.; van der Horst, C.; Desar, I.M.E.; Flucke, U.E.; Versleijen-Jonkers, Y.M.H.; PALGA Group. Analysis of PD-1, PD-L1, and T-cell infiltration in angiosarcoma pathogenetic subgroups. Immunol. Res. 2022, 70, 256–268. [Google Scholar] [CrossRef]
- Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016, 17, e542–e551. [Google Scholar] [CrossRef]
- World Health Organization. Soft Tissue and Bone Tumours, 5th ed.; IARC Press: Lyon, France, 2020. [Google Scholar]
Primary AS | Location Total Group (n = 79) | Location TSO Selection (n = 25) |
---|---|---|
Soft tissue | Leg (n = 3) Neck (n = 1) Face (n = 1) Bottom (n = 1) Retroperitoneal (n = 1) Ureter (n = 1) Abdomen (n = 1) Mediastinum (n = 1) Lumbar region (n = 1) | Leg (n = 1) Face (n = 1) Retroperitoneal (n = 1) Mediastinum (n = 1) |
Primary breast | Mamma (n = 20) | Mamma (n = 5) |
Not UV associated skin | Leg (n = 10) Abdomen (n = 2) Foot (n = 1) Thorax (n = 1) Unknown (n = 1) | Leg (n = 4) |
Visceral | Liver (n = 7) Intestine (n = 6) Spleen (n = 5) Kidney (n = 3) Adrenal gland (n = 1) Thyroid (n = 4) Stomach (n = 1) Pleura (n = 1) | Thyroid (n = 2) Kidney (n = 1) Adrenal gland (n = 1) Liver (n = 1) Stomach (n = 1) Spleen (n = 1) |
Heart | Heart (n = 4) Aorta (n = 1) | Heart (n = 4) Aorta (n = 1) |
Secondary AS | Location Total Group (n = 178) | Location TSO Selection (n = 25) |
RT-associated | Mamma (n = 111) Thorax (n = 5) Abdomen (n = 3) Scalp (n = 2) Arm (n = 2) Peri-anal (n = 1) Bladder (n = 1) Shoulder (n = 1) | Mamma (n = 13) |
UV associated | Scalp (n = 27) Face (n = 10) Neck (n = 1) | Scalp (n = 5) Face (n = 1) Neck (n = 1) |
Stewart Treves | Arm (n = 11) Leg (n = 2) Mamma (n = 1) | Arm (n = 4) Mamma (n = 1) |
Median Cells/mm2 (Interquartile Range) | Primary AS (n = 79) | Secondary AS (n = 178) | p-Value |
---|---|---|---|
CD3+ T-cells | 245 (342) | 456 (758) | p < 0.001 |
CD8+ T-cells | 84 (129) | 111 (217) | p = 0.033 |
FoxP3+ T-cells | 22 (32) | 43(95) | p < 0.001 |
CD4+ T-cells | 127 (145) | 247 (470) | p < 0.001 |
CD20+ B-cells | 22 (73) | 32 (121) | p = 0.417 |
Primary AS (n = 79) | Secondary AS (n = 178) | |||||||
---|---|---|---|---|---|---|---|---|
Angiosarcoma Subgroup | Soft Tissue n = 11 | Breast n = 20 | Skin Not UV n = 15 | Visceral n = 28 | Heart n = 5 | RT-Associated n = 126 | UV Associated n = 38 | Stewart Treves n = 14 |
Median Cells/mm2 (IQR) | ||||||||
CD3+ T-cells | 245 (549) | 234 (246) | 232 (280) | 362 (440) | 110 (204) | 355 (605) | 817 (862) | 588 (734) |
CD8+ T-cells | 99 (406) | 78 (94) | 74 (60) | 140 (194) | 15 (71) | 101 (186) | 184 (230) | 87 (209) |
FoxP3+ T-cells | 28 (63) | 14 (35) | 32 (50) | 14 (25) | 7 (27) | 32 (60) | 92 (161) | 23 (35) |
CD4+ T-cells | 94 (137) | 127 (118) | 145 (143) | 150 (246) | 88 (107) | 190 (355) | 461 (460) | 457 (608) |
CD20+ B-cells | 26 (82) | 22 (38) | 15 (11) | 67 (139) | 12 (34) | 21 (98) | 44 (145) | 88 (130) |
Study NCT Registry Number | Agent | Study Population | Phase | Recruitment Status |
---|---|---|---|---|
NCT03277924 | Nivolumab + Sunitinib | Soft tissue and bone sarcomas | I/II | Active, recruiting |
NCT03138161 | Nivolumab + Ipilimumab + Trabectidin | Soft tissue sarcomas (including angiosarcomas) | I/II | Active, recruiting |
NCT04873375 | Cemiplimab | Secondary Angiosarcomas | II | Active, recruiting |
NCT05026736 | Sintilimab | Angiosarcomas | II | Active, recruiting |
NCT04784247 | Pembrolizumab + Lenvatinib | Soft tissue and bone sarcomas (including angiosarcomas) | II | Active, recruiting |
NCT03512834 | Avelumab + Paclitaxel | Angiosarcomas | II | Active, recruiting |
NCT04339738 | Nivolumab + paclitaxel; Nivolumab + cabozantinib | Skin and visceral angiosarcoma | II | Active, recruiting |
NCT04551430 | Nivolumab + Ipilimumab + Cabozantinib | Soft tissue sarcomas (including angiosarcomas) | II | Active, recruiting |
NCT03069378 | Pembrolizumab + Talimogene Laherparepvec (T-VEC) | Soft tissue sarcomas (including cutaneous angiosarcomas) | II | Active, recruiting |
NCT04668300 | Durvalumab + Oleclumab | Soft tissue sarcomas (including angiosarcomas) | II | Active, recruiting |
NCT04095208 | Nivolumab + Relatlimab | Soft tissue sarcomas (including angiosarcomas) | II | Active, recruiting |
NCT04741438 | Nivolumab + Ipilimumab | Soft tissue sarcomas (including angiosarcomas) | III | Active, recruiting |
NCT02834013 | Nivolumab + Ipilimumab | Rare tumors (including angiosarcomas) | III | Active, recruiting |
NCT02815995 | Durvalumab + Temelimumab | Soft tissue and bone sarcomas (including angiosarcomas) | II | Active, not recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Ravensteijn, S.G.; Versleijen-Jonkers, Y.M.H.; Hillebrandt-Roeffen, M.H.S.; Weidema, M.E.; Nederkoorn, M.J.L.; Bol, K.F.; Gorris, M.A.J.; Verrijp, K.; Kroeze, L.I.; de Bitter, T.J.J.; et al. Immunological and Genomic Analysis Reveals Clinically Relevant Distinctions between Angiosarcoma Subgroups. Cancers 2022, 14, 5938. https://doi.org/10.3390/cancers14235938
van Ravensteijn SG, Versleijen-Jonkers YMH, Hillebrandt-Roeffen MHS, Weidema ME, Nederkoorn MJL, Bol KF, Gorris MAJ, Verrijp K, Kroeze LI, de Bitter TJJ, et al. Immunological and Genomic Analysis Reveals Clinically Relevant Distinctions between Angiosarcoma Subgroups. Cancers. 2022; 14(23):5938. https://doi.org/10.3390/cancers14235938
Chicago/Turabian Stylevan Ravensteijn, Stefan G., Yvonne M. H. Versleijen-Jonkers, Melissa H. S. Hillebrandt-Roeffen, Marije E. Weidema, Maikel J. L. Nederkoorn, Kalijn F. Bol, Mark A. J. Gorris, Kiek Verrijp, Leonie I. Kroeze, Tessa J. J. de Bitter, and et al. 2022. "Immunological and Genomic Analysis Reveals Clinically Relevant Distinctions between Angiosarcoma Subgroups" Cancers 14, no. 23: 5938. https://doi.org/10.3390/cancers14235938
APA Stylevan Ravensteijn, S. G., Versleijen-Jonkers, Y. M. H., Hillebrandt-Roeffen, M. H. S., Weidema, M. E., Nederkoorn, M. J. L., Bol, K. F., Gorris, M. A. J., Verrijp, K., Kroeze, L. I., de Bitter, T. J. J., de Voer, R. M., Flucke, U. E., & Desar, I. M. E. (2022). Immunological and Genomic Analysis Reveals Clinically Relevant Distinctions between Angiosarcoma Subgroups. Cancers, 14(23), 5938. https://doi.org/10.3390/cancers14235938