Long-Term Projections of Cancer Incidence and Mortality in Japan and Decomposition Analysis of Changes in Cancer Burden, 2020–2054: An Empirical Validation Approach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the Human Development Index (2008-2030): A population-based study. Lancet Oncol. 2012, 13, 790–801. [Google Scholar] [CrossRef]
- Ferlay, J.; Laversanne, M.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Tomorrow. 2020. Available online: https://gco.iarc.fr/tomorrow (accessed on 13 September 2022).
- Ministry of Health Labor and Welfare Japan. Vital Statistics. Available online: https://www.e-stat.go.jp/ (accessed on 6 June 2022).
- World Health Organization (WHO). Life Expectancy and Healthy Life Expectancy Data by Country. Available online: https://apps.who.int/gho/data/node.main.SDG2016LEX?lang=en (accessed on 6 June 2022).
- Katanoda, K.; Hori, M.; Saito, E.; Shibata, A.; Ito, Y.; Minami, T.; Ikeda, S.; Suzuki, T.; Matsuda, T. Updated Trends in Cancer in Japan: Incidence in 1985–2015 and Mortality in 1958–2018-A Sign of Decrease in Cancer Incidence. J. Epidemiol. 2021, 31, 426–450. [Google Scholar] [CrossRef]
- Statistics Bureau Ministry of Internal Affairs and Communications Japan. Statistical Handbook of Japan 2021; Statistics Bureau Ministry of Internal Affairs and Communications: Tokyo, Japan, 2021. [Google Scholar]
- Nakatani, H. Population aging in Japan: Policy transformation, sustainable development goals, universal health coverage, and social determinates of health. Glob. Health Med. 2019, 1, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Baba, S.; Goto, A.; Reich, M.R. Looking for Japan’s missing third baby boom. J. Obstet. Gynaecol. Res. 2018, 44, 199–207. [Google Scholar] [CrossRef]
- Inoue, M.; Hirabayashi, M.; Abe, S.K.; Katanoda, K.; Sawada, N.; Lin, Y.; Ishihara, J.; Takachi, R.; Nagata, C.; Saito, E.; et al. Burden of cancer attributable to modifiable factors in Japan in 2015. Glob. Health Med. 2022, 4, 26–36. [Google Scholar] [CrossRef]
- Katanoda, K.; Hirabayashi, M.; Saito, E.; Hori, M.; Abe, S.K.; Matsuda, T.; Inoue, M.; Cancer PAF Japan Collaborators. Burden of cancer attributable to tobacco smoke in Japan in 2015. GHM Open 2021, 1, 43–50. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, C.; Kikuchi, S.; Akita, T.; Tanaka, J.; Abe, S.K.; Hirabayashi, M.; Saito, E.; Hori, M.; Katanoda, K.; et al. Burden of cancer attributable to infection in Japan in 2015. GHM Open 2021, 1, 63–69. [Google Scholar] [CrossRef]
- Bashir, S.; Estève, J. Analysing the difference due to risk and demographic factors for incidence or mortality. Int. J. Epidemiol. 2000, 29, 878–884. [Google Scholar] [CrossRef]
- Bray, F.; Møller, B. Predicting the future burden of cancer. Nat. Rev. Cancer 2006, 6, 63–74. [Google Scholar] [CrossRef]
- Yu, X.Q.; Luo, Q.; Hughes, S.; Wade, S.; Caruana, M.; Canfell, K.; O’Connell, D.L. Statistical projection methods for lung cancer incidence and mortality: A systematic review. BMJ Open 2019, 9, e028497. [Google Scholar] [CrossRef] [Green Version]
- Weir, H.K.; Thompson, T.D.; Soman, A.; Møller, B.; Leadbetter, S. The past, present, and future of cancer incidence in the United States: 1975 through 2020. Cancer 2015, 121, 1827–1837. [Google Scholar] [CrossRef] [Green Version]
- Weir, H.K.; Thompson, T.D.; Stewart, S.L.; White, M.C. Cancer Incidence Projections in the United States Between 2015 and 2050. Prev. Chronic Dis. 2021, 18, E59. [Google Scholar] [CrossRef]
- Mistry, M.; Parkin, D.M.; Ahmad, A.S.; Sasieni, P. Cancer incidence in the United Kingdom: Projections to the year 2030. Br. J. Cancer 2011, 105, 1795–1803. [Google Scholar] [CrossRef] [Green Version]
- Smittenaar, C.R.; Petersen, K.A.; Stewart, K.; Moitt, N. Cancer incidence and mortality projections in the UK until 2035. Br. J. Cancer 2016, 115, 1147–1155. [Google Scholar] [CrossRef] [Green Version]
- Brenner, D.R.; Poirier, A.E.; Walter, S.D.; King, W.D.; Franco, E.L.; Demers, P.A.; Villeneuve, P.J.; Ruan, Y.; Khandwala, F.; Grevers, X.; et al. Estimating the current and future cancer burden in Canada: Methodological framework of the Canadian population attributable risk of cancer (ComPARe) study. BMJ Open 2018, 8, e022378. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; O’Connell, D.L.; Yu, X.Q.; Kahn, C.; Caruana, M.; Pesola, F.; Sasieni, P.; Grogan, P.B.; Aranda, S.; Cabasag, C.J.; et al. Cancer incidence and mortality in Australia from 2020 to 2044 and an exploratory analysis of the potential effect of treatment delays during the COVID-19 pandemic: A statistical modelling study. Lancet Public Health 2022, 7, e537–e548. [Google Scholar] [CrossRef]
- Rapiti, E.; Guarnori, S.; Pastoors, B.; Miralbell, R.; Usel, M. Planning for the future: Cancer incidence projections in Switzerland up to 2019. BMC Public Health 2014, 14, 102. [Google Scholar] [CrossRef] [Green Version]
- Møller, B.; Fekjaer, H.; Hakulinen, T.; Tryggvadóttir, L.; Storm, H.H.; Talbäck, M.; Haldorsen, T. Prediction of cancer incidence in the Nordic countries up to the year 2020. Eur. J. Cancer Prev. 2002, 11 (Suppl. S1), S1–S96. [Google Scholar]
- Møller, B.; Fekjaer, H.; Hakulinen, T.; Sigvaldason, H.; Storm, H.H.; Talbäck, M.; Haldorsen, T. Prediction of cancer incidence in the Nordic countries: Empirical comparison of different approaches. Stat. Med. 2003, 22, 2751–2766. [Google Scholar] [CrossRef]
- Katanoda, K.; Kamo, K.; Saika, K.; Matsuda, T.; Shibata, A.; Matsuda, A.; Nishino, Y.; Hattori, M.; Soda, M.; Ioka, A.; et al. Short-term projection of cancer incidence in Japan using an age-period interaction model with spline smoothing. Jpn. J. Clin. Oncol. 2014, 44, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Cancer Information Service. Cancer Statistics in Japan: Cancer Incidence from National Cancer Registry in Japan (1975–2019). Available online: https://ganjoho.jp/ (accessed on 16 June 2022).
- Cancer Information Service. Cancer Statistics in Japan: Cancer Mortality from Vital Statistics in Japan (1958–2020). Available online: https://ganjoho.jp/ (accessed on 16 June 2022).
- Institute of Population and Social Security (IPSS). Japan’s Projected Population 2016–2065. 2017. Available online: https://www.ipss.go.jp/ (accessed on 16 June 2022).
- Møller, H.; Fairley, L.; Coupland, V.; Okello, C.; Green, M.; Forman, D.; Møller, B.; Bray, F. The future burden of cancer in England: Incidence and numbers of new patients in 2020. Br. J. Cancer 2007, 96, 1484–1488. [Google Scholar] [CrossRef] [Green Version]
- Clayton, D.; Schifflers, E. Models for temporal variation in cancer rates. II: Age-period-cohort models. Stat. Med. 1987, 6, 469–481. [Google Scholar] [CrossRef]
- Engeland, A.; Haldorsen, T.; Tretli, S.; Hakulinen, T.; Hörte, L.G.; Luostarinen, T.; Magnus, K.; Schou, G.; Sigvaldason, H.; Storm, H.H.; et al. Prediction of cancer incidence in the Nordic countries up to the years 2000 and 2010. A collaborative study of the five Nordic Cancer Registries. APMIS Suppl. 1993, 38, 1–124. [Google Scholar]
- Engeland, A.; Haldorsen, T.; Tretli, S.; Hakulinen, T.; Hörte, L.G.; Luostarinen, T.; Schou, G.; Sigvaldason, H.; Storm, H.H.; Tulinius, H.; et al. Prediction of cancer mortality in the Nordic countries up to the years 2000 and 2010, on the basis of relative survival analysis. A collaborative study of the five Nordic Cancer Registries. APMIS Suppl. 1995, 49, 1–161. [Google Scholar]
- Nguyen, P.T.; Katanoda, K.; Saito, E.; Hori, M.; Nakayama, T.; Matsuda, T. Trends in lung cancer incidence by gender, histological type and stage at diagnosis in Japan, 1993 to 2015: A multiple imputation approach. Int. J. Cancer 2022, 151, 20–32. [Google Scholar] [CrossRef]
- Das Gupta, P. Standardization and Decomposition of Rates: A User’s Manual; Bureau of the Census, U.S. Department of Commerce, Economics and Statistics Administration: Washington, DC, USA, 1993.
- Cheng, X.; Tan, L.; Gao, Y.; Yang, Y.; Schwebel, D.C.; Hu, G. A new method to attribute differences in total deaths between groups to population size, age structure and age-specific mortality rate. PLoS ONE 2019, 14, e0216613. [Google Scholar] [CrossRef]
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, A.; Ito, H.; Nishino, Y.; Hattori, M.; Matsuda, T.; Miyashiro, I.; Nakayama, T.; Iwata, H.; Matsuo, K.; Tanaka, H.; et al. Recent Improvement in the Long-term Survival of Breast Cancer Patients by Age and Stage in Japan. J. Epidemiol. 2018, 28, 420–427. [Google Scholar] [CrossRef] [Green Version]
- Inoue, M.; Sawada, N.; Matsuda, T.; Iwasaki, M.; Sasazuki, S.; Shimazu, T.; Shibuya, K.; Tsugane, S. Attributable causes of cancer in Japan in 2005--systematic assessment to estimate current burden of cancer attributable to known preventable risk factors in Japan. Ann. Oncol. 2012, 23, 1362–1369. [Google Scholar] [CrossRef]
- Pesch, B.; Kendzia, B.; Gustavsson, P.; Jockel, K.H.; Johnen, G.; Pohlabeln, H.; Olsson, A.; Ahrens, W.; Gross, I.M.; Bruske, I.; et al. Cigarette smoking and lung cancer—Relative risk estimates for the major histological types from a pooled analysis of case-control studies. Int. J. Cancer 2012, 131, 1210–1219. [Google Scholar] [CrossRef]
- Japan Ministry of Health Labour and Welfare. National Tobacco Smoker Rate Survey. Available online: http://www.health-net.or.jp/tobacco/product/pd090000.html (accessed on 19 August 2022).
- Wong, M.C.S.; Huang, J.; Lok, V.; Wang, J.; Fung, F.; Ding, H.; Zheng, Z.J. Differences in Incidence and Mortality Trends of Colorectal Cancer Worldwide Based on Sex, Age, and Anatomic Location. Clin. Gastroenterol. Hepatol. 2021, 19, 955–966.e961. [Google Scholar] [CrossRef]
- Nakagawa, H.; Ito, H.; Hosono, S.; Oze, I.; Mikami, H.; Hattori, M.; Nishino, Y.; Sugiyama, H.; Nakata, K.; Tanaka, H. Changes in trends in colorectal cancer incidence rate by anatomic site between 1978 and 2004 in Japan. Eur. J. Cancer Prev. 2017, 26, 269–276. [Google Scholar] [CrossRef]
- Council for Promotion of Cancer Control. Mid-Term Evaluation Report of Basic Plan for Cancer Control Promotion in Japan; Ministry of Health, Labour, and Welfare: Tokyo, Japan, 2022. (In Japanese)
- Kamo, K.-I.; Fukui, K.; Ito, Y.; Nakayama, T.; Katanoda, K. How much can screening reduce colorectal cancer mortality in Japan? Scenario-based estimation by microsimulation. Jpn. J. Clin. Oncol. 2021, 52, 221–226. [Google Scholar] [CrossRef]
- e-Stat Portal Site for Japanese Government Statistics. Annual Trends in Number of Birth, Birth Rate, Male-to-Female Birth Ratio, and Total Fertility Rate. Available online: https://www.e-stat.go.jp/ (accessed on 22 August 2022).
- Toyoda, Y.; Tabuchi, T.; Nakayama, T.; Hojo, S.; Yoshioka, S.; Wakabayashi, Y.; Maeura, Y. Trends in the clinical stage distribution of breast cancer in Osaka, Japan. Breast Cancer 2018, 25, 250–256. [Google Scholar] [CrossRef]
- Saito, E.; Hori, M.; Matsuda, T.; Yoneoka, D.; Ito, Y.; Katanoda, K. Long-term Trends in Prostate Cancer Incidence by Stage at Diagnosis in Japan Using the Multiple Imputation Approach, 1993-2014. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1222–1228. [Google Scholar] [CrossRef] [Green Version]
- The Japan Foundation for Prostate Research. Situation of the Implementation of Prostate Cancer Screening by Municipality-June 2015 Survey; The Japan Foundation for Prostate Research: Tokyo, Japan, 2015. (In Japanese) [Google Scholar]
- Morris, L.G.; Sikora, A.G.; Tosteson, T.D.; Davies, L. The increasing incidence of thyroid cancer: The influence of access to care. Thyroid 2013, 23, 885–891. [Google Scholar] [CrossRef]
- Katanoda, K.; Kamo, K.-I.; Tsugane, S. Quantification of the increase in thyroid cancer prevalence in Fukushima after the nuclear disaster in 2011—A potential overdiagnosis? Jpn. J. Clin. Oncol. 2016, 46, 284–286. [Google Scholar] [CrossRef] [Green Version]
- Welch, H.G.; Black, W.C. Overdiagnosis in cancer. J. Natl. Cancer Inst. 2010, 102, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Ripping, T.M.; Ten Haaf, K.; Verbeek, A.L.M.; Van Ravesteyn, N.T.; Broeders, M.J.M. Quantifying Overdiagnosis in Cancer Screening: A Systematic Review to Evaluate the Methodology. J. Natl. Cancer Inst. 2017, 109, djx060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, M.; Asaka, M.; Kato, M.; Matsushima, R.; Fujimori, K.; Akino, K.; Kikuchi, S.; Lin, Y.; Sakamoto, N. Effect on Helicobacter pylori eradication therapy against gastric cancer in Japan. Helicobacter 2017, 22, e12415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Nishiyama, T.; Kikuchi, S.; Inoue, M.; Sawada, N.; Tsugane, S.; Lin, Y. Changing trends in the prevalence of H. pylori infection in Japan (1908–2003): A systematic review and meta-regression analysis of 170,752 individuals. Sci. Rep. 2017, 7, 15491. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sharma, K.L.; Gupta, A.; Yadav, A.; Kumar, A. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: Recent update. World J. Gastroenterol. 2017, 23, 3978–3998. [Google Scholar] [CrossRef]
- Lagergren, J. Adenocarcinoma of oesophagus: What exactly is the size of the problem and who is at risk? Gut 2005, 54 (Suppl. S1), i1–i5. [Google Scholar] [CrossRef]
- Saito, E.; Yano, T.; Hori, M.; Yoneoka, D.; Matsuda, T.; Chen, Y.; Katanoda, K. Is young-onset esophageal adenocarcinoma increasing in Japan? An analysis of population-based cancer registries. Cancer Med. 2022, 11, 1347–1356. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Rahman, M.S.; Le, P.M.; Nguyen, H.V.; Vu, K.D.; Nguyen, H.L.; Dao, A.T.M.; Khuong, L.Q.; Hoang, M.V.; Gilmour, S. Trends in, projections of, and inequalities in reproductive, maternal, newborn and child health service coverage in Vietnam 2000–2030: A Bayesian analysis at national and sub-national levels. Lancet Reg. Health West Pac. 2021, 15, 100230. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Gilmour, S.; Le, P.M.; Nguyen, H.L.; Dao, T.M.A.; Tran, B.Q.; Hoang, M.V.; Nguyen, H.V. Trends in, projections of, and inequalities in non-communicable disease management indicators in Vietnam 2010-2030 and progress toward universal health coverage: A Bayesian analysis at national and sub-national levels. eClinicalMedicine 2022, 51, 101550. [Google Scholar] [CrossRef]
- Smith, M.; Canfell, K. Impact of the Australian National Cervical Screening Program in women of different ages. Med. J. Aust. 2016, 205, 359–364. [Google Scholar] [CrossRef]
- Simms, K.T.; Hanley, S.J.B.; Smith, M.A.; Keane, A.; Canfell, K. Impact of HPV vaccine hesitancy on cervical cancer in Japan: A modelling study. Lancet Public Health 2020, 5, e223–e234. [Google Scholar] [CrossRef]
- OECD Health Statistics. Health Care Utilisation: Screening. 2019. Available online: https://stats.oecd.org/ (accessed on 22 August 2022).
- Cancer Information Service. Cancer Statsitics in Japan: Cancer Screening from National Cancer Registry in Japan (2007–2019). Available online: https://ganjoho.jp/reg_stat/statistics/stat/screening/ (accessed on 22 August 2022).
- Japan Ministry of Health Labour and Welfare. The 23rd Meeting of the Vaccines Adverse Reactions; Ministry of Health Labour and Welfare: Tokyo, Japan, 2016.
- Subcommittee of Vaccination; Side Effect Review Subcommittee. 72nd Council for Health Sciences: Meeting for Investigation of Side Effect of the Immunization and Vaccine. 2021. Available online: https://www.mhlw.go.jp/stf/newpage_22253.html (accessed on 22 August 2022).
- Tanaka, S.; Palmer, M.; Katanoda, K. Trends in cervical cancer incidence and mortality of young and middle adults in Japan. Cancer Sci. 2022, 113, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Farrington, N.; Richardson, A.; Bridges, J. Interventions for older people having cancer treatment: A scoping review. J. Geriatr. Oncol. 2020, 11, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, F.; Furuse, J. Treatments for elderly cancer patients and reforms to social security systems in Japan. Int. J. Clin. Oncol. 2022, 27, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Japanese Society of Medical Oncology. Clinical Practice Guidelines of Cancer Drug Therapies for the Elderly; Japanese Society of Medical Oncology: Tokyo, Japan, 2019. [Google Scholar]
- Matsuda, T.; Saika, K. Cancer burden in Japan based on the latest cancer statistics: Need for evidence-based cancer control programs. Ann. Cancer Epidemiol. 2018, 2. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Gilmour, S.; Le, P.M.; Onishi, K.; Kato, K.; Nguyen, H.V. Progress toward HIV elimination goals: Trends in and projections of annual HIV testing and condom use in Africa. AIDS 2021, 35, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-P.; Sy Wong, Z.; Wang, L.; Thanh, T.T.; Van Nguyen, H.; Gilmour, S. Rapid impact assessments of COVID-19 control measures against the Delta variant and short-term projections of new confirmed cases in Vietnam. J. Glob. Health 2021, 11, 03118. [Google Scholar] [CrossRef] [PubMed]
- Abe, S. Japan’s vision for a peaceful and healthier world. Lancet 2015, 386, 2367–2369. [Google Scholar] [CrossRef] [PubMed]
Data | Gender | Period 2015–2019 a | Period 2020–2054 a | Case/Death Changes over Period 2020–2054 | |||||
---|---|---|---|---|---|---|---|---|---|
Case/Death | Rate b | Case/Death | Rate b | Total (%) | Population Risk (%) c | Population Age Structure (%) d | Population Size (%) e | ||
Incidence | All-gender | 936,570 | 369.8 | 1,097,567 | 427.0 | +160,997 (+17.2%) | +108,160 (+11.5%) | +296,311 (+31.6%) | −243,474 (−26.0%) |
Male | 534,326 | 374.0 | 571,065 | 357.3 | +36,739 (+6.9%) | −22,247 (−4.2%) | +194,657 (+36.4%) | −135,671 (−25.4%) | |
Female | 402,244 | 353.5 | 526,502 | 487.6 | +124,258 (+30.9%) | +130,407 (+32.4%) | +101,654 (+25.3%) | −107,803 (−26.8%) | |
Mortality | All-gender | 355,070 | 109.9 | 307,840 | 79.9 | −47,230 (−13.3%) | −120,244 (−33.9%) | +155,337 (+43.7%) | −82,323 (−23.2%) |
Male | 210,654 | 125.5 | 175,797 | 85.1 | −34,857 (−16.5%) | −81,941 (−38.9%) | +96,597 (+45.9%) | −49,513 (−23.5%) | |
Female | 144,416 | 90.0 | 132,043 | 70.3 | −12,373 (−8.6%) | −38,303 (−26.5%) | +58,740 (+40.7%) | −32,810 (−22.7%) |
Gender | Cancer Group | Cancer Site | ICD-10 | Period 2015–2019 a | Period 2050–2054 a | Case Changes over Period 2020–2054 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case | Rate b | Rank | Case | Rate b | Rank | Total (%) | Population Risk (%) c | Population Age Structure (%) d | Population Size (%) e | ||||
Male and female combined | Major | Stomach | C16 | 128,667 | 44.9 | 2 | 66,818 | 18.6 | 5 | −61,849 (−48.1%) | −75,283 (−58.5%) | +36,870 (+28.7%) | −23,436 (−18.2%) |
Colon/rectum | C18–C20 | 151,904 | 58.0 | 1 | 207,435 | 75.1 | 1 | +55,531 (+36.6%) | +45,279 (+29.8%) | +53,280 (+35.1%) | −43,028 (−28.3%) | ||
Liver | C22 | 39,532 | 13.3 | 7 | 22,438 | 8.4 | 14 | −17,094 (−43.2%) | −20,969 (−53.0%) | +11,459 (+29.0%) | −7584 (−19.2%) | ||
Pancreas | C25 | 41,065 | 14.0 | 6 | 49,795 | 15.4 | 7 | +8730 (+21.3%) | +3306 (+8.1%) | +16,287 (+39.7%) | −10,864 (−26.5%) | ||
Lung, trachea | C33–C34 | 123,105 | 42.5 | 3 | 146,149 | 44.5 | 2 | +23,044 (+18.7%) | +7506 (+6.1%) | +47,977 (+39.0%) | −32,439 (−26.4%) | ||
Prostate | C61 | 89,466 | 30.3 | 5 | 114,306 | 30.6 | 4 | +24,840 (+27.8%) | +10,420 (+11.6%) | +39,223 (+43.8%) | −24,804 (−27.7%) | ||
Breast (female) | C50 | 92,901 | 50.2 | 4 | 132,332 | 76.9 | 3 | +39,431 (+42.4%) | +55,750 (+60.0%) | +9755 (+10.5%) | −26,073 (−28.1%) | ||
Cervix uteri | C53 | 10,986 | 7.1 | 19 | 10,036 | 6.6 | 20 | −950 (−8.6%) | +1271 (+11.6%) | +173 (+1.6%) | −2394 (−21.8%) | ||
Corpus uteri | C54 | 16,581 | 9.6 | 16 | 38,482 | 25.9 | 9 | +21,901 (+132.1%) | +27,799 (+167.7%) | +697 (+4.2%) | −6596 (−39.8%) | ||
Sub-major | Esophagus | C15 | 25,354 | 9.8 | 10 | 27,802 | 10.9 | 12 | +2448 (+9.7%) | +1869 (+7.4%) | +7017 (+27.7%) | −6439 (−25.4%) | |
Gallbladder and bile ducts | C23–C24 | 22,426 | 6.5 | 13 | 16,975 | 4.4 | 17 | −5451 (−24.3%) | −9993 (−44.6%) | +9356 (+41.7%) | −4815 (−21.5%) | ||
Bladder | C67 | 22,743 | 7.2 | 12 | 25,737 | 6.5 | 13 | +2994 (+13.2%) | −1995 (−8.8%) | +10,881 (+47.8%) | −5891 (−25.9%) | ||
Kidney and other urinary organs | C64–C66 C68 | 29,040 | 11.7 | 9 | 38,998 | 13.0 | 8 | +9958 (+34.3%) | +7535 (+25.9%) | +10,561 (+36.4%) | −8138 (−28.0%) | ||
Thyroid | C73 | 17,954 | 10.7 | 15 | 22,408 | 14.4 | 15 | +4454 (+24.8%) | +7834 (+43.6%) | +1362 (+7.6%) | −4742 (−26.4%) | ||
Malignant lymphoma | C81–C85 C96 | 34,265 | 14.2 | 8 | 57,875 | 22.5 | 6 | +23,610 (+68.9%) | +21,577 (+63.0%) | +13,031 (+38.0%) | −10,998 (−32.1%) | ||
Ovary | C56 | 12,722 | 7.5 | 18 | 20,140 | 14.0 | 16 | +7418 (+58.3%) | +10,682 (+84.0%) | +606 (+4.8%) | −3869 (−30.4%) | ||
Male | Major | Stomach | C16 | 88,574 | 59.3 | 2 | 41,361 | 21.5 | 4 | −47,213 (−53.3%) | −56,588 (−63.9%) | +25,272 (+28.5%) | −15,896 (−17.9%) |
Colon/rectum | C18–C20 | 86,247 | 64.9 | 3 | 109,737 | 78.0 | 2 | +23,490 (+27.2%) | +17,888 (+20.7%) | +29,662 (+34.4%) | −24,060 (−27.9%) | ||
Liver | C22 | 26,664 | 18.0 | 5 | 15,471 | 11.6 | 11 | −11193 (−42.0%) | −13,498 (−50.6%) | +7546 (+28.3%) | −5241 (−19.7%) | ||
Pancreas | C25 | 21,126 | 14.7 | 6 | 26,226 | 16.7 | 5 | +5100 (+24.1%) | +2577 (+12.2%) | +8347 (+39.5%) | −5825 (−27.6%) | ||
Lung, trachea | C33–C34 | 82,290 | 53.6 | 4 | 97,615 | 56.4 | 3 | +15,325 (+18.6%) | +3672 (+4.5%) | +33,836 (+41.1%) | −22,183 (−27.0%) | ||
Prostate | C61 | 89466 | 56.5 | 1 | 114,306 | 54.8 | 1 | +24,840 (+27.8%) | +10,420 (+11.6%) | +39,223 (+43.8%) | −24,804 (−27.7%) | ||
Sub-major | Esophagus | C15 | 20,990 | 15.2 | 7 | 21,288 | 15.8 | 8 | +298 (+1.4%) | −186 (−0.9%) | +5669 (+27.0%) | −5186 (−24.7%) | |
Gallbladder and bile ducts | C23–C24 | 11,922 | 7.1 | 13 | 10,972 | 5.4 | 13 | −950 (−8.0%) | −3568 (−29.9%) | +5472 (+45.9%) | −2854 (−23.9%) | ||
Bladder | C67 | 17,139 | 10.7 | 10 | 19,006 | 9.1 | 10 | +1867 (+10.9%) | −1879 (−11.0%) | +8202 (+47.9%) | −4456 (−26.0%) | ||
Kidney and other urinary organs | C64–C66 C68 | 19,722 | 15.7 | 8 | 26,218 | 16.6 | 6 | +6496 (+32.9%) | +4871 (+24.7%) | +7218 (+36.6%) | −5593 (−28.4%) | ||
Thyroid | C73 | 4663 | 5.2 | 16 | 6571 | 7.6 | 15 | +1908 (+40.9%) | +2573 (+55.2%) | +716 (+15.4%) | −1380 (−29.6%) | ||
Malignant lymphoma | C81–C85 C96 | 18,331 | 14.8 | 9 | 25,718 | 19.7 | 7 | +7387 (+40.3%) | +5831 (+31.8%) | +6972 (+38.0%) | −5415 (−29.5%) | ||
Female | Major | Stomach | C16 | 40,093 | 27.8 | 4 | 25,457 | 14.3 | 6 | −14,636 (−36.5%) | −18,694 (−46.6%) | +11,598 (+28.9%) | −7540 (−18.8%) |
Colon/rectum | C18–C20 | 65,657 | 49.1 | 2 | 97,698 | 70.0 | 2 | +32,041 (+48.8%) | +27,391 (+41.7%) | +23,618 (+36.0%) | −18,968 (−28.9%) | ||
Liver | C22 | 12,867 | 7.7 | 9 | 6967 | 4.6 | 14 | −5900 (−45.9%) | −7470 (−58.1%) | +3913 (+30.4%) | −2342 (−18.2%) | ||
Pancreas | C25 | 19,938 | 13.0 | 5 | 23,569 | 13.4 | 7 | +3631 (+18.2%) | +729 (+3.7%) | +7940 (+39.8%) | −5038 (−25.3%) | ||
Lung, trachea | C33–C34 | 40,814 | 29.2 | 3 | 48,533 | 28.8 | 3 | +7719 (+18.9%) | +3834 (+9.4%) | +14,141 (+34.6%) | −10,256 (−25.1%) | ||
Breast (female) | C50 | 92,901 | 103.0 | 1 | 132,332 | 160.2 | 1 | +39,431 (+42.4%) | +55,750 (+60.0%) | +9755 (+10.5%) | −26,073 (−28.1%) | ||
Cervix uteri | C53 | 10,986 | 14.5 | 12 | 10,036 | 13.8 | 13 | −950 (−8.6%) | +1271 (+11.6%) | +173 (+1.6%) | −2394 (−21.8%) | ||
Corpus uteri | C54 | 16,581 | 19.7 | 6 | 38,482 | 54.2 | 4 | +21,901 (+132.1%) | +27,799 (+167.7%) | +697 (+4.2%) | −6596 (−39.8%) | ||
Sub-major | Esophagus | C15 | 4364 | 3.5 | 18 | 6513 | 4.8 | 17 | +2149 (+49.2%) | +2055 (+47.1%) | +1348 (+30.9%) | −1253 (−28.7%) | |
Gallbladder and bile ducts | C23–C24 | 10,504 | 5.8 | 13 | 6003 | 3.1 | 18 | −4501 (−42.9%) | −6425 (−61.2%) | +3884 (+37.0%) | −1960 (−18.7%) | ||
Bladder | C67 | 5604 | 3.2 | 17 | 6732 | 3.1 | 16 | +1128 (+20.1%) | −116 (−2.1%) | +2679 (+47.8%) | −1435 (−25.6%) | ||
Kidney and other urinary organs | C64–C66 C68 | 9318 | 7.1 | 14 | 12,780 | 8.4 | 11 | +3462 (+37.2%) | +2664 (+28.6%) | +3343 (+35.9%) | −2545 (−27.3%) | ||
Thyroid | C73 | 13,291 | 16.3 | 8 | 15,837 | 21.7 | 10 | +2546 (+19.2%) | +5261 (+39.6%) | +646 (+4.9%) | −3362 (−25.3%) | ||
Malignant lymphoma | C81–C85 C96 | 15,934 | 13.4 | 7 | 32,157 | 25.2 | 5 | +16,223 (+101.8%) | +15,746 (+98.8%) | +6060 (+38.0%) | −5582 (−35.0%) | ||
Ovary | C56 | 12,722 | 15.4 | 10 | 20,140 | 29.1 | 8 | +7418 (+58.3%) | +10,682 (+84.0%) | +606 (+4.8%) | −3869 (−30.4%) |
Data | Age Group | Burden Rank | Period 2015–2019 a | Period 2050–2054 a | ||||
---|---|---|---|---|---|---|---|---|
Cancer Site | ICD-10 | Case/Death (%) | Cancer Site | ICD-10 | Case/Death (%) | |||
Incidence | All age | 1 | Colon/rectum | C18–C20 | 151,904 (16.2%) | Colon/rectum | C18–C20 | 207,435 (18.9%) |
2 | Stomach | C16 | 128,667 (13.7%) | Lung, trachea | C33–C34 | 146,149 (13.3%) | ||
3 | Lung, trachea | C33–C34 | 123,105 (13.1%) | Female breast | C50 | 132,332 (12.1%) | ||
Oldest-old (85+ years) | 1 | Colon/rectum | C18–C20 | 22,521 (17.2%) | Colon/rectum | C18–C20 | 55,172 (19.4%) | |
2 | Stomach | C16 | 19,684 (15.0%) | Lung, trachea | C33–C34 | 41,747 (14.7%) | ||
3 | Lung, trachea | C33–C34 | 19,300 (14.7%) | Prostate | C61 | 32,077 (11.3%) | ||
Middle-old (75–84 years) | 1 | Colon/rectum | C18–C20 | 44,914 (16.2%) | Colon/rectum | C18–C20 | 69,307 (18.9%) | |
2 | Stomach | C16 | 44,599 (16.1%) | Lung, trachea | C33–C34 | 55,801 (15.2%) | ||
3 | Lung, trachea | C33–C34 | 41,414 (14.9%) | Prostate | C61 | 48,743 (13.3%) | ||
Youngest-old (65–74 years) | 1 | Colon/rectum | C18–C20 | 48,260 (16.6%) | Colon/rectum | C18–C20 | 47,693 (20.1%) | |
2 | Lung, trachea | C33–C34 | 42,430 (14.6%) | Lung, trachea | C33–C34 | 32,848 (13.8%) | ||
3 | Stomach | C16 | 42,389 (14.6%) | Prostate | C61 | 27,218 (11.5%) | ||
Middle-adult (40–64 years) | 1 | Female breast | C50 | 45,392 (20.9%) | Female breast | C50 | 45,448 (23.7%) | |
2 | Colon/rectum | C18–C20 | 34,526 (15.9%) | Colon/rectum | C18–C20 | 33,667 (17.6%) | ||
3 | Stomach | C16 | 21,156 (9.7%) | Corpus uteri | C54 | 18,232 (9.5%) | ||
Young-adult (20–39 years) | 1 | Female breast | C50 | 3967 (22.1%) | Female breast | C50 | 5047 (31.7%) | |
2 | Thyroid | C73 | 2390 (13.3%) | Thyroid | C73 | 1627 (10.2%) | ||
3 | Cervix uteri | C53 | 1915 (10.7%) | Colon/rectum | C18–C20 | 1544 (9.7%) | ||
Adolescent (15–19 years) | 1 | Leukemia | C91–C95 | 180 (25.0%) | Malignant lymphoma | C81–C85 C96 | 202 (27.3%) | |
2 | Malignant lymphoma | C81–C85 C96 | 121 (16.8%) | Leukemia | C91–C95 | 179 (24.2%) | ||
3 | Thyroid | C73 | 116 (16.1%) | Brain, nervous system | C70–C72 | 87 (11.8%) | ||
Children (0–14 years) | 1 | Leukemia | C91–C95 | 744 (46.8%) | Leukemia | C91–C95 | 681 (40.0%) | |
2 | Brain, nervous system | C70–C72 | 327 (20.6%) | Malignant lymphoma | C81–C85 C96 | 492 (28.9%) | ||
3 | Malignant lymphoma | C81–C85 C96 | 237 (14.9%) | Brain, nervous system | C70–C72 | 334 (19.6%) | ||
Mortality | All age | 1 | Lung, trachea | C33–C34 | 74,407 (21.0%) | Lung, trachea | C33–C34 | 61,980 (20.1%) |
2 | Colon/rectum | C18–C20 | 50,508 (14.2%) | Colon/rectum | C18–C20 | 50,737 (16.5%) | ||
3 | Stomach | C16 | 44,910 (12.6%) | Pancreas | C25 | 34,741 (11.3%) | ||
Oldest-old (85+ years) | 1 | Lung, trachea | C33–C34 | 19,165 (19.8%) | Lung, trachea | C33–C34 | 24,317 (19.5%) | |
2 | Colon/rectum | C18–C20 | 14,892 (15.4%) | Colon/rectum | C18–C20 | 22,074 (17.7%) | ||
3 | Stomach | C16 | 12,994 (13.4%) | Pancreas | C25 | 13,963 (11.2%) | ||
Middle-old (75–84 years) | 1 | Lung, trachea | C33–C34 | 26,988 (22.3%) | Lung, trachea | C33–C34 | 24675 (22.7%) | |
2 | Colon/rectum | C18–C20 | 15,797 (13.0%) | Colon/rectum | C18–C20 | 16,496 (15.2%) | ||
3 | Stomach | C16 | 15,483 (12.8%) | Pancreas | C25 | 12,802 (11.8%) | ||
Youngest-old (65–74 years) | 1 | Lung, trachea | C33–C34 | 20,575 (23.1%) | Lung, trachea | C33–C34 | 9582 (20.3%) | |
2 | Colon/rectum | C18–C20 | 12,410 (13.9%) | Colon/rectum | C18–C20 | 7658 (16.2%) | ||
3 | Stomach | C16 | 11,120 (12.5%) | Pancreas | C25 | 5095 (10.8%) | ||
Middle-adult (40–64 years) | 1 | Lung, trachea | C33–C34 | 7558 (16.4%) | Colon/rectum | C18–C20 | 4365 (16.9%) | |
2 | Colon/rectum | C18–C20 | 7146 (15.5%) | Lung, trachea | C33–C34 | 3348 (12.9%) | ||
3 | Stomach | C16 | 5076 (11.0%) | Stomach | C16 | 2844 (11.0%) | ||
Young-adult (20–39 years) | 1 | Female breast | C50 | 268 (14.0%) | Female breast | C50 | 225 (21.3%) | |
2 | Colon/rectum | C18–C20 | 257 (13.4%) | Brain, nervous system | C70–C72 | 149 (14.1%) | ||
3 | Stomach | C16 | 234 (12.2%) | Colon/rectum | C18–C20 | 141 (13.4%) | ||
Adolescent (15–19 years) | 1 | Leukemia | C91–C95 | 34 (44.2%) | Brain, nervous system | C70–C72 | 28 (45.9%) | |
2 | Brain, nervous system | C70–C72 | 21 (27.3%) | Leukemia | C91–C95 | 17 (27.9%) | ||
3 | Malignant lymphoma | C81–C85 C96 | 7 (9.1%) | Malignant lymphoma | C81–C85 C96 | 6 (9.8%) | ||
Children (0–14 years) | 1 | Brain, nervous system | C70–C72 | 88 (45.1%) | Brain, nervous system | C70–C72 | 98 (58.7%) | |
2 | Leukemia | C91–C95 | 78 (40.0%) | Leukemia | C91–C95 | 48 (28.7%) | ||
3 | Liver | C22 | 9 (4.6%) | Malignant lymphoma | C81–C85 C96 | 7 (4.2%) |
Gender | Cancer Group | Cancer Site | ICD-10 | Period 2015–2019 a | Period 2050–2054 a | Death Changes over Period 2020–2054 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Death | Rate b | Rank | Death | Rate b | Rank | Total (%) | Population Risk (%) c | Population Age Structure (%) d | Population Size (%) e | ||||
Male and female combined | Major | Stomach | C16 | 44,910 | 13.4 | 3 | 29,123 | 7.9 | 4 | −15,787 (−35.2%) | −24,870 (−55.4%) | +18,435 (+41.0%) | −9352 (−20.8%) |
Colon/rectum | C18–C20 | 50,508 | 15.6 | 2 | 50,737 | 12.9 | 2 | +229 (+0.5%) | −10,571 (−20.9%) | +23,275 (+46.1%) | −12,474 (−24.7%) | ||
Liver | C22 | 27,143 | 8.0 | 5 | 13,014 | 4.1 | 7 | −14,129 (−52.1%) | −18,662 (−68.8%) | +9649 (+35.5%) | −5116 (−18.8%) | ||
Pancreas | C25 | 34,261 | 10.7 | 4 | 34,741 | 8.7 | 3 | +480 (+1.4%) | −5925 (−17.3%) | +14,812 (+43.2%) | −8408 (−24.5%) | ||
Lung, trachea | C33–C34 | 74,407 | 22.1 | 1 | 61,980 | 14.4 | 1 | −12427 (−16.7%) | −28,935 (−38.9%) | +33,581 (+45.1%) | −17,074 (−22.9%) | ||
Prostate | C61 | 11,987 | 2.8 | 9 | 15,546 | 2.6 | 5 | +3559 (+29.7%) | −2171 (−18.1%) | +9292 (+77.5%) | −3561 (−29.7%) | ||
Breast (female) | C50 | 14,275 | 6.3 | 7 | 12,804 | 5.1 | 8 | −1471 (−10.3%) | −1617 (−11.3%) | +3276 (+22.9%) | −3130 (−21.9%) | ||
Cervix uteri | C53 | 2822 | 1.4 | 17 | 3287 | 1.6 | 18 | +465 (+16.5%) | +649 (+23.0%) | +534 (+18.9%) | −717 (−25.4%) | ||
Corpus uteri | C54 | 2487 | 1.0 | 19 | 3791 | 1.5 | 16 | +1304 (+52.4%) | +1296 (+52.1%) | +747 (+30.0%) | −738 (−29.7%) | ||
Sub-major | Esophagus | C15 | 11,550 | 4.0 | 10 | 10,193 | 3.4 | 11 | −1357 (−11.7%) | −2543 (−22.0%) | +3900 (+33.8%) | −2714 (−23.5%) | |
Gallbladder and bile ducts | C23–C24 | 18,091 | 4.7 | 6 | 14,621 | 3.0 | 6 | −3470 (−19.2%) | −8521 (−47.1%) | +9161 (+50.6%) | −4110 (−22.7%) | ||
Bladder | C67 | 8577 | 2.1 | 13 | 11,550 | 2.2 | 9 | +2973 (+34.7%) | −543 (−6.3%) | +6052 (+70.6%) | −2537 (−29.6%) | ||
Kidney and other urinary organs | C64-C66 C68 | 9340 | 2.7 | 11 | 7757 | 1.8 | 12 | −1583 (−16.9%) | −3883 (−41.6%) | +4445 (+47.6%) | −2144 (−23.0%) | ||
Thyroid | C73 | 1785 | 0.5 | 20 | 1699 | 0.4 | 21 | −86 (−4.8%) | −515 (−28.9%) | +858 (+48.1%) | −429 (−24.0%) | ||
Malignant lymphoma | C81–C85 C96 | 12,483 | 3.6 | 8 | 10,471 | 2.1 | 10 | −2012 (−16.1%) | −5237 (−42.0%) | +6074 (+48.7%) | −2849 (−22.8%) | ||
Ovary | C56 | 4739 | 2.1 | 15 | 3801 | 1.2 | 15 | −938 (−19.8%) | −1047 (−22.1%) | +1092 (+23.0%) | −983 (−20.7%) | ||
Male | Major | Stomach | C16 | 29,457 | 17.3 | 2 | 19,634 | 10.6 | 3 | −9823 (−33.3%) | −15,783 (−53.6%) | +12,312 (+41.8%) | −6352 (−21.6%) |
Colon/rectum | C18–C20 | 27135 | 17.3 | 3 | 26,083 | 13.9 | 2 | −1052 (−3.9%) | −6420 (−23.7%) | +12,136 (+44.7%) | −6768 (−24.9%) | ||
Liver | C22 | 17,824 | 10.7 | 4 | 9100 | 5.8 | 6 | −8724 (−48.9%) | −11,508 (−64.6%) | +6284 (+35.3%) | −3500 (−19.6%) | ||
Pancreas | C25 | 17,341 | 11.2 | 5 | 15,195 | 8.0 | 5 | −2146 (−12.4%) | −5120 (−29.5%) | +7077 (+40.8%) | −4103 (−23.7%) | ||
Lung, trachea | C33–C34 | 52,872 | 30.6 | 1 | 42,325 | 18.8 | 1 | −10,547 (−19.9%) | −22,530 (−42.6%) | +24,172 (+45.7%) | −12,189 (−23.1%) | ||
Prostate | C61 | 11,987 | 5.4 | 6 | 15,546 | 4.6 | 4 | +3559 (+29.7%) | −2171 (−18.1%) | +9292 (+77.5%) | −3561 (−29.7%) | ||
Sub-major | Esophagus | C15 | 9562 | 6.3 | 7 | 7421 | 4.8 | 9 | −2141 (−22.4%) | −3048 (−31.9%) | +3059 (+32.0%) | −2152 (−22.5%) | |
Gallbladder and bile ducts | C23–C24 | 9199 | 4.9 | 8 | 7849 | 3.1 | 7 | −1350 (−14.7%) | −4104 (−44.6%) | +4963 (+54.0%) | −2209 (−24.0%) | ||
Bladder | C67 | 5842 | 2.8 | 11 | 7457 | 2.7 | 8 | +1615 (+27.6%) | −880 (−15.1%) | +4214 (+72.1%) | −1719 (−29.4%) | ||
Kidney and other urinary organs | C64–C66 C68 | 5955 | 3.5 | 10 | 4906 | 2.2 | 11 | −1049 (−17.6%) | −2529 (−42.5%) | +2875 (+48.3%) | −1394 (−23.4%) | ||
Thyroid | C73 | 582 | 0.3 | 18 | 615 | 0.3 | 18 | +33 (+5.7%) | −101 (−17.4%) | +288 (+49.5%) | −154 (−26.5%) | ||
Malignant lymphoma | C81–C85 C96 | 6964 | 4.1 | 9 | 5916 | 2.3 | 10 | −1048 (−15.0%) | −2969 (−42.6%) | +3571 (+51.3%) | −1650 (−23.7%) | ||
Female | Major | Stomach | C16 | 15,453 | 8.7 | 4 | 9488 | 4.4 | 5 | −5965 (−38.6%) | −9088 (−58.8%) | +6123 (+39.6%) | −3000 (−19.4%) |
Colon/rectum | C18–C20 | 23,373 | 13.5 | 1 | 24,654 | 11.3 | 1 | +1281 (+5.5%) | −4151 (−17.8%) | +11,139 (+47.7%) | −5707 (−24.4%) | ||
Liver | C22 | 9320 | 4.8 | 6 | 3915 | 2.0 | 9 | −5405 (−58.0%) | −7154 (−76.8%) | +3365 (+36.1%) | −1616 (−17.3%) | ||
Pancreas | C25 | 16,920 | 10.0 | 3 | 19,545 | 9.3 | 3 | +2625 (+15.5%) | −805 (−4.8%) | +7735 (+45.7%) | −4305 (−25.4%) | ||
Lung, trachea | C33–C34 | 21,535 | 12.2 | 2 | 19,655 | 8.6 | 2 | −1880 (−8.7%) | −6405 (−29.7%) | +9410 (+43.7%) | −4885 (−22.7%) | ||
Breast (female) | C50 | 14,275 | 13.0 | 5 | 12,804 | 10.7 | 4 | −1471 (−10.3%) | −1617 (−11.3%) | +3276 (+22.9%) | −3130 (−21.9%) | ||
Cervix uteri | C53 | 2822 | 2.9 | 12 | 3287 | 3.4 | 12 | +465 (+16.5%) | +649 (+23.0%) | +534 (+18.9%) | −717 (−25.4%) | ||
Corpus uteri | C54 | 2487 | 2.1 | 14 | 3791 | 3.1 | 11 | +1304 (+52.4%) | +1296 (+52.1%) | +747 (+30.0%) | −738 (−29.7%) | ||
Sub-major | Esophagus | C15 | 1988 | 1.3 | 17 | 2772 | 1.7 | 14 | +784 (+39.4%) | +505 (+25.4%) | +841 (+42.3%) | −562 (−28.3%) | |
Gallbladder and bile ducts | C23–C24 | 8892 | 4.3 | 7 | 6772 | 2.8 | 6 | −2120 (−23.8%) | −4417 (−49.7%) | +4198 (+47.2%) | −1901 (−21.4%) | ||
Bladder | C67 | 2735 | 1.2 | 13 | 4093 | 1.6 | 8 | +1358 (+49.7%) | +338 (+12.4%) | +1838 (+67.2%) | −818 (−29.9%) | ||
Kidney and other urinary organs | C64–C66 C68 | 3385 | 1.7 | 11 | 2851 | 1.2 | 13 | −534 (−15.8%) | −1354 (−40.0%) | +1570 (+46.4%) | −750 (−22.2%) | ||
Thyroid | C73 | 1203 | 0.6 | 18 | 1084 | 0.5 | 19 | −119 (−9.9%) | −414 (−34.4%) | +570 (+47.4%) | −275 (−22.9%) | ||
Malignant lymphoma | C81–C85 C96 | 5519 | 3.0 | 8 | 4555 | 1.7 | 7 | −964 (−17.5%) | −2268 (−41.1%) | +2503 (+45.4%) | −1198 (−21.7%) | ||
Ovary | C56 | 4739 | 4.3 | 9 | 3801 | 2.6 | 10 | −938 (−19.8%) | −1047 (−22.1%) | +1092 (+23.0%) | −983 (−20.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, P.T.; Saito, E.; Katanoda, K. Long-Term Projections of Cancer Incidence and Mortality in Japan and Decomposition Analysis of Changes in Cancer Burden, 2020–2054: An Empirical Validation Approach. Cancers 2022, 14, 6076. https://doi.org/10.3390/cancers14246076
Nguyen PT, Saito E, Katanoda K. Long-Term Projections of Cancer Incidence and Mortality in Japan and Decomposition Analysis of Changes in Cancer Burden, 2020–2054: An Empirical Validation Approach. Cancers. 2022; 14(24):6076. https://doi.org/10.3390/cancers14246076
Chicago/Turabian StyleNguyen, Phuong The, Eiko Saito, and Kota Katanoda. 2022. "Long-Term Projections of Cancer Incidence and Mortality in Japan and Decomposition Analysis of Changes in Cancer Burden, 2020–2054: An Empirical Validation Approach" Cancers 14, no. 24: 6076. https://doi.org/10.3390/cancers14246076
APA StyleNguyen, P. T., Saito, E., & Katanoda, K. (2022). Long-Term Projections of Cancer Incidence and Mortality in Japan and Decomposition Analysis of Changes in Cancer Burden, 2020–2054: An Empirical Validation Approach. Cancers, 14(24), 6076. https://doi.org/10.3390/cancers14246076