Prediction of Radiotherapy Compliance in Elderly Cancer Patients Using an Internally Validated Decision Tree
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
3. Decision Trees
4. Statistical Analysis
5. Results
Decision Tree
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foster, J.A.; Salinas, G.D.; Mansell, D.; Williamson, J.C.; Casebeer, L.L. How does older age influence oncologists’ cancer management? Oncologist 2010, 15, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Given, B.; Given, C.W. Older adults and cancer treatment. Cancer 2008, 113, 3505–3511. [Google Scholar] [CrossRef]
- Hong, S.; Won, Y.J.; Park, Y.R.; Jung, K.W.; Kong, H.J.; Lee, E.S.; The Community of Population-Based Regional Cancer Registries. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2017. Cancer Res. Treat. 2020, 52, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, Y.; Rakugi, H.; Arai, H.; Akishita, M.; Ito, H.; Toba, K.; Kai, I.; Joint Committee of Japan Gerontological Society (JGLS) and Japan Geriatrics Society (JGS) on the Definition and Classification of the Elderly. Redefining the elderly as aged 75 years and older: Proposal from the Joint Committee of Japan Gerontological Society and the Japan Geriatrics Society. Geriatr. Gerontol. Int. 2017, 17, 1045–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakkar, J.P.; McCarthy, B.J.; Villano, J.L. Age-specific cancer incidence rates increase through the oldest age groups. Am. J. Med. Sci. 2014, 348, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Glas, N.A.; Kiderlen, M.; de Craen, A.J.; Hamaker, M.E.; Portielje, J.E.; van de Velde, C.J.; Liefers, G.J.; Bastiaannet, E. Assessing treatment effects in older breast cancer patients: Systematic review of observational research methods. Cancer Treat. Rev. 2015, 41, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Repetto, L.; Venturino, A.; Fratino, L.; Serraino, D.; Troisi, G.; Gianni, W.; Pietropaolo, M. Geriatric oncology: A clinical approach to the older patient with cancer. Eur. J. Cancer 2003, 39, 870–880. [Google Scholar] [CrossRef] [PubMed]
- Gouin, J.P.; Hantsoo, L.; Kiecolt-Glaser, J.K. Immune dysregulation and chronic stress among older adults: A review. Neuroimmunomodulation 2008, 15, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ethun, C.G.; Bilen, M.A.; Jani, A.B.; Maithel, S.K.; Ogan, K.; Master, V.A. Frailty and cancer: Implications for oncology surgery, medical oncology, and radiation oncology. CA Cancer J. Clin. 2017, 67, 362–377. [Google Scholar] [CrossRef] [Green Version]
- Gosain, A.; DiPietro, L.A. Aging and wound healing. World J. Surg. 2004, 28, 321–326. [Google Scholar] [CrossRef]
- Marengoni, A.; Angleman, S.; Melis, R.; Mangialasche, F.; Karp, A.; Garmen, A.; Meinow, B.; Fratiglioni, L. Aging with multimorbidity: A systematic review of the literature. Ageing Res. Rev. 2011, 10, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Nobili, A.; Garattini, S.; Mannucci, P.M. Multiple diseases and polypharmacy in the elderly: Challenges for the internist of the third millennium. J. Comorb. 2011, 1, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Di Genesio Pagliuca, M.; Perotti, C.; Apicella, G.; Galla, A.; Guffi, M.; Paolini, M.; Donis, L.; Amisano, V.; Torrente, S.; Manfredda, I.; et al. Concurrent chemo-radiotherapy in elderly patients: Tolerance and compliance in a series of 137 patients. Clin. Transl. Oncol. 2016, 18, 571–575. [Google Scholar] [CrossRef]
- Haehl, E.; Ruhle, A.; David, H.; Kalckreuth, T.; Sprave, T.; Stoian, R.; Becker, C.; Knopf, A.; Grosu, A.L.; Nicolay, N.H. Radiotherapy for geriatric head-and-neck cancer patients: What is the value of standard treatment in the elderly? Radiat. Oncol. 2020, 15, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christodoulou, M.; Blackhall, F.; Mistry, H.; Leylek, A.; Knegjens, J.; Remouchamps, V.; Martel-Lafay, I.; Farre, N.; Zwitter, M.; Lerouge, D.; et al. Compliance and Outcome of Elderly Patients Treated in the Concurrent Once-Daily Versus Twice-Daily Radiotherapy (CONVERT) Trial. J. Thorac. Oncol. 2019, 14, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Rastogi, K.; Bhatnagar, A.R.; Singh, D.; Gupta, K.; Choudhary, A.S. Compliance to radiotherapy: A tertiary care center experience. Indian J. Cancer 2018, 55, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Kent, E.E.; Forsythe, L.P.; Yabroff, K.R.; Weaver, K.E.; de Moor, J.S.; Rodriguez, J.L.; Rowland, J.H. Are survivors who report cancer-related financial problems more likely to forgo or delay medical care? Cancer 2013, 119, 3710–3717. [Google Scholar] [CrossRef]
- Salsman, J.M.; Fitchett, G.; Merluzzi, T.V.; Sherman, A.C.; Park, C.L. Religion, spirituality, and health outcomes in cancer: A case for a meta-analytic investigation. Cancer 2015, 121, 3754–3759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallurupalli, M.; Lauderdale, K.; Balboni, M.J.; Phelps, A.C.; Block, S.D.; Ng, A.K.; Kachnic, L.A.; Vanderweele, T.J.; Balboni, T.A. The role of spirituality and religious coping in the quality of life of patients with advanced cancer receiving palliative radiation therapy. J. Support Oncol. 2012, 10, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Ferreira, J.A.; Jaen Olasolo, J.; Azinovic, I.; Jeremic, B. Effect of radiotherapy delay in overall treatment time on local control and survival in head and neck cancer: Review of the literature. Rep. Pract. Oncol. Radiother. 2015, 20, 328–339. [Google Scholar] [CrossRef]
- Jeremic, B.; Shibamoto, Y.; Milicic, B.; Dagovic, A.; Nikolic, N.; Aleksandrovic, J.; Acimovic, L.; Milisavljevic, S. Impact of treatment interruptions due to toxicity on outcome of patients with early stage (I/II) non-small-cell lung cancer (NSCLC) treated with hyperfractionated radiation therapy alone. Lung Cancer 2003, 40, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.; Martin, T.; Gao, A.; Ahn, C.; Wilhelm, H.; Schwartz, D.L. Interruptions of Head and Neck Radiotherapy Across Insured and Indigent Patient Populations. J. Oncol. Pract. 2017, 13, e319–e328. [Google Scholar] [CrossRef]
- Echeverria, A.; Manley, H.; O’Donnell, B.; Asper, J.; Bonnen, M.; Ludwig, M. Factors Associated With Radiation Treatment Compliance for Women With Cervical Cancer in a Safety Net Health System. Int. J. Gynecol. Cancer 2017, 27, 1464–1471. [Google Scholar] [CrossRef]
- Breiman, L.F.J.; Olshen, R.A.; Stone, C.J. Classification And Regression Trees; Routledge: New York, NY, USA, 2017; p. 368. [Google Scholar]
- Palwe, V.P.R.; Pandit, P.; Nagarkar, R. Factors influencing non-adherence to radiotherapy: A retrospective audit of 1,548 patients from a tertiary cancer centre. J. Radiother. Pract. 2020, 19, 359–364. [Google Scholar] [CrossRef]
- Song, Y.Y.; Lu, Y. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Linoff, G.S.B.M. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Fowler, J.F. Brief summary of radiobiological principles in fractionated radiotherapy. Semin. Radiat. Oncol. 1992, 2, 16–21. [Google Scholar] [CrossRef]
- Steel, G.G. Basic Clinical Radiobiology, 3rd ed.; Oxford University Press: London, UK, 2002. [Google Scholar]
- Hu, C.; Steingrimsson, J.A. Personalized Risk Prediction in Clinical Oncology Research: Applications and Practical Issues Using Survival Trees and Random Forests. J. Biopharm. Stat. 2018, 28, 333–349. [Google Scholar] [CrossRef]
- Wollschlager, D.; Meng, X.; Wockel, A.; Janni, W.; Kreienberg, R.; Blettner, M.; Schwentner, L. Comorbidity-dependent adherence to guidelines and survival in breast cancer-Is there a role for guideline adherence in comorbid breast cancer patients? A retrospective cohort study with 2137 patients. Breast J. 2018, 24, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Yoon, W.S.Y.D.; Kim, C.Y. The Evaluation of Radiation Therapy and Combined-modality Therapy for Non-small-cell Lung Cancer in Elderly. Radiat. Oncol. J. 2007, 25, 101–108. [Google Scholar]
- Amini, A.; McDermott, J.D.; Gan, G.; Bhatia, S.; Sumner, W.; Fisher, C.M.; Jimeno, A.; Bowles, D.W.; Raben, D.; Karam, S.D. Stereotactic body radiotherapy as primary therapy for head and neck cancer in the elderly or patients with poor performance. Front. Oncol. 2014, 4, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, S.; Tanaka, H.; Kajiura, Y.; Ohno, Y.; Hoshi, H. Stereotactic body radiotherapy for very elderly patients (age, greater than or equal to 85 years) with stage I non-small cell lung cancer. Radiat. Oncol. 2014, 9, 138. [Google Scholar] [CrossRef]
Variable | Levels | Compliance | Noncompliance | Total |
---|---|---|---|---|
Age (year) | Median (1 sd) | 78 (3.5) | 78 (3.3) | 78 (3.5) |
Fractionation | Median (sd) | 25 (9.9) | 8 (7.2) | 25 (11) |
Radiotherapy dose (Gy) | Median (sd) | 50.4 (15.4) | 16.5 (13.5) | 45 (18.9) |
(2 EQD2) | Median (sd) | 50 (15.0) | 17.7 (13.5) | 44.25 (18.7) |
3 CCI | Median (sd) | 6 (1.9) | 6 (1.9) | 6 (1.9) |
Sex | Male | 187 (78.9%) | 50 (21.1%) | 238 (52.0%) |
Female | 182 (83.1%) | 37 (16.9%) | 219 (48.0%) | |
4 ECOG PS | 0–2 | 322 (79.9%) | 81 (20.1%) | 403 (88.4%) |
3–4 | 47 (88.7%) | 6 (11.3%) | 53 (11.6%) | |
Patient Status | Out-patient | 258 (84.9 %) | 46 (15.1%) | 304 (66.7%) |
In-patient | 111 (73.0 %) | 41 (27.0%) | 152 (33.3%) | |
Radiotherapy aim | Curative | 274 (80.6 %) | 66 (19.4%) | 340 (74.6%) |
Palliative | 95 (81.9 %) | 21 (18.1%) | 116 (25.4%) | |
Health insurance status | Medical care | 50 (86.2 %) | 8 (13.8 %) | 58 (12.7%) |
Health insurance | 319 (80.2 %) | 79 (19.8 %) | 398 (87.3%) | |
Fraction type | Conventional | 242 (82.0%) | 53 (18.0%) | 295 (64.7%) |
Hypofraction | 127 (78.9 %) | 34 (21.1%) | 161 (35.3%) | |
Cancer type | Lung | 102 (80.3%) | 25 (19.7%) | 127 (27.9%) |
Metastatic | 117 (82.4%) | 25 (17.6%) | 142 (31.1%) | |
Head & Neck | 46 (76.7%) | 14 (23.3%) | 60 (13.1%) | |
Gastrointestinal & Hepatobiliary | 104 (81.9%) | 23 (18.1%) | 127 (27.9%) | |
Total | 369 (80.9%) | 87 (19.1%) | 456 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osong, B.; Bermejo, I.; Lee, K.C.; Lee, S.H.; Dekker, A.; van Soest, J. Prediction of Radiotherapy Compliance in Elderly Cancer Patients Using an Internally Validated Decision Tree. Cancers 2022, 14, 6116. https://doi.org/10.3390/cancers14246116
Osong B, Bermejo I, Lee KC, Lee SH, Dekker A, van Soest J. Prediction of Radiotherapy Compliance in Elderly Cancer Patients Using an Internally Validated Decision Tree. Cancers. 2022; 14(24):6116. https://doi.org/10.3390/cancers14246116
Chicago/Turabian StyleOsong, Biche, Inigo Bermejo, Kyu Chan Lee, Seok Ho Lee, Andre Dekker, and Johan van Soest. 2022. "Prediction of Radiotherapy Compliance in Elderly Cancer Patients Using an Internally Validated Decision Tree" Cancers 14, no. 24: 6116. https://doi.org/10.3390/cancers14246116
APA StyleOsong, B., Bermejo, I., Lee, K. C., Lee, S. H., Dekker, A., & van Soest, J. (2022). Prediction of Radiotherapy Compliance in Elderly Cancer Patients Using an Internally Validated Decision Tree. Cancers, 14(24), 6116. https://doi.org/10.3390/cancers14246116