Pathogenic Variant Spectrum in Breast Cancer Risk Genes in Finnish Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient and Control Series
2.2. Gene Selection
2.3. Gene-Panel Sequencing
2.4. Single-Nucleotide Variants and Short Indels in Moderate-Risk Genes
2.5. Single-Nucleotide Variants and Short Indels in BRCA1/2 Genes
2.6. Copy Number Variant Analysis
2.7. Multiplex Ligation-Dependent Probe Amplification
3. Results
3.1. Pathogenic Variants in Moderate-Risk Genes
3.2. Missense Variants of Uncertain Significance
3.3. Pathogenic BRCA1 and BRCA2 Variants among Unselected BC Patients
3.4. Copy Number Variants
3.5. Pathogenic Variant Frequencies in Different Diagnosis Age Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitkäniemi, J.; Malila, N.; Tanskanen, T.; Degerlund, H.; Heikkinen, S.; Seppä, K. Cancer in Finland 2020; Cancer Society of Finland: Helsinki, Finland, 2022. [Google Scholar]
- Lee, K.; Seifert, B.A.; Shimelis, H.; Ghosh, R.; Crowley, S.B.; Carter, N.J.; Doonanco, K.; Foreman, A.K.; Ritter, D.I.; Jimenez, S.; et al. Clinical validity assessment of genes frequently tested on hereditary breast and ovarian cancer susceptibility sequencing panels. Genet. Med. 2019, 21, 1497–1506. [Google Scholar] [CrossRef]
- Breast Cancer Association Consortium; Dorling, L.; Carvalho, S.; Allen, J.; Gonzalez-Neira, A.; Luccarini, C.; Wahlstrom, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; et al. Breast Cancer Risk Genes-Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.A.; Mooij, T.M.; Roos-Blom, M.J.; Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Hart, S.N.; Gnanaolivu, R.; Huang, H.; Lee, K.Y.; Na, J.; Gao, C.; Lilyquist, J.; Yadav, S.; Boddicker, N.J.; et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021, 384, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Lilyquist, J.; LaDuca, H.; Polley, E.; Davis, B.T.; Shimelis, H.; Hu, C.; Hart, S.N.; Dolinsky, J.S.; Couch, F.J.; Goldgar, D.E. Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls. Gynecol. Oncol. 2017, 147, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Suszynska, M.; Ratajska, M.; Kozlowski, P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: Mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J. Ovarian Res. 2020, 13, 50. [Google Scholar] [CrossRef]
- Shimelis, H.; LaDuca, H.; Hu, C.; Hart, S.N.; Na, J.; Thomas, A.; Akinhanmi, M.; Moore, R.M.; Brauch, H.; Cox, A.; et al. Triple-Negative Breast Cancer Risk Genes Identified by Multigene Hereditary Cancer Panel Testing. J. Natl. Cancer Inst. 2018, 110, 855–862. [Google Scholar] [CrossRef] [Green Version]
- Kiiski, J.I.; Pelttari, L.M.; Khan, S.; Freysteinsdottir, E.S.; Reynisdottir, I.; Hart, S.N.; Shimelis, H.; Vilske, S.; Kallioniemi, A.; Schleutker, J.; et al. Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer. Proc. Natl. Acad. Sci. USA 2014, 111, 15172–15177. [Google Scholar] [CrossRef] [Green Version]
- Peterlongo, P.; Figlioli, G.; Deans, A.J.; Couch, F.J. Protein truncating variants in FANCM and risk for ER-negative/triple negative breast cancer. NPJ Breast Cancer 2021, 7, 130. [Google Scholar] [CrossRef]
- Michailidou, K.; Hall, P.; Gonzalez-Neira, A.; Ghoussaini, M.; Dennis, J.; Milne, R.L.; Schmidt, M.K.; Chang-Claude, J.; Bojesen, S.E.; Bolla, M.K.; et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 2013, 45, 353–361, 361e351–352. [Google Scholar] [CrossRef]
- Michailidou, K.; Lindstrom, S.; Dennis, J.; Beesley, J.; Hui, S.; Kar, S.; Lemacon, A.; Soucy, P.; Glubb, D.; Rostamianfar, A.; et al. Association analysis identifies 65 new breast cancer risk loci. Nature 2017, 551, 92–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, S.; Hughes, E.; Wagner, S.; Tshiaba, P.; Rosenthal, E.; Roa, B.B.; Kurian, A.W.; Domchek, S.M.; Garber, J.; Lancaster, J.; et al. Association of a Polygenic Risk Score with Breast Cancer Among Women Carriers of High- and Moderate-Risk Breast Cancer Genes. JAMA Netw. Open 2020, 3, e208501. [Google Scholar] [CrossRef]
- Mars, N.; Widen, E.; Kerminen, S.; Meretoja, T.; Pirinen, M.; Della Briotta Parolo, P.; Palta, P.; FinnGen; Palotie, A.; Kaprio, J.; et al. The role of polygenic risk and susceptibility genes in breast cancer over the course of life. Nat. Commun. 2020, 11, 6383. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Polley, E.C.; Hart, S.N.; Huang, H.; Hu, C.; Gnanaolivu, R.; Lilyquist, J.; Boddicker, N.J.; Na, J.; Ambrosone, C.B.; et al. Risk of Breast Cancer Among Carriers of Pathogenic Variants in Breast Cancer Predisposition Genes Varies by Polygenic Risk Score. J. Clin. Oncol. 2021, 39, 2564–2573. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.L.; Brand, H.; Karczewski, K.J.; Zhao, X.; Alfoldi, J.; Francioli, L.C.; Khera, A.V.; Lowther, C.; Gauthier, L.D.; Wang, H.; et al. A structural variation reference for medical and population genetics. Nature 2020, 581, 444–451. [Google Scholar] [CrossRef]
- The BRCA1 Exon 13 Duplication Screening Group. The exon 13 duplication in the BRCA1 gene is a founder mutation present in geographically diverse populations. Am. J. Hum. Genet. 2000, 67, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Cybulski, C.; Wokolorczyk, D.; Huzarski, T.; Byrski, T.; Gronwald, J.; Gorski, B.; Debniak, T.; Masojc, B.; Jakubowska, A.; van de Wetering, T.; et al. A deletion in CHEK2 of 5,395 bp predisposes to breast cancer in Poland. Breast Cancer Res. Treat. 2007, 102, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Dennis, J.; Tyrer, J.P.; Walker, L.C.; Michailidou, K.; Dorling, L.; Bolla, M.K.; Wang, Q.; Ahearn, T.U.; Andrulis, I.L.; Anton-Culver, H.; et al. Rare germline copy number variants (CNVs) and breast cancer risk. Commun. Biol. 2022, 5, 65. [Google Scholar] [CrossRef]
- Walker, L.C.; Wiggins, G.A.; Pearson, J.F. The Role of Constitutional Copy Number Variants in Breast Cancer. Microarrays 2015, 4, 407–423. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.T.; Wurtz, P.; Havulinna, A.S.; Palta, P.; Tukiainen, T.; Rehnstrom, K.; Esko, T.; Magi, R.; Inouye, M.; Lappalainen, T.; et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 2014, 10, e1004494. [Google Scholar] [CrossRef] [PubMed]
- Kaariainen, H.; Muilu, J.; Perola, M.; Kristiansson, K. Genetics in an isolated population like Finland: A different basis for genomic medicine? J. Community Genet. 2017, 8, 319–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vehmanen, P.; Friedman, L.S.; Eerola, H.; McClure, M.; Ward, B.; Sarantaus, L.; Kainu, T.; Syrjakoski, K.; Pyrhonen, S.; Kallioniemi, O.P.; et al. Low proportion of BRCA1 and BRCA2 mutations in Finnish breast cancer families: Evidence for additional susceptibility genes. Hum. Mol. Genet. 1997, 6, 2309–2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syrjakoski, K.; Vahteristo, P.; Eerola, H.; Tamminen, A.; Kivinummi, K.; Sarantaus, L.; Holli, K.; Blomqvist, C.; Kallioniemi, O.P.; Kainu, T.; et al. Population-based study of BRCA1 and BRCA2 mutations in 1035 unselected Finnish breast cancer patients. J. Natl. Cancer Inst. 2000, 92, 1529–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurmi, A.; Muranen, T.A.; Pelttari, L.M.; Kiiski, J.I.; Heikkinen, T.; Lehto, S.; Kallioniemi, A.; Schleutker, J.; Butzow, R.; Blomqvist, C.; et al. Recurrent moderate-risk mutations in Finnish breast and ovarian cancer patients. Int. J. Cancer 2019, 145, 2692–2700. [Google Scholar] [CrossRef]
- Kilpivaara, O.; Bartkova, J.; Eerola, H.; Syrjakoski, K.; Vahteristo, P.; Lukas, J.; Blomqvist, C.; Holli, K.; Heikkila, P.; Sauter, G.; et al. Correlation of CHEK2 protein expression and c.1100delC mutation status with tumor characteristics among unselected breast cancer patients. Int. J. Cancer 2005, 113, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Fagerholm, R.; Hofstetter, B.; Tommiska, J.; Aaltonen, K.; Vrtel, R.; Syrjakoski, K.; Kallioniemi, A.; Kilpivaara, O.; Mannermaa, A.; Kosma, V.M.; et al. NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat. Genet. 2008, 40, 844–853. [Google Scholar] [CrossRef]
- Eerola, H.; Blomqvist, C.; Pukkala, E.; Pyrhonen, S.; Nevanlinna, H. Familial breast cancer in southern Finland: How prevalent are breast cancer families and can we trust the family history reported by patients? Eur. J. Cancer 2000, 36, 1143–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahteristo, P.; Bartkova, J.; Eerola, H.; Syrjakoski, K.; Ojala, S.; Kilpivaara, O.; Tamminen, A.; Kononen, J.; Aittomaki, K.; Heikkila, P.; et al. A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am. J. Hum. Genet. 2002, 71, 432–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org (accessed on 7 November 2022).
- Vroling, B.; Heijl, S. White paper: The Helix Pathogenicity Prediction Platform. arXiv 2021, arXiv:2104.01033. [Google Scholar]
- Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef] [PubMed]
- UniProt, C. The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Dennis, J.; Walker, L.; Tyrer, J.; Michailidou, K.; Easton, D.F. Detecting rare copy number variants from Illumina genotyping arrays with the CamCNV pipeline: Segmentation of z-scores improves detection and reliability. Genet. Epidemiol. 2021, 45, 237–248. [Google Scholar] [CrossRef]
- Howe, K.L.; Achuthan, P.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; et al. Ensembl 2021. Nucleic Acids Res. 2021, 49, D884–D891. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, R.J.; Kahari, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Schouten, J.P.; McElgunn, C.J.; Waaijer, R.; Zwijnenburg, D.; Diepvens, F.; Pals, G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002, 30, e57. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Kim, S.H.; Bell, D.W.; Wahrer, D.C.; Schiripo, T.A.; Jorczak, M.M.; Sgroi, D.C.; Garber, J.E.; Li, F.P.; Nichols, K.E.; et al. Destabilization of CHK2 by a missense mutation associated with Li-Fraumeni Syndrome. Cancer Res. 2001, 61, 8062–8067. [Google Scholar]
- Wu, X.; Webster, S.R.; Chen, J. Characterization of tumor-associated Chk2 mutations. J. Biol. Chem. 2001, 276, 2971–2974. [Google Scholar] [CrossRef] [Green Version]
- Delimitsou, A.; Fostira, F.; Kalfakakou, D.; Apostolou, P.; Konstantopoulou, I.; Kroupis, C.; Papavassiliou, A.G.; Kleibl, Z.; Stratikos, E.; Voutsinas, G.E.; et al. Functional characterization of CHEK2 variants in a Saccharomyces cerevisiae system. Hum. Mutat. 2019, 40, 631–648. [Google Scholar] [CrossRef]
- Allinen, M.; Launonen, V.; Laake, K.; Jansen, L.; Huusko, P.; Kaariainen, H.; Borresen-Dale, A.L.; Winqvist, R. ATM mutations in Finnish breast cancer patients. J. Med. Genet. 2002, 39, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Pylkas, K.; Tommiska, J.; Syrjakoski, K.; Kere, J.; Gatei, M.; Waddell, N.; Allinen, M.; Karppinen, S.M.; Rapakko, K.; Kaariainen, H.; et al. Evaluation of the role of Finnish ataxia-telangiectasia mutations in hereditary predisposition to breast cancer. Carcinogenesis 2007, 28, 1040–1045. [Google Scholar] [CrossRef] [PubMed]
- Huusko, P.; Paakkonen, K.; Launonen, V.; Poyhonen, M.; Blanco, G.; Kauppila, A.; Puistola, U.; Kiviniemi, H.; Kujala, M.; Leisti, J.; et al. Evidence of founder mutations in Finnish BRCA1 and BRCA2 families. Am. J. Hum. Genet. 1998, 62, 1544–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartikainen, J.M.; Kataja, V.; Pirskanen, M.; Arffman, A.; Ristonmaa, U.; Vahteristo, P.; Ryynanen, M.; Heinonen, S.; Kosma, V.M.; Mannermaa, A. Screening for BRCA1 and BRCA2 mutations in Eastern Finnish breast/ovarian cancer families. Clin. Genet. 2007, 72, 311–320. [Google Scholar] [CrossRef]
- Pelttari, L.M.; Shimelis, H.; Toiminen, H.; Kvist, A.; Torngren, T.; Borg, A.; Blomqvist, C.; Butzow, R.; Couch, F.; Aittomaki, K.; et al. Gene-panel testing of breast and ovarian cancer patients identifies a recurrent RAD51C duplication. Clin. Genet. 2018, 93, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Pallonen, T.A.; Lempiainen, S.M.M.; Joutsiniemi, T.K.; Aaltonen, R.I.; Pohjola, P.E.; Kankuri-Tammilehto, M.K. Genetic, clinic and histopathologic characterization of BRCA-associated hereditary breast and ovarian cancer in southwestern Finland. Sci. Rep. 2022, 12, 6704. [Google Scholar] [CrossRef]
- Pelttari, L.M.; Heikkinen, T.; Thompson, D.; Kallioniemi, A.; Schleutker, J.; Holli, K.; Blomqvist, C.; Aittomaki, K.; Butzow, R.; Nevanlinna, H. RAD51C is a susceptibility gene for ovarian cancer. Hum. Mol. Genet. 2011, 20, 3278–3288. [Google Scholar] [CrossRef] [Green Version]
- Pelttari, L.M.; Kiiski, J.; Nurminen, R.; Kallioniemi, A.; Schleutker, J.; Gylfe, A.; Aaltonen, L.A.; Leminen, A.; Heikkila, P.; Blomqvist, C.; et al. A Finnish founder mutation in RAD51D: Analysis in breast, ovarian, prostate, and colorectal cancer. J. Med. Genet. 2012, 49, 429–432. [Google Scholar] [CrossRef] [Green Version]
- Sarantaus, L.; Huusko, P.; Eerola, H.; Launonen, V.; Vehmanen, P.; Rapakko, K.; Gillanders, E.; Syrjakoski, K.; Kainu, T.; Vahteristo, P.; et al. Multiple founder effects and geographical clustering of BRCA1 and BRCA2 families in Finland. Eur. J. Hum. Genet. 2000, 8, 757–763. [Google Scholar] [CrossRef]
- Barkardottir, R.B.; Sarantaus, L.; Arason, A.; Vehmanen, P.; Bendahl, P.O.; Kainu, T.; Syrjakoski, K.; Krahe, R.; Huusko, P.; Pyrhonen, S.; et al. Haplotype analysis in Icelandic and Finnish BRCA2 999del5 breast cancer families. Eur. J. Hum. Genet. 2001, 9, 773–779. [Google Scholar] [CrossRef]
Carrier% per Gene 3 | All BC 4 | Familial BC | Unselected BC | Controls | |||||
---|---|---|---|---|---|---|---|---|---|
Variant 1,2 | Carriers/Total % | Carriers/Total % | Carriers/Total % | Carriers/Total % | |||||
ATM c.2554C>T p.(Gln852Ter) | 11.11 | 1/1769 | 0.06 | 0/699 | 0 | 1/1356 | 0.07 | 0/1112 | 0 |
ATM c.6559G>T p.(Glu2187Ter) | 11.11 | 1/1769 | 0.06 | 1/699 | 0.14 | 0/1356 | 0 | 0/1111 | 0 |
ATMc.6908dup p.(Glu2304GlyfsTer69) | 11.11 | 1/1764 | 0.06 | 1/699 | 0.14 | 0/1351 | 0 | 2/1109 | 0.18 |
ATM c.7570G>C p.(Ala2524Pro) | 33.33 | 3/1768 | 0.17 | 2/699 | 0.29 | 1/1355 | 0.07 | 0/1112 | 0 |
ATM c.7630-2A>C | 11.11 | 1/1769 | 0.06 | 0/699 | 0 | 1/1356 | 0.07 | 0/1112 | 0 |
ATM c.8671+2T>A | 11.11 | 1/1766 | 0.06 | 0/699 | 0 | 1/1353 | 0.07 | 0/1107 | 0 |
ATM c.9139C>T p.(Arg3047Ter) | 11.11 | 1/1769 | 0.06 | 0/699 | 0 | 1/1356 | 0.07 | 0/1112 | 0 |
Any ATM | 9/1769 | 0.51 | 4/699 | 0.57 | 5/1356 | 0.37 | 2/1112 | 0.18 | |
BARD1 c.1172C>A p.(Ser391Ter) | 50.00 | 1/1769 | 0.06 | 0/699 | 0 | 1/1356 | 0.07 | 0/1112 | 0 |
BARD1 c.2300_2301del p.(Val767AspfsTer4) | 50.00 | 1/1769 | 0.06 | 0/699 | 0 | 1/1356 | 0.07 | 0/1112 | 0 |
Any BARD1 | 2/1769 | 0.11 | 0/699 | 0 | 2/1356 | 0.15 | 0/1112 | 0 | |
BRIP1 c.2990_2993del p.(Thr997ArgfsTer61) | 100.00 | 1/1769 | 0.06 | 0/699 | 0 | 1/1356 | 0.07 | 0/1111 | 0 |
BRIP1 c.3219del p.(Ile1074PhefsTer4) | 0 | 0/1769 | 0 | 0/699 | 0 | 0/1356 | 0 | 1/1112 | 0.09 |
Any BRIP1 | 1/1769 | 0.06 | 0/699 | 0 | 1/1356 | 0.07 | 1/1112 | 0.09 | |
CHEK2 c.319+2T>A | 13.41 | 11/1769 | 0.62 | 5/699 | 0.72 | 9/1356 | 0.66 | 1/1112 | 0.09 |
CHEK2 ex3-4del | 1.22 | 1/1511 | 0.07 | 0/612 | 0 | 1/1137 | 0.09 | 0/1025 | 0 |
CHEK2 c.433C>T p.(Arg145Trp) | 1.22 | 1/1769 | 0.06 | 0/699 | 0 | 1/1356 | 0.07 | 0/1112 | 0 |
CHEK2 c.444+1G>A | 1.22 | 1/1769 | 0.06 | 0/699 | 0 | 1/1356 | 0.07 | 0/1112 | 0 |
CHEK2c.1100del p.(Thr367MetfsTer15) | 82.93 | 68/1769 | 3.84 | 43/699 | 6.15 | 38/1356 | 2.80 | 14/1112 | 1.26 |
CHEK2 c.1368dup p.(Glu457ArgfsTer33) | 0 | 0/1768 | 0 | 0/699 | 0 | 0/1355 | 0 | 2/1112 | 0.18 |
Any CHEK2 | 81/1769 | 4.58 | 47/699 | 6.72 | 49/1356 | 3.61 | 17/1112 | 1.53 | |
FANCM c.1491dup p.(Gln498ThrfsTer7) | 3.45 | 2/1769 | 0.11 | 0/699 | 0 | 2/1356 | 0.15 | 1/1112 | 0.09 |
FANCMc.4025_4026del p.(Ser1342Ter) | 1.72 | 1/1769 | 0.06 | 1/699 | 0.14 | 0/1356 | 0 | 1/1112 | 0.09 |
FANCMc.5101C>T p.(Gln1701Ter) | 86.21 | 50/1768 | 2.83 | 19/699 | 2.72 | 40/1355 | 2.95 | 15/1107 | 1.36 |
FANCMc.5791C>T p.(Arg1931Ter) | 8.62 | 5/1755 | 0.28 | 2/696 | 0.29 | 3/1345 | 0.22 | 3/1092 | 0.27 |
Any FANCM | 58/1769 | 3.28 | 22/699 | 3.15 | 45/1356 | 3.32 | 20/1112 | 1.80 | |
PALB2 c.172_175del p.(Gln60ArgfsTer7) | 0 | 0/1768 | 0 | 0/698 | 0 | 0/1356 | 0 | 1/1112 | 0.09 |
PALB2 c.1056_1057del p.(Lys353IlefsTer7) | 3.70 | 1/1769 | 0.06 | 1/699 | 0.14 | 0/1356 | 0 | 0/1112 | 0 |
PALB2 c.1387del p.(Ile463LeufsTer22) | 3.70 | 1/1762 | 0.06 | 0/698 | 0 | 1/1350 | 0.07 | 0/1097 | 0 |
PALB2c.1592del p.(Leu531CysfsTer30) | 88.89 | 24/1768 | 1.36 | 16/699 | 2.29 | 10/1355 | 0.74 | 1/1109 | 0.09 |
PALB2 c.2719G>T p.(Glu907Ter) | 3.70 | 1/1769 | 0.06 | 0/699 | 0 | 1/1356 | 0.07 | 0/1112 | 0 |
Any PALB2 | 27/1769 | 1.53 | 17/699 | 2.43 | 12/1356 | 0.88 | 2/1112 | 0.18 | |
RAD51C ex1-7dup | 75.00 | 3/1511 | 0.20 | 2/612 | 0.33 | 1/1137 | 0.09 | 0/1025 | 0 |
RAD51C c.338dup p.(Gly114TrpfsTer41) | 25.00 | 1/1766 | 0.06 | 1/698 | 0.14 | 0/1354 | 0 | 0/1109 | 0 |
Any RAD51C | 4/1769 | 0.23 | 3/699 | 0.43 | 1/1356 | 0.07 | 0/1112 | 0 | |
Total 5 | 177/1769 | 10.01 | 90/699 | 12.88 | 112/1356 | 8.26 | 42/1112 | 3.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurmi, A.K.; Suvanto, M.; Dennis, J.; Aittomäki, K.; Blomqvist, C.; Nevanlinna, H. Pathogenic Variant Spectrum in Breast Cancer Risk Genes in Finnish Patients. Cancers 2022, 14, 6158. https://doi.org/10.3390/cancers14246158
Nurmi AK, Suvanto M, Dennis J, Aittomäki K, Blomqvist C, Nevanlinna H. Pathogenic Variant Spectrum in Breast Cancer Risk Genes in Finnish Patients. Cancers. 2022; 14(24):6158. https://doi.org/10.3390/cancers14246158
Chicago/Turabian StyleNurmi, Anna K., Maija Suvanto, Joe Dennis, Kristiina Aittomäki, Carl Blomqvist, and Heli Nevanlinna. 2022. "Pathogenic Variant Spectrum in Breast Cancer Risk Genes in Finnish Patients" Cancers 14, no. 24: 6158. https://doi.org/10.3390/cancers14246158
APA StyleNurmi, A. K., Suvanto, M., Dennis, J., Aittomäki, K., Blomqvist, C., & Nevanlinna, H. (2022). Pathogenic Variant Spectrum in Breast Cancer Risk Genes in Finnish Patients. Cancers, 14(24), 6158. https://doi.org/10.3390/cancers14246158