Beyond Platinum, ICIs in Metastatic Cervical Cancer: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Treatment Options in Advanced CC
1.2. HPV Infection in CC
1.3. ICIs and PD-L1 in CC and Aims of the Systematic Review
2. Materials and Methods
2.1. Protocol Registration
2.2. Search Strategy and Data Extraction
2.3. Inclusion and Exclusion Criteria, Population, Intervention, and Outcomes
2.4. Risk of Bias
3. Results
3.1. Characteristics of the Included Studies
3.2. ICIs Targeting PD1
3.2.1. Pembrolizumab
Pembrolizumab as Single Agent
Pembrolizumab Combinations
3.2.2. Nivolumab
Nivolumab as Single Agent
Nivolumab + Ipilimumab
3.2.3. Balstilimab
3.2.4. Cemiplimab
3.2.5. Camrelizumab
3.2.6. Tislelizumab
3.3. ICIs Targeting PD-L1
3.4. ICIs Targeting CTLA-4
4. Discussion
4.1. Summary of Systematic Review Results
4.2. PD-L1 and Predictive Biomarkers for ICIs Response
4.3. HPV Role in ICIs Response
4.4. Future Perspectives
4.5. Limitations of the Systematic Review
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 14 September 2022).
- Cancer Stat Facts: Cervical Cancer. Available online: https://seer.cancer.gov/statfacts/html/cervix.html (accessed on 14 September 2022).
- Cibula, D.; Pötter, R.; Planchamp, F.; Avall-Lundqvist, E.; Fischerova, D.; Haie Meder, C.; Köhler, C.; Landoni, F.; Lax, S.; Lindegaard, J.C.; et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients with Cervical Cancer. Int. J. Gynecol. Cancer 2018, 28, 641–655. [Google Scholar] [CrossRef]
- Gadducci, A.; Cosio, S. Pharmacological Treatment of Patients with Metastatic, Recurrent or Persistent Cervical Cancer Not Amenable by Surgery or Radiotherapy: State of Art and Perspectives of Clinical Research. Cancers 2020, 12, 2678. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, R.; Katsumata, N.; Shibata, T.; Kamura, T.; Kasamatsu, T.; Nakanishi, T.; Nishimura, S.; Ushijima, K.; Takano, M.; Satoh, T.; et al. Paclitaxel Plus Carboplatin Versus Paclitaxel Plus Cisplatin in Metastatic or Recurrent Cervical Cancer: The Open-Label Randomized Phase III Trial JCOG0505. J. Clin. Oncol. 2015, 33, 2129–2135. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Sill, M.W.; Long, H.J.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; et al. Improved Survival with Bevacizumab in Advanced Cervical Cancer. N. Engl. J. Med. 2014, 370, 734–743. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.H.; Blessing, J.A.; McQuellon, R.P.; Thaler, H.T.; Cella, D.; Benda, J.; Miller, D.S.; Olt, G.; King, S.; Boggess, J.F.; et al. Phase III Study of Cisplatin with or without Paclitaxel in Stage IVB, Recurrent, or Persistent Squamous Cell Carcinoma of the Cervix: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2004, 22, 3113–3119. [Google Scholar] [CrossRef]
- Boussios, S.; Seraj, E.; Zarkavelis, G.; Petrakis, D.; Kollas, A.; Kafantari, A.; Assi, A.; Tatsi, K.; Pavlidis, N.; Pentheroudakis, G. Management of Patients with Recurrent/Advanced Cervical Cancer beyond First Line Platinum Regimens: Where Do We Stand? A Literature Review. Crit. Rev. Oncol. Hematol. 2016, 108, 164–174. [Google Scholar] [CrossRef]
- Piersma, S.J. Immunosuppressive Tumor Microenvironment in Cervical Cancer Patients. Cancer Microenviron. 2011, 4, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Duranti, S.; Pietragalla, A.; Daniele, G.; Nero, C.; Ciccarone, F.; Scambia, G.; Lorusso, D. Role of Immune Checkpoint Inhibitors in Cervical Cancer: From Preclinical to Clinical Data. Cancers 2021, 13, 2089. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, H.; Luo, H.; Zhang, W.; Shen, Z.; Hu, X. Molecular Mechanisms of Cisplatin Resistance in Cervical Cancer. Drug Des. Dev. Ther. 2016, 10, 1885–1895. [Google Scholar] [CrossRef]
- Bosch, F.X.; Burchell, A.N.; Schiffman, M.; Giuliano, A.R.; de Sanjose, S.; Bruni, L.; Tortolero-Luna, G.; Kjaer, S.K.; Muñoz, N. Epidemiology and Natural History of Human Papillomavirus Infections and Type-Specific Implications in Cervical Neoplasia. Vaccine 2008, 26, K1–K16. [Google Scholar] [CrossRef] [PubMed]
- de Jong, A.; van der Burg, S.H.; Kwappenberg, K.M.C.; van der Hulst, J.M.; Franken, K.L.M.C.; Geluk, A.; van Meijgaarden, K.E.; Drijfhout, J.W.; Kenter, G.; Vermeij, P.; et al. Frequent Detection of Human Papillomavirus 16 E2-Specific T-Helper Immunity in Healthy Subjects. Cancer Res. 2002, 62, 472–479. [Google Scholar] [PubMed]
- Maiorano, B.A.; Maiorano, M.F.P.; Lorusso, D.; Maiello, E. Ovarian Cancer in the Era of Immune Checkpoint Inhibitors: State of the Art and Future Perspectives. Cancers 2021, 13, 4438. [Google Scholar] [CrossRef] [PubMed]
- Maiorano, B.A.; Maiorano, M.F.P.; Cormio, G.; Maglione, A.; Lorusso, D.; Maiello, E. How Immunotherapy Modified the Therapeutic Scenario of Endometrial Cancer: A Systematic Review. Front. Oncol. 2022, 12, 844801. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, D.; Ceni, V.; Daniele, G.; Pietragalla, A.; Salutari, V.; Muratore, M.; Nero, C.; Ciccarone, F.; Scambia, G. Immunotherapy in Gynecological Cancers. Explor. Target. Anti-Tumor Ther. 2021, 2, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Münger, K.; Howley, P.M. Human Papillomavirus Immortalization and Transformation Functions. Virus Res. 2002, 89, 213–228. [Google Scholar] [CrossRef]
- Hess, S.; Smola, H.; Sandaradura de Silva, U.; Hadaschik, D.; Kube, D.; Baldus, S.E.; Flucke, U.; Pfister, H. Loss of IL-6 Receptor Expression in Cervical Carcinoma Cells Inhibits Autocrine IL-6 Stimulation: Abrogation of Constitutive Monocyte Chemoattractant Protein-1 Production. J. Immunol. 2000, 165, 1939–1948. [Google Scholar] [CrossRef] [Green Version]
- Karim, R.; Jordanova, E.S.; Piersma, S.J.; Kenter, G.G.; Chen, L.; Boer, J.M.; Melief, C.J.M.; van der Burg, S.H. Tumor-Expressed B7-H1 and B7-DC in Relation to PD-1+ T-Cell Infiltration and Survival of Patients with Cervical Carcinoma. Clin. Cancer Res. 2009, 15, 6341–6347. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Yang, W.; Li, Y.; Cheng, X.; Nie, Y.; Liu, D.; Wang, H. Effect of Immunotherapy on the Immune Microenvironment in Advanced Recurrent Cervical Cancer. Int. Immunopharmacol. 2022, 106, 108630. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. The PRISMA Group Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frenel, J.-S.; Le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1–Positive Cervical Cancer: Results from the Phase Ib KEYNOTE-028 Trial. J. Clin. Oncol. 2017, 35, 4035–4041. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.W.; Hur, S.-Y.; Woo, J.W.; Kim, Y.-M.; Lim, M.C.; Park, S.Y.; Seo, S.S.; No, J.H.; Kim, B.-G.; Lee, J.-K.; et al. Pembrolizumab plus GX-188E Therapeutic DNA Vaccine in Patients with HPV-16-Positive or HPV-18-Positive Advanced Cervical Cancer: Interim Results of a Single-Arm, Phase 2 Trial. Lancet Oncol. 2020, 21, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.C.; Ros, W.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.A.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef]
- Santin, A.D.; Deng, W.; Frumovitz, M.; Buza, N.; Bellone, S.; Huh, W.; Khleif, S.; Lankes, H.A.; Ratner, E.S.; O’Cearbhaill, R.E.; et al. Phase II Evaluation of Nivolumab in the Treatment of Persistent or Recurrent Cervical Cancer (NCT02257528/NRG-GY002). Gynecol. Oncol. 2020, 157, 161–166. [Google Scholar] [CrossRef]
- Naumann, R.W.; Hollebecque, A.; Meyer, T.; Devlin, M.-J.; Oaknin, A.; Kerger, J.; López-Picazo, J.M.; Machiels, J.-P.; Delord, J.-P.; Evans, T.R.J.; et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results from the Phase I/II CheckMate 358 Trial. J. Clin. Oncol. 2019, 37, 2825–2834. [Google Scholar] [CrossRef]
- Oaknin, A.; Moore, K.N.; Meyer, T.; González, J.L.; Devriese, L.; Amin, A.; Lao, C.D.; Boni, V.; Sharfman, W.H.; Park, J.C.; et al. Safety and efficacy of nivolumab (NIVO) ± ipilimumab (IPI) in patients (pts) with recurrent/metastatic cervical cancer (R/M Cx Ca) in checkmate 358. Ann. Oncol. 2022, 33, S235–S282. [Google Scholar] [CrossRef]
- Tamura, K.; Hasegawa, K.; Katsumata, N.; Matsumoto, K.; Mukai, H.; Takahashi, S.; Nomura, H.; Minami, H. Efficacy and Safety of Nivolumab in Japanese Patients with Uterine Cervical Cancer, Uterine Corpus Cancer, or Soft Tissue Sarcoma: Multicenter, Open-label Phase 2 Trial. Cancer Sci. 2019, 110, 2894–2904. [Google Scholar] [CrossRef] [Green Version]
- O’Malley, D.M.; Oaknin, A.; Monk, B.J.; Selle, F.; Rojas, C.; Gladieff, L.; Berton, D.; Leary, A.; Moore, K.N.; Estevez-Diz, M.D.P.; et al. Phase II Study of the Safety and Efficacy of the Anti-PD-1 Antibody Balstilimab in Patients with Recurrent and/or Metastatic Cervical Cancer. Gynecol. Oncol. 2021, 163, 274–280. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Neffa, M.; Monk, B.J.; Melkadze, T.; Huang, M.; Kryzhanivska, A.; Bulat, I.; Meniawy, T.M.; Bagameri, A.; Wang, E.W.; et al. Dual PD-1 and CTLA-4 Checkpoint Blockade Using Balstilimab and Zalifrelimab Combination as Second-Line Treatment for Advanced Cervical Cancer: An Open-Label Phase II Study. J. Clin. Oncol. 2022, 40, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Monk, B.J.; Vergote, I.; Miller, A.; de Melo, A.C.; Kim, H.-S.; Kim, Y.M.; Lisyanskaya, A.; Samouëlian, V.; Lorusso, D.; et al. Survival with Cemiplimab in Recurrent Cervical Cancer. N. Engl. J. Med. 2022, 386, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Rischin, D.; Gil-Martin, M.; González-Martin, A.; Braña, I.; Hou, J.Y.; Cho, D.; Falchook, G.S.; Formenti, S.; Jabbour, S.; Moore, K.; et al. PD-1 Blockade in Recurrent or Metastatic Cervical Cancer: Data from Cemiplimab Phase I Expansion Cohorts and Characterization of PD-L1 Expression in Cervical Cancer. Gynecol. Oncol. 2020, 159, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.; Shen, J.; Wang, Y.; Li, J.; Liu, Z.; He, M.; Cao, X.; Ling, J.; Huang, J.; Zheng, M.; et al. Camrelizumab Plus Apatinib in Patients with Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm, Phase II Trial. J. Clin. Oncol. 2020, 38, 4095–4106. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Liu, N.; Wang, Q.; Wu, Q.; Gao, F.; Sang, Y.; Wang, P. Camrelizumab (SHR-1210) with carboplatin and albumin-binding paclitaxel in patients with metastatic or recurrent cervical cancer: An open-label, phase 2 trial. J. Cancer Res. Ther. 2022, 18, 482–487. [Google Scholar] [CrossRef]
- Zheng, M.; Zhou, Y.; Zhou, J.; Jiang, Y. Efficacy and safety of tislelizumab plus anlotinib in the treatment of cervical cancer resistant to standard therapy: A prospective, single-arm, open labelled phase II clinical trial. Ann. Oncol. 2022, 33, S235–S282. [Google Scholar] [CrossRef]
- Friedman, C.F.; Snyder Charen, A.; Zhou, Q.; Carducci, M.A.; Buckley De Meritens, A.; Corr, B.R.; Fu, S.; Hollmann, T.J.; Iasonos, A.; Konner, J.A.; et al. Phase II Study of Atezolizumab in Combination with Bevacizumab in Patients with Advanced Cervical Cancer. J. Immunother. Cancer 2020, 8, e001126. [Google Scholar] [CrossRef]
- Tabernero, J.; Andre, F.; Blay, J.-Y.; Bustillos, A.; Fear, S.; Ganta, S.; Jaeger, D.; Maio, M.; Mileshkin, L.; Melero, I. Phase II Multicohort Study of Atezolizumab Monotherapy in Multiple Advanced Solid Cancers. ESMO Open 2022, 7, 100419. [Google Scholar] [CrossRef]
- Lheureux, S.; Butler, M.O.; Clarke, B.; Cristea, M.C.; Martin, L.P.; Tonkin, K.; Fleming, G.F.; Tinker, A.V.; Hirte, H.W.; Tsoref, D.; et al. Association of Ipilimumab with Safety and Antitumor Activity in Women With Metastatic or Recurrent Human Papillomavirus–Related Cervical Carcinoma. JAMA Oncol 2018, 4, e173776. [Google Scholar] [CrossRef] [Green Version]
- Common Terminology Criteria for Adverse Events (CTCAE). Available online: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm (accessed on 5 November 2022).
- FDA Approves Pembrolizumab for Advanced Cervical Cancer with Disease Progression During or After Chemotherapy. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-advanced-cervical-cancer-disease-progression-during-or-after-chemotherapy (accessed on 14 September 2022).
- FDA Approves Pembrolizumab Combination for the First-Line Treatment of Cervical Cancer. Available online: https://ascopost.com/issues/november-10-2021/fda-approves-pembrolizumab-combination-for-the-first-line-treatment-of-cervical-cancer/ (accessed on 14 September 2022).
- EMA Recommends Extension of Indications for Pembrolizumab to msi-h or dmmr Cancers and to Metastatic Cervical Cancer with PD-L1 CPS ≥1. Available online: https://www.esmo.org/oncology-news/ema-recommends-extension-of-indications-for-pembrolizumab-to-msi-h-or-dmmr-cancers-and-to-metastatic-cervical-cancer-with-pd-l1-cps-1 (accessed on 14 September 2022).
- Oaknin, A.; Monk, B.J.; Polastro, L.; de Melo, A.C.; Kim, H.S.; Kim, Y.M.; Lisyanskaya, A.S.; Samouëlian, V.; Lorusso, D.; Damian, F.B.; et al. Phase III EMPOWER-Cervical 1/GOG-3016/ENGOT-cx9 trial of cemiplimab in recurrent or metastatic (R/M) cervical cancer: Long-term survival analysis. Ann. Oncol. 2022, 33 (Suppl. S7), S235–S282. [Google Scholar] [CrossRef]
- Lee, S.; Lim, M.; Kim, Y.M.; No, J.H.; Kim, B.; Cho, C.H.; Kim, S.H.; Jeong, D.H.; Lee, J.; Park, J.S.; et al. Efficacy and safety of GX-188E, a therapeutic DNA vaccine, combined with pembrolizumab in HPV 16- and/or 18- positive advanced cervical cancer (phase II): Safe and effective in both PD-L1 positive and negative. Ann. Oncol. 2022, 33 (Suppl. S7), S808–S869. [Google Scholar] [CrossRef]
- Hamanishi, J.; Mandai, M.; Iwasaki, M.; Okazaki, T.; Tanaka, Y.; Yamaguchi, K.; Higuchi, T.; Yagi, H.; Takakura, K.; Minato, N.; et al. Programmed Cell Death 1 Ligand 1 and Tumor-Infiltrating CD8 + T Lymphocytes Are Prognostic Factors of Human Ovarian Cancer. Proc. Natl. Acad. Sci. USA 2007, 104, 3360–3365. [Google Scholar] [CrossRef] [Green Version]
- Ohno, A.; Iwata, T.; Katoh, Y.; Taniguchi, S.; Tanaka, K.; Nishio, H.; Nakamura, M.; Morisada, T.; Chen, G.; Saito, M.; et al. Tumor-Infiltrating Lymphocytes Predict Survival Outcomes in Patients with Cervical Cancer Treated with Concurrent Chemoradiotherapy. Gynecol. Oncol. 2020, 159, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Enwere, E.K.; Kornaga, E.N.; Dean, M.; Koulis, T.A.; Phan, T.; Kalantarian, M.; Köbel, M.; Ghatage, P.; Magliocco, A.M.; Lees-Miller, S.P.; et al. Expression of PD-L1 and Presence of CD8-Positive T Cells in Pre-Treatment Specimens of Locally Advanced Cervical Cancer. Mod. Pathol. 2017, 30, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Martins, P.R.; Machado, C.M.T.; Coxir, S.A.; de Oliveira, A.J.; Moreira, T.B.; Campos, L.S.; Alcântara, R.; de Paula, S.O.C.; de Oliveira Salles, P.G.; Gollob, K.J.; et al. Cervical Cancer Patients That Respond to Chemoradiation Therapy Display an Intense Tumor Infiltrating Immune Profile before Treatment. Exp. Mol. Pathol. 2019, 111, 104314. [Google Scholar] [CrossRef] [PubMed]
- Dorta-Estremera, S.; Colbert, L.E.; Nookala, S.S.; Yanamandra, A.V.; Yang, G.; Delgado, A.; Mikkelson, M.; Eifel, P.; Jhingran, A.; Lilie, L.L.; et al. Kinetics of Intratumoral Immune Cell Activation During Chemoradiation for Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wu, Y.; Deng, Y.; Zhou, L.; Yang, P.; Zheng, Y.; Zhang, D.; Zhai, Z.; Li, N.; Hao, Q.; et al. Identification of a Prognostic Immune Signature for Cervical Cancer to Predict Survival and Response to Immune Checkpoint Inhibitors. OncoImmunology 2019, 8, e1659094. [Google Scholar] [CrossRef] [Green Version]
- Lazo, P.A. The Molecular Genetics of Cervical Carcinoma. Br. J. Cancer 1999, 80, 2008–2018. [Google Scholar] [CrossRef] [Green Version]
- Kenter, G.G.; Welters, M.J.P.; Valentijn, A.R.P.M.; Löwik, M.J.G.; Berends-van der Meer, D.M.A.; Vloon, A.P.G.; Drijfhout, J.W.; Wafelman, A.R.; Oostendorp, J.; Fleuren, G.J.; et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Steller, M.A.; Gurski, K.J.; Murakami, M.; Daniel, R.W.; Shah, K.V.; Celis, E.; Sette, A.; Trimble, E.L.; Park, R.C.; Marincola, F.M. Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1998, 4, 2103–2109. [Google Scholar]
- van Driel, W.; Ressing, M.; Kenter, G.; Brandt, R.; Krul, E.; van Rossum, A.; Schuuring, E.; Offringa, R.; Bauknecht, T.; Tamm-Hermelink, A.; et al. Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: Clinical evaluation of a phase I–II trial. Eur. J. Cancer 1999, 35, 946–952. [Google Scholar] [CrossRef] [PubMed]
- van Poelgeest, M.I.E.; Welters, M.J.P.; van Esch, E.M.G.; Stynenbosch, L.F.M.; Kerpershoek, G.; van Persijn van Meerten, E.L.; Hende, M.V.D.; Löwik, M.J.G.; Berends-van der Meer, D.M.A.; Fathers, L.M.; et al. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J. Transl. Med. 2013, 11, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welters, M.J.P.; Kenter, G.G.; Piersma, S.J.; Vloon, A.P.G.; Lowik, M.J.G.; Berends-van der Meer, D.M.A.; Drijfhout, J.W.; Valentijn, A.R.P.M.; Wafelman, A.R.; Oostendorp, J.; et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.H.; Choi, H.J.; Lee, J.-W.; Kang, E.-S.; Cho, D.; Park, B.K.; Kim, Y.-M.; Kim, D.-Y.; Seo, H.; Park, M.; et al. Phase I Study of a B Cell-Based and Monocyte-Based Immunotherapeutic Vaccine, BVAC-C in Human Papillomavirus Type 16- or 18-Positive Recurrent Cervical Cancer. J. Clin. Med. 2020, 9, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, A.; Nonn, M.; Sehr, P.; Schreckenberger, C.; Pawlita, M.; Durst, M.; Schneider, A.; Kaufmann, A.M. Dendritic cell-based tumor vaccine for cervical cancer II: Results of a clinical pilot study in 15 individual patients. J. Cancer Res. Clin. Oncol. 2003, 129, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Rahma, O.; E Herrin, V.; Ibrahim, R.A.; Toubaji, A.; Bernstein, S.; Dakheel, O.; Steinberg, S.M.; Abu Eid, R.; Mkrtichyan, M.; Berzofsky, J.; et al. Pre-immature dendritic cells (PIDC) pulsed with HPV16 E6 or E7 peptide are capable of eliciting specific immune response in patients with advanced cervical cancer. J. Transl. Med. 2014, 12, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santin, A.D.; Bellone, S.; Palmieri, M.; Ravaggi, A.; Romani, C.; Tassi, R.; Roman, J.J.; Burnett, A.; Pecorelli, S.; Cannon, M.J. HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities. Gynecol. Oncol. 2006, 100, 469–478. [Google Scholar] [CrossRef]
- Santin, A.D.; Bellone, S.; Palmieri, M.; Zanolini, A.; Ravaggi, A.; Siegel, E.R.; Roman, J.J.; Pecorelli, S.; Cannon, M.J. Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: A phase I escalating-dose trial. J. Virol. 2008, 82, 1968–1979. [Google Scholar] [CrossRef] [Green Version]
- Hasan, Y.; Furtado, L.; Tergas, A.; Lee, N.; Brooks, R.; McCall, A.; Golden, D.; Jolly, S.; Fleming, G.; Morrow, M.; et al. A Phase 1 Trial Assessing the Safety and Tolerability of a Therapeutic DNA Vaccination Against HPV16 and HPV18 E6/E7 Oncogenes After Chemoradiation for Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 487–498. [Google Scholar] [CrossRef]
- de Jong, A.; van Poelgeest, M.I.E.; van der Hulst, J.M.; Drijfhout, J.W.; Fleuren, G.J.; Melief, C.J.M.; Kenter, G.; Offringa, R.; van der Burg, S.H. Human Papillomavirus Type 16-Positive Cervical Cancer Is Associated with Impaired CD4+ T-Cell Immunity against Early Antigens E2 and E6. Cancer Res. 2004, 64, 5449–5455. [Google Scholar] [CrossRef] [Green Version]
- Tindle, R.W. Immune Evasion in Human Papillomavirus-Associated Cervical Cancer. Nat. Rev. Cancer 2002, 2, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Morales, V.H.; Gutiérrez, L.X.; Alcocer-González, J.M.; Burguete, A.; Madrid-Marina, V. Correlation Between IL-10 Gene Expression and HPV Infection in Cervical Cancer: A Mechanism for Immune Response Escape. Cancer Investig. 2008, 26, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Huang, J.; Liu, Y.; Zhang, N.; Cheng, Q.; Zhang, Y. Integrated Analysis of Immune Infiltration Features for Cervical Carcinoma and Their Associated Immunotherapeutic Responses. Front. Cell Dev. Biol. 2021, 9, 573497. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shao, C. Radiotherapy-Mediated Immunomodulation and Anti-Tumor Abscopal Effect Combining Immune Checkpoint Blockade. Cancers 2020, 12, 2762. [Google Scholar] [CrossRef]
- Lee, L.; Matulonis, U. Immunotherapy and Radiation Combinatorial Trials in Gynecologic Cancer: A Potential Synergy? Gynecol. Oncol. 2019, 154, 236–245. [Google Scholar] [CrossRef]
- Mayadev, J.S.; Enserro, D.; Lin, Y.G.; Da Silva, D.M.; Lankes, H.A.; Aghajanian, C.; Ghamande, S.; Moore, K.N.; Kennedy, V.A.; Fracasso, P.M.; et al. Sequential Ipilimumab After Chemoradiotherapy in Curative-Intent Treatment of Patients with Node-Positive Cervical Cancer. JAMA Oncol. 2020, 6, 92. [Google Scholar] [CrossRef]
- Da Silva, D.M.; Enserro, D.M.; Mayadev, J.S.; Skeate, J.G.; Matsuo, K.; Pham, H.Q.; Lankes, H.A.; Moxley, K.M.; Ghamande, S.A.; Lin, Y.G.; et al. Immune Activation in Patients with Locally Advanced Cervical Cancer Treated with Ipilimumab Following Definitive Chemoradiation (GOG-9929). Clin. Cancer Res. 2020, 26, 5621–5630. [Google Scholar] [CrossRef]
- Duska, L.R.; Scalici, J.M.; Temkin, S.M.; Schwarz, J.K.; Crane, E.K.; Moxley, K.M.; Hamilton, C.A.; Wethington, S.L.; Petroni, G.R.; Varhegyi, N.E.; et al. Results of an Early Safety Analysis of a Study of the Combination of Pembrolizumab and Pelvic Chemoradiation in Locally Advanced Cervical Cancer. Cancer 2020, 126, 4948–4956. [Google Scholar] [CrossRef]
- Update on CALLA Phase III Trial of Concurrent Use of Imfinzi and Chemoradiotherapy in Locally Advanced Cervical Cancer. Available online: https://www.astrazeneca.com/media-centre/press-releases/2022/update-on-calla-phase-iii-trial-for-imfinzi.html# (accessed on 14 September 2022).
- Lorusso, D.; Colombo, N.; Coleman, R.L.; Randall, L.M.; Duska, L.R.; Xiang, Y.; Hasegawa, K.; Rodrigues, A.N.; Cibula, D.; Mirza, M.R.; et al. ENGOT-Cx11/KEYNOTE-A18: A Phase III, Randomized, Double-Blind Study of Pembrolizumab with Chemoradiotherapy in Patients with High-Risk Locally Advanced Cervical Cancer. J. Clin. Oncol. 2020, 38, TPS6096. [Google Scholar] [CrossRef]
- Grau, J.F.; Farinas-Madrid, L.; Oaknin, A. A Randomized Phase III Trial of Platinum Chemotherapy plus Paclitaxel with Bevacizumab and Atezolizumab versus Platinum Chemotherapy plus Paclitaxel and Bevacizumab in Metastatic (Stage IVB), Persistent, or Recurrent Carcinoma of the Cervix: The BEATcc Study (ENGOT-Cx10/GEICO 68-C/JGOG1084/GOG-3030). Int. J. Gynecol. Cancer 2020, 30, 139–143. [Google Scholar] [CrossRef]
Author | Study Name | Phase | Target Population | Administered Drugs | Primary EP | Secondary EP | PD-L1 Detection Method | Cut-Off for Positivity |
---|---|---|---|---|---|---|---|---|
Frenel et al. [24] | KEYNOTE-028 (NCT02054806) | Ib | Pre-treated PD-L1+ CC (n = 24) | Pembrolizumab 10 mg/kg q2w | ORR | Safety | 22C3 (Merck) | 1% |
Youn et al. [25] | NCT03444376 | II | Pre-treated HPV16/18+ CC (n = 36) PD-L1+: n = 20 PD-L1−: n = 6 HPV16+: n = 20 HPV18+: n = 8 | Pembrolizumab 200 mg q3w + GX-188E 2 mg (DNA vaccine) | ORR | Safety, DoR, OS, PFS6 | 22C3 pharmDx (Agilent), CPS | 1% |
Chung et al. [26] | KEYNOTE-158 (NCT02628067) | II | Pre-treated CC (n = 98) PD-L1+: n = 82 | Pembrolizumab 200 mg q3w | ORR | Safety | 22C3 pharmDx (Agilent), CPS | 1% |
Colombo et al. [27] | KEYNOTE-826 (NCT03635567) | III | CC (n = 617; 20% naïve; Pembro n = 307 vs. PBO n = 309) PD-L1+ (CPS ≥ 1): n = 548 PD-L1+ (CPS ≥ 10): n = 317 | Pembrolizumab 200 mg vs. PBO q3w + paclitaxel 175 mg/mq + CDDP 50 mg/mq or CBDCA 5 mg/mL/min ± bevacizumab 15 mg/kg q3w | OS PFS | DoR, ORR, 12 mos PFS rate | 22C3 pharmDx (Agilent), CPS | 1% |
Santin et al. [28] | NCT02257528/NRG-GY002 | II | Pre-treated CC (n = 26) | Nivolumab 3 mg/kg q2w | ORR | - | E1L3N (Cell Signaling), CPS | 1% |
PD-L1+: n = 17 | ||||||||
Naumann et al. [29] | CheckMate 358 (NCT02488759) | I/II | Pre-treated CC (n = 19) | Nivolumab 240 mg q2w | ORR | DoR, OS, PFS, Safety | 28-8 PharmDx (Dako), CPS | 1% |
PD-L1+: n = 10 | ||||||||
PD-L1−: n = 6 | ||||||||
Oaknin et al. [30] | Pre-treated CC N3I1 cohort n = 45 N1I3 cohort n = 112 | Nivolumab 3 mg/kg q2w + Ipilimumab 1 mg/kg q6w (N3I1) Nivo1 mg/kg + Ipi 3 mg/kg q4w (x4) → Nivolumab 240 mg q2w (N1I3) | ||||||
Tamura et al. [31] | JapicCTI-163212 | II | Pre-treated CC (n = 20) | Nivolumab 240 mg q2w | ORR | DCR, OS, PFS, DoR | 28-8 PharmDx (Dako), CPS | 1% |
O’Malley et al. [32] | NCT03104699 | II | Pre-treated CC (n = 161) PD-L1+ (CPS ≥ 1): n = 99 PD-L1−: n = 43 | Balstilimab 3 mg/kg q2w | ORR | DCR, DoR | 28-8 PharmDx (Dako), CPS | 1% |
O’Malley et al. [33] | NCT03495882 | II | Pre-treated CC (n = 143) PD-L1+ (CPS ≥ 1): 55% PD-L1−: 25% | Balstilimab 3 mg/kg q2w + zalifrelimab 1 mg/kg q6w | ORR | DoR, safety | 28-8 PharmDx (Dako), CPS | 1% |
Tewari et al. [34] | EMPOWER-Cervical1/ GOG-3016 /ENGOT-CX9/NCT03257267 | III | Pre-treated CC (n = 608) | Cemiplimab 350 mg q3w vs. single-agent chemo | OS | PFS, Safety | SP263 Ventana (Roche), TPS | 1% |
Rischin et al. [35] | NCT02760498 | I | Pre-treated CC (n = 20): cohort 23: n = 10 cohort 24: n = 10 | Cohort 23: Cemiplimab 3 mg/kg q2w | Safety | ORR, DCR, DoR, PFS, OS | SP263 Ventana (Roche), TPS | 1% |
Cohort 24: Cemiplimab + RT | ||||||||
Lan et al. [36] | NCT03816553 (CLAP) | II | Pre-treated CC (n = 45) | Camrelizumab 200 mg q2w + apatinib 250 mg OD | ORR | PFS, OS, DoR, Safety | 28-8 PharmDx (Dako), CPS | 1% |
PD-L1+ (CPS ≥ 1): n = 30 PD-L1−: n = 10 | ||||||||
Zhang et al. [37] | / | II | Naïve CC (n = 35) | Camrelizumab 200 mg + NAB-paclitaxel 260 mg/mq + CBDCA AUC 5 q3w (x6) → camrelizumab 200 mg q3w | ORR | Safety | NA | NA |
Zheng et al. [38] | / | II | Pre-treated CC (n = 25) | Tislelizumab 200 mg + anlotinib 10 mg OD d1-14 q3w | ORR | DCR, DoR, PFS, OS, Safety | NA | NA |
Friedman et al. [39] | NCT02921269 | II | Pre-treated CC (n = 11) | Atezolizumab 1200 mg + bevacizumab 15 mg/kg q3w | ORR | DCR, OS, PFS, Safety | E1L3N, CPS | 1% |
Tabernero et al. [40] | NCT02458638 | II | Pre-treated CC (n = 27) | Atezolizumab 1200 mg | NPR | ORR, DoR, PFS, OS, Safety | NA | NA |
Lheureux et al. [41] | NCT01693783 | I/II | Pre-treated CC (n = 42) | Ipilimumab 10 mg/kg q3w (x4) → q12w (x4) | ORR, Safety | - | NA | NA |
Study Name | Administered Drugs | Nr. of Patients | Results | |||||
---|---|---|---|---|---|---|---|---|
ORR | DCR | mDoR | mPFS | mOS | Safety | |||
ICIs single agent | ||||||||
KEYNOTE-028 | Pembrolizumab | n = 24 | 17% | NA | 5.4 mos | 2 mos | 11 mos | TRAEs 75% No >G3 |
KEYNOTE-158 | n = 98 | 12.2% | 30.6% | NR | 2.1 mos | 9.4 mos | TRAEs 65.3%, ≥G3 AEs 12.2% | |
PD-L1+: n = 82 | 14.6% | 32.9% | 11 mos | |||||
NRG-GY002 | Nivolumab | n = 26 | 4% | NA | 3.8 mos | 3.5 mos | 14.5 mos | TRAEs 84%, ≥G3 32% |
PD-L1+: n = 17 | PD-L1+: 5.9% PD-L1−: 0% | |||||||
JapicCTI-163212 | n = 20 | Overall: 25% | NA | NA | 5.6 mos | mOS: NR; 6 mos OS: 84% | TRAEs 65%, ≥G3 20% | |
PD-L1+: 33% | ||||||||
PD-L1−: 0% | ||||||||
CheckMate 358 | n = 19 | 26.3% | 68.4% | NR | 5.1 mos | 21.9 mos | TRAEs 63.2%, ≥G3 21.1% | |
PD-L1+: n = 10 | 20% | 70% | ||||||
PD-L1−: n = 6 | 16.7% | 50% | ||||||
NCT03104699 | Balstilimab | n = 161 | 15% | Overall: 49.3% | 15.4 mos | NA | NA | TRAEs 71.4%, ≥G3 11.8% |
PD-L1: n = 99 | 20% | |||||||
PD-L1−: n = 43 | 7.9% | |||||||
EMPOWER-Cervical1/ GOG-3016 /ENGOT-CX9 | Cemiplimab vs. single-agent chemo | n = 608 | 16.4% vs. 6.3 | NA | NA | 2.8 vs. 2.9 mos | 12 vs. 8.5 mos | ≥G3 AEs 45% vs. 53.4% |
Cemi: PD-L1+: 18%, PD-L1−: 11% | PD-L1+: 13.9 vs. 9.3 mos; PD-L1-: 7.7 vs. 6.7 mos | |||||||
NCT02760498 (Cohort 23) | Cemiplimab | n = 10 | 10% | 40% | 11.2 mos | 1.9 mos | 10.3 mos | TRAEs 90%, ≥G3 10% |
NCT02458638 | Atezolizumab | n = 27 | 14.8% | NA | 2.99 mos-1.27 years | 4.1 mos | 14.7 mos | TRAEs 64.3%, ≥G3 10.7% |
NCT01693783 | Ipilimumab | n = 42 | 2.9% | NA | NA | 2.5 mos | 8.5 mos | ≥G3 TRAEs 9.5% |
Double ICIs (anti-PD1 + anti-CTLA4) | ||||||||
CheckMate 358 | Nivolumab + ipilimumab (N3I1) | n = 45 | Overall: 31.1% PD-L1+: 36% PD-L1−: 20% | NA | NA | NA | NA | N1I3 hepatitis 16% |
Nivolumab + ipilimumab (N1I3) | n = 112 | Overall: 38.4% PD-L1+: 35.8% PD-L1−: 30.6% | ||||||
NCT03495882 | Balstilimab + zalifrelimab | n = 143 | 22% | NA | NR | NA | NA | 35% irAEs, ≥G3 irAEs 10.5%, 2 deaths |
PD-L1+: 55% | 27% | |||||||
PD-L1−: 25% | 11% | |||||||
ICIs + chemotherapy | ||||||||
KEYNOTE-826 | Pembrolizumab vs. PBO + paclitaxel + CDDP/CBDCA ± bevacizumab | n = 617 (20% naïve): Pembro n = 307 vs. PBO n = 309 | 65.9% vs. 50.8% | NA | 18.0 vs. 10.4 mos | 10.4 vs. 8.2 mos | mOS: NR; 24-mos OS rate: 50.4% vs. 40.4% | Pembro arm: irAEs 33.9%, ≥G3 AEs 81.8%, 14 deaths PBO arm: irAEs 15.2%, ≥G3 AEs 75.1%, 14 deaths |
PD-L1+ (CPS ≥ 1): n = 548 | 68.1% vs. 50.2% | 18.0 vs. 10.4 mos | 10.4 vs. 8.2 mos | 24-mos OS rate: 53% vs. 41.7% | ||||
PD-L1+ (CPS ≥ 10): n = 317 | 69.6% vs. 49.1% | 21.1 vs. 9.4 mos | 10.4 vs. 8.1 mos | 24-mos OS rate: 54.4% vs. 44.6% | ||||
/ | Camrelizumab + NAB-paclitaxel + CBDCA | n = 35 | 40% | 92% | NA | NA | NA | RCCEP 65.7% ≥G3 20% |
ICIs + anti-angiogenics | ||||||||
NCT03816553 | Camrelizumab + apatinib | n = 45 | 55.6% | NA | NR | 8.8 mos | NR | TRAEs 95.6%, ≥G3 71.1%, irAEs 33.3% |
PD-L1+: n = 30 | 69% | NR | ||||||
PD-L1−: n = 10 | 50% | 5.2 mos | ||||||
/ | Tislelizumab + anlotinib | n = 25 | 35.3% | 94.1% | NA | NR | NR | TRAEs 100% ≥G3 0.06% |
NCT02921269 | Atezolizumab + bevacizumab | n = 11 | 0% | 60% | NA | 2.9 mos | 8.9 mos | TRAEs 72%, ≥G3 36.4% |
Other combinations | ||||||||
NCT03444376 | Pembrolizumab + GX-188E (DNA vaccine) | n = 36 | 42% | 58% | 3.3–13.6 mos | 4.9 mos | 10.2 mos | TRAEs 44%, ≥G3 11% |
PD-L1+: n = 20 | 50% | 65% | ||||||
PD-L1−: n = 6 | 17% | 29% | ||||||
HPV16+: n = 20 | 45% | 60% | ||||||
HPV18+: n = 8 | 33% | 50% | ||||||
NCT02760498 (Cohort 24) | Cemiplimab + RT | n = 10 | 10% | 60% | 6.4 mos | 3.6 mos | 8 mos | TRAEs 100% ≥G3 30% |
Clinicaltrials.gov Reg. Number | Phase | ICI | Combination |
---|---|---|---|
NCT04641728 | II | Pembrolizumab | Olaparib |
NCT04865887 | II | Pembrolizumab | Lenvatinib |
NCT03367871 | II | Pembrolizumab | CTX, Paclitaxel, Bevacizumab |
NCT04230954 | II | Pembrolizumab | Cabozantinib |
NCT02635360 | II | Pembrolizumab | CTX, RT |
NCT04483544 | II | Pembrolizumab | Olaparib |
NCT03786081 | I-II | Pembrolizumab | Tisotumab Vedotin, Carboplatin, Bevacizumab |
NCT03108495 | II | Pembrolizumab | LN-145 (autologous TILs) |
NCT04652076 | I-II | Pembrolizumab | NP137 (anti-Netrin1 Ab), Paclitaxel, Carboplatin |
NCT05082259 (ASTEROID) | I | Pembrolizumab | ASTX660 |
NCT03476681 | I-II | Pembrolizumab | NEO-201 (Ab) |
NCT03236935 | Ib | Pembrolizumab | L-NMMA |
NCT04651127 | I-II | Pembrolizumab | Toripalimab, Chidamide |
NCT04301011 | I-II | Pembrolizumab | TBio-6517 |
NCT03849469 | I | Pembrolizumab | XmAb®22841 |
NCT04895709 | I-II | Nivolumab | - |
NCT02379520 | I | Nivolumab | HPV-Specific T Cells, Cytoxan, Fludarabine |
NCT04646005 | II | Cemiplimab | ISA101b Vaccine |
NCT01693783 | II | Ipilimumab | - |
NCT03752398 | I | Ipilimumab | XmAb®23104 |
NCT03826589 | NA | Avelumab | Axitinib |
NCT03260023 | I-II | Avelumab | TG4001 |
NCT04300647 | II | Atezolizumab | Tiragolumab |
NCT03614949 | II | Atezolizumab | RT |
NCT03340376 | II | Atezolizumab | Doxorubicin |
NCT04405349 | II | Atezolizumab | VB10.16 |
NCT03738228 | I | Atezolizumab | Cisplatin, RT |
NCT03556839 (BEATcc) | III | Atezolizumab | Bevacizumab, Cisplatin, Carboplatin, Paclitaxel |
NCT04405349 | II | Atezolizumab | VB10.16 Vaccine |
NCT03073525 | II | Atezolizumab | Vigil |
NCT04800978 | II | Durvalumab | BAVC-C Vaccine |
NCT03277482 | I | Durvalumab, Tremelimumab | RT |
NCT03452332 | I | Durvalumab, Tremelimumab | RT |
NCT04918628 | II | Durvalumab | Sintilimab |
NCT03439085 | II | Durvalumab | Vaccine MEDI0457 |
NCT04646005 | II | Cemiplimab | ISA101b |
NCT04068753 | II | Dostarlimab | Niraparib |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiorano, B.A.; Maiorano, M.F.P.; Ciardiello, D.; Maglione, A.; Orditura, M.; Lorusso, D.; Maiello, E. Beyond Platinum, ICIs in Metastatic Cervical Cancer: A Systematic Review. Cancers 2022, 14, 5955. https://doi.org/10.3390/cancers14235955
Maiorano BA, Maiorano MFP, Ciardiello D, Maglione A, Orditura M, Lorusso D, Maiello E. Beyond Platinum, ICIs in Metastatic Cervical Cancer: A Systematic Review. Cancers. 2022; 14(23):5955. https://doi.org/10.3390/cancers14235955
Chicago/Turabian StyleMaiorano, Brigida Anna, Mauro Francesco Pio Maiorano, Davide Ciardiello, Annamaria Maglione, Michele Orditura, Domenica Lorusso, and Evaristo Maiello. 2022. "Beyond Platinum, ICIs in Metastatic Cervical Cancer: A Systematic Review" Cancers 14, no. 23: 5955. https://doi.org/10.3390/cancers14235955
APA StyleMaiorano, B. A., Maiorano, M. F. P., Ciardiello, D., Maglione, A., Orditura, M., Lorusso, D., & Maiello, E. (2022). Beyond Platinum, ICIs in Metastatic Cervical Cancer: A Systematic Review. Cancers, 14(23), 5955. https://doi.org/10.3390/cancers14235955