Coexisting Molecular Alterations Increase the Risk of Malignancy in Thyroid Nodules with Copy Number Alterations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Samples
2.2. Tumor Analysis
2.2.1. Cytologic and Histologic Diagnosis
2.2.2. Molecular Analysis
2.3. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Tumor Characteristics
3.2.1. Cytology
3.2.2. Molecular
3.2.3. Surgical Pathology
3.3. Patient Management
3.4. Factors That Indicate Malignancy and Aggressive Disease
3.5. Tumor Type
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, T.; Gilfix, B.M.; Rivera, J.; Sadeghi, N.; Richardson, K.; Hier, M.P.; Forest, V.-I.; Fishman, D.; Caglar, D.; Pusztaszeri, M.; et al. The Role of the ThyroSeq v3 Molecular Test in the Surgical Management of Thyroid Nodules in the Canadian Public Health Care Setting. Thyroid 2020, 30, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Öcal, B.; Korkmaz, M.H.; Yılmazer, D.; Taşkın Türkmenoğlu, T.; Bayır, Ö.; Saylam, G.; Tatar, E.Ç.; Karahan, S.; Çakal, E. The Malignancy Risk Assessment of Cytologically Indeterminate Thyroid Nodules Improves Markedly by Using a Predictive Model. Eur. Thyroid. J. 2019, 8, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Gosnell, J.E.; Roman, S.A. Geographic influences in the global rise of thyroid cancer. Nat. Rev. Endocrinol. 2020, 16, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Myers, E.N.; Snyderman, C.H. Operative Otolaryngology E-Book: Head and Neck Surgery; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Krasner, J.R.; Alyouha, N.; Pusztaseri, M.; Forest, V.-I.; Hier, M.P.; Avior, G.; Payne, R.J. Molecular mutations as a possible factor for determining extent of thyroid surgery. J. Otolaryngol. Head Neck Surg. 2019, 48, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid J. 2017, 27, 1341–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prete, A.; de Souza, P.B.; Censi, S.; Forest, V.-I.; Hier, M.P.; Avior, G.; Payne, R.J. Update on Fundamental Mechanisms of Thyroid Cancer. Front. Endocrinol. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simões, M.; Tallini, G.; et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr. Pathol. 2022, 33, 27–63. [Google Scholar] [CrossRef]
- Yip, L.; Nikiforova, M.N.; Yoo, J.Y.; McCoy, K.L.; Stang, M.T.; Armstrong, M.J.; Nicholson, K.; Ohori, N.P.; Coyne, C.; Hodak, S.P.; et al. Tumor Genotype Determines Phenotype and Disease-related Outcomes in Thyroid Cancer. Ann. Surg. 2015, 262, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Rajab, M.; Payne, R.J.; Forest, V.-I.; Pusztaszeri, M. Molecular Testing for Thyroid Nodules: The Experience at McGill University Teaching Hospitals in Canada. Cancers 2022, 14, 4140. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network; Agrawal, N.; Akbani, R.; Aksoy, B.A.; Ally, A.; Arachchi, H.; Asa, S.L.; Auman, J.T.; Balasundaram, M.; Balu, S.; et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef]
- Nikiforov, Y.E.; Baloch, Z.W. Clinical validation of the ThyroSeq v3 genomic classifier in thyroid nodules with indeterminate FNA cytology. Cancer Cytopathol. 2019, 127, 225–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, K.N.; Angell, T.E.; Babiarz, J.; Barth, N.M.; Blevins, T.; Duh, Q.-Y.; Ghossein, R.A.; Harrell, R.M.; Huang, J.; Kennedy, G.C.; et al. Performance of a Genomic Sequencing Classifier for the Preoperative Diagnosis of Cytologically Indeterminate Thyroid Nodules. JAMA Surg. 2018, 153, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Lupo, M.A.; Walts, A.E.; Sistrunk, J.W.; Giordano, T.J.; Sadow, P.M.; Massoll, N.; Campbell, R.; Jackson, S.A.; Toney, N.; Narick, C.M.; et al. Multiplatform molecular test performance in indeterminate thyroid nodules. Diagn. Cytopathol. 2020, 48, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- Karapanou, O. The role of molecular genetics in the presurgical management of thyroid nodules. Minerva Endocrinol. 2021, 46, 21–34. [Google Scholar] [CrossRef]
- Pogliaghi, G. Liquid biopsy in thyroid cancer: From circulating biomarkers to a new prospective of tumor monitoring and therapy. Minerva Endocrinol. 2021, 46, 45–61. [Google Scholar] [CrossRef]
- Gamazon, E.R.; Stranger, B.E. The impact of human copy number variation on gene expression. Brief Funct. Genom. 2015, 14, 352–357. [Google Scholar] [CrossRef] [Green Version]
- Almal, S.H.; Padh, H. Implications of gene copy-number variation in health and diseases. J. Hum. Genet. 2012, 57, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.C.; Amon, A. Gene copy-number alterations: A cost-benefit analysis. Cell 2013, 152, 394–405. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Bense, R.D.; Urzúa-Traslaviña, C.G.; de Vries, E.G.E.; van Vugt, M.A.T.M.; Fehrmann, R.S.N. Transcriptional effects of copy number alterations in a large set of human cancers. Nat. Commun. 2020, 11, 715. [Google Scholar] [CrossRef] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, R.V.; Osamura, R.Y.; Klöppel, G.; Rosai, J. (Eds.) WHO Classification of Tumours of Endocrine Organs, 4th ed.; IARC: Lyon, France, 2017. [Google Scholar]
- Hier, J.; Avior, G.; Pusztaszeri, M.; Krasner, J.R.; Alyouha, N.; Forest, V.-I.; Hier, M.P.; Mlynarek, A.; Richardson, K.; Sadeghi, N.; et al. Molecular testing for cytologically suspicious and malignant (Bethesda V and VI) thyroid nodules to optimize the extent of surgical intervention: A retrospective chart review. J. Otolaryngol. Head Neck Surg. 2021, 50, 29. [Google Scholar] [CrossRef] [PubMed]
- Steward, D.L.; Carty, S.E.; Sippel, R.S.; Yang, S.P.; Sosa, J.A.; Sipos, J.A.; Figge, J.J.; Mandel, S.; Haugen, B.R.; Burman, K.D.; et al. Performance of a Multigene Genomic Classifier in Thyroid Nodules With Indeterminate Cytology: A Prospective Blinded Multicenter Study. JAMA Oncol. 2019, 5, 204–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doerfler, W.R.; Nikitski, A.V.; Morariu, E.M.; Ohori, N.P.; Chiosea, S.I.; Landau, M.S.; Nikiforova, M.N.; Nikiforov, Y.E.; Yip, L.; Manroa, P. Molecular alterations in Hürthle cell nodules and preoperative cancer risk. Endocr. Relat. Cancer. 2021, 28, 301–309. [Google Scholar] [CrossRef]
- McKelvey, B.A.; Umbricht, C.B.; Zeiger, M.A. Telomerase Reverse Transcriptase (TERT) Regulation in Thyroid Cancer: A Review. Front. Endocrinol. 2020, 11, 485. [Google Scholar] [CrossRef]
- Gopal, R.K.; Kübler, K.; Calvo, S.E.; Polak, P.; Livitz, D.; Rosebrock, D.; Sadow, P.M.; Campbell, B.L.; Donovan, S.E.; Amin, S.; et al. Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hürthle Cell Carcinoma. Cancer Cell. 2018, 34, 242–255.e5. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cope, L.; Sun, W.; Wang, Y.; Prasad, N.; Sangenario, L.; Talbot, K.; Somervell, H.; Westra, W.; Bishop, J.; et al. DNA copy number variations characterize benign and malignant thyroid tumors. J. Clin. Endocrinol. Metab. 2013, 98, E558–E566. [Google Scholar] [CrossRef] [Green Version]
- Sippel, R.S.; Elaraj, D.M.; Khanafshar, E.; Zarnegar, R.; Kebebew, E.; Duh, Q.Y.; Clark, O.H. Tumor size predicts malignant potential in Hürthle cell neoplasms of the thyroid. World J. Surg. 2008, 32, 702–707. [Google Scholar] [CrossRef]
- Chung, S.R.; Baek, J.H.; Choi, Y.J.; Sung, T.Y.; Song, D.E.; Kim, T.Y.; Lee, J.H. The relationship of thyroid nodule size on malignancy risk according to histological type of thyroid cancer. Acta Radiol. 2020, 61, 620–628. [Google Scholar] [CrossRef]
- Kim, M.J.; Shin, J.H.; Hahn, S.Y.; Oh, Y.L.; Kim, S.W.; Kim, T.H.; Lim, Y.; Lee, S. Ultrasonographic characteristics of Hürthle cell neoplasms: Prediction of malignancy. Ultrasonography 2022, 41, 689–697. [Google Scholar] [CrossRef]
- Semsar-Kazerooni, K.; Morand, G.B.; Payne, A.E.; da Silva, S.D.; Forest, V.I.; Hier, M.P.; Pusztaszeri, M.P.; Tamilia, M.; Payne, R.J. Mutational status may supersede tumor size in predicting the presence of aggressive pathologic features in well differentiated thyroid cancer. J Otolaryngol. Head Neck Surg. 2022, 51, 9. [Google Scholar] [CrossRef] [PubMed]
Variant | Population n (%) |
---|---|
Age (years) mean (min-max, ± SD) | 52.15 (19–81 ± 14.113) |
Sex Female Male | 47 (70.1) 20 (29.9) |
Dominant nodule size (cm) mean (min-max, ± SD) | 2.494 (0.7–8 ± 1.394) |
Bethesda category | |
Bethesda 3 | 23 (34.3) |
Bethesda 4 | 31 (46.3) |
Bethesda 5 | 12 (17.9) |
Bethesda 6 | 1 (1.5) |
Molecular profile testing | |
Other genetic alterations/mutations | 28 (41.8) |
No other genetic alterations/mutations | 39 (58.2) |
Thyroidectomy | |
Hemi thyroidectomy | 51 (76.1) |
Total thyroidectomy | 9 (13.4) |
Completion thyroidectomy | 7 (10.4) |
Histopathology | |
Benign | 20 (29.9) |
Malignant/NIFTP | 47 (70.1) |
Papillary thyroid cancer | 33 (70.2) |
Follicular thyroid cancer | 2 (4.3) |
Oncocytic thyroid cancer | 4 (8.5) |
PDTC | 2 (4.3) |
NIFTP | 6 (12.7) |
Variant | Malignant/NIFTP n (%) (n = 47) | Benign n (%) (n = 20) | p-Value |
---|---|---|---|
Age (years) mean (min-max, ± SD) | 51.21 (19–79 ± 14.093) | 54.35 (29–81 ± 14.276) | 0.409 |
Sex | |||
Female | 35 (74.5) | 12 (25.5) | 0.236 |
Male | 12 (60.0) | 8 (40.0) | |
Tumor size (cm) mean (min-max, ± SD) | 2.65 (0.8–7.5 ± 1.2664) | 2.13 (0.7–8 ± 1.633) | 0.159 |
Bethesda category | 0.124 | ||
Bethesda 3 | 12 (52.2) | 11 (47.8) | |
Bethesda 4 | 24 (77.4) | 7 (22.6) | |
Bethesda 5 | 10 (83.3) | 2 (16.7) | |
Bethesda 6 | 1 (100.0) | 0 (0) | |
Molecular profile | |||
Other molecular alterations/mutation | 25 (89.3) | 3 (10.7) | 0.004 |
No Other molecular alteration/mutation | 22 (56.4) | 17 (43.6) | |
Tumor Type | 0.195 | ||
Oncocytic | 11 (55.0) | 9 (45.0) | |
Follicular | 31 (75.6) | 10 (24.4) | |
Other | 5 (83.3) | 1 (16.7) |
Variant | Aggressive Tumors n (%) (n = 8) | Non-Aggressive n (%) (n = 39) | p-Value |
---|---|---|---|
Age (years) mean (min-max, ± SD) | 47.5 (25–79) | 51.9 (19–75) | 0.400 |
Sex | 0.394 | ||
Female | 5 (14.3) | 30 (85.7) | |
Male | 3 (25.0) | 9 (75.0) | |
Tumor size (cm) mean (min-max, ± SD) | 3.11 ± 2.05 | 2.55 ± 1.05 | 0.711 |
Bethesda category | 0.156 | ||
Bethesda 3 | 2 (16.7) | 10 (83.3) | |
Bethesda 4 | 4 (16.7) | 20 (83.3) | |
Bethesda 5 | 1 (10.0) | 9 (90.0) | |
Bethesda 6 | 1 (100.0) | 0 (0.0) | |
Molecular profile | 0.033 | ||
Other molecular alterations/mutations | 7 (28.0) | 18 (72.0) | |
>1 molecular | 4 (33.3) | 8 (66.7) | 0.659 |
One molecular | 3 (23.1) | 10 (76.9) | |
No Other molecular alteration/mutation | 1 (4.5) | 21 (95.5) | |
Tumor Type | 0.144 | ||
Oncocytic | 3 (27.3) | 8 (72.7) | |
Follicular | 3 (9.7) | 28 (80.3) | |
Other | 2 (40.0) | 3 (60.0) |
Variant | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
OR | 95% C.I. | p-Value | OR | 95% C.I. | p-Value | |
Gender: Male | 0.514 | 0.17–1.56 | 0.240 | 0.259 | 0.06–1.24 | 0.090 |
Gender: Female | 1.000 | - | - | 1.000 | - | - |
Age | 0.984 | 0.95–1.02 | 0.404 | 1.003 | 0.95–1.06 | 0.913 |
Tumor Size | 1.401 | 0.87–2.25 | 0.163 | 1.909 | 1.06–3.43 | 0.030 |
Bethesda 3 | 0.218 | 0.04–1.22 | 0.084 | 0.148 | 0.02–1.03 | 0.053 |
Bethesda 4 | 0.686 | 0.12–3.89 | 0.686 | 0.541 | 0.08–3.48 | 0.518 |
Bethesda 5 | 1.000 | 1.000 | - | - | ||
Bethesda 6 | - | - | - | - | - | - |
Other Genetic Alteration | 6.439 | 1.66–24.95 | 0.007 | 5.087 | 1.12–23.04 | 0.035 |
Variant | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
OR | 95% C.I. | p-Value | OR | 95% C.I. | p-Value | |
Gender: Male | 2.000 | 0.40–10.04 | 0.400 | 4.017 | 0.39–41.65 | 0.244 |
Gender: Female | 1.000 | - | - | 1.000 | - | - |
Age | 0.977 | 0.93–1.03 | 0.412 | 0.951 | 0.88–1.02 | 0.178 |
Tumor Size | 1.378 | 0.78–2.43 | 0.269 | 1.657 | 0.74–3.72 | 0.221 |
Bethesda 3 | 1.800 | 0.14–23.37 | 0.653 | 1.753 | 0.07–43.76 | 0.732 |
Bethesda 4 | 1.800 | 0.18–18.47 | 0.621 | 2.371 | 0.13–44.49 | 0.564 |
Bethesda 5 | 1.000 | 1.000 | - | - | ||
Bethesda 6 | - | - | - | - | - | - |
Other Genetic Alteration | 8.17 | 0.92–72.81 | 0.060 | 6.200 | 0.60–64.46 | 0.127 |
Tumor Types | ||
---|---|---|
OT (n = 19) | FT (n = 42) | Other (n = 6) |
Benign (n = 9) | Benign (n = 10) | Classic PTC (n = 2) |
HCC (n = 4) | FVPTC (n = 24) | Tall cell PTC (n = 1) |
Oncocytic PTCs (n = 5) | NIFTP (n = 6) | Solid/trabecular PTC (n = 1) |
PDTC (n = 1) | FTC (n = 2) | PDTC (n = 1) |
Benign (n = 1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajab, M.; Bandargal, S.; Pusztaszeri, M.P.; Forest, V.-I.; Alohali, S.; Silva, S.D.d.; Tamilia, M.; Payne, R.J. Coexisting Molecular Alterations Increase the Risk of Malignancy in Thyroid Nodules with Copy Number Alterations. Cancers 2022, 14, 6149. https://doi.org/10.3390/cancers14246149
Rajab M, Bandargal S, Pusztaszeri MP, Forest V-I, Alohali S, Silva SDd, Tamilia M, Payne RJ. Coexisting Molecular Alterations Increase the Risk of Malignancy in Thyroid Nodules with Copy Number Alterations. Cancers. 2022; 14(24):6149. https://doi.org/10.3390/cancers14246149
Chicago/Turabian StyleRajab, Mohannad, Saruchi Bandargal, Marc Philippe Pusztaszeri, Véronique-Isabelle Forest, Sama Alohali, Sabrina Daniela da Silva, Michael Tamilia, and Richard J. Payne. 2022. "Coexisting Molecular Alterations Increase the Risk of Malignancy in Thyroid Nodules with Copy Number Alterations" Cancers 14, no. 24: 6149. https://doi.org/10.3390/cancers14246149
APA StyleRajab, M., Bandargal, S., Pusztaszeri, M. P., Forest, V. -I., Alohali, S., Silva, S. D. d., Tamilia, M., & Payne, R. J. (2022). Coexisting Molecular Alterations Increase the Risk of Malignancy in Thyroid Nodules with Copy Number Alterations. Cancers, 14(24), 6149. https://doi.org/10.3390/cancers14246149