Metabolic Risk Factors for Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease: A Prospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Setting and Data Source
2.2. Study Design
2.3. Study Population and Sample Selection
2.4. Assessment of Metabolic Risk Factors
2.5. Statistical Analyses
3. Results
3.1. Risk Factors, Odds Ratios, and PAFs for NAFLD-HCC
3.2. Stratified Analyses by Sex and Cirrhosis Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
References
- Anstee, Q.M.; Reeves, H.L.; Kotsiliti, E.; Govaere, O.; Heikenwalder, M. From NASH to HCC: Current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Cotter, T.G.; Rinella, M. Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. Gastroenterology 2020, 158, 1851–1864. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.V.; Mark, H.E.; Anstee, Q.M.; Arab, J.P.; Batterham, R.L.; Castera, L.; Cortez-Pinto, H.; Crespo, J.; Cusi, K.; Dirac, M.A.; et al. Advancing the global public health agenda for NAFLD: A consensus statement. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [Green Version]
- Castera, L.; Friedrich-Rust, M.; Loomba, R. Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1264–1281.e1264. [Google Scholar] [CrossRef] [Green Version]
- Bedossa, P. Pathology of non-alcoholic fatty liver disease. Liver Int. 2017, 37 (Suppl. S1), 85–89. [Google Scholar] [CrossRef] [Green Version]
- Geh, D.; Anstee, Q.M.; Reeves, H.L. NAFLD-Associated HCC: Progress and Opportunities. J. Hepatocell. Carcinoma 2021, 8, 223–239. [Google Scholar] [CrossRef]
- Negro, F. Natural history of NASH and HCC. Liver Int. 2020, 40 (Suppl. S1), 72–76. [Google Scholar] [CrossRef] [Green Version]
- Shao, G.; Liu, Y.; Lu, L.; Zhang, G.; Zhou, W.; Wu, T.; Wang, L.; Xu, H.; Ji, G. The Pathogenesis of HCC Driven by NASH and the Preventive and Therapeutic Effects of Natural Products. Front. Pharmacol. 2022, 13, 944088. [Google Scholar] [CrossRef]
- Miele, L.; Forgione, A.; Hernandez, A.P.; Gabrieli, M.L.; Vero, V.; Di Rocco, P.; Greco, A.V.; Gasbarrini, G.; Gasbarrini, A.; Grieco, A. The natural history and risk factors for progression of non-alcoholic fatty liver disease and steatohepatitis. Eur. Rev. Med. Pharmacol. Sci. 2005, 9, 273–277. [Google Scholar] [PubMed]
- Noureddin, M.; Vipani, A.; Bresee, C.; Todo, T.; Kim, I.K.; Alkhouri, N.; Setiawan, V.W.; Tran, T.; Ayoub, W.S.; Lu, S.C.; et al. NASH Leading Cause of Liver Transplant in Women: Updated Analysis of Indications For Liver Transplant and Ethnic and Gender Variances. Am. J. Gastroenterol. 2018, 113, 1649–1659. [Google Scholar] [CrossRef]
- Kim, W.R.; Lake, J.R.; Smith, J.M.; Schladt, D.P.; Skeans, M.A.; Harper, A.M.; Wainright, J.L.; Snyder, J.J.; Israni, A.K.; Kasiske, B.L. OPTN/SRTR 2016 Annual Data Report: Liver. Am. J. Transplant. 2018, 18 (Suppl. S1), 172–253. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, G.N. Epidemiology and risk-stratification of NAFLD-associated HCC. J. Hepatol. 2021, 75, 1476–1484. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. S1), 4–13. [Google Scholar] [CrossRef]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- El-Serag, H.B.; Hampel, H.; Javadi, F. The association between diabetes and hepatocellular carcinoma: A systematic review of epidemiologic evidence. Clin. Gastroenterol. Hepatol. 2006, 4, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, X.; Gong, G.; Ben, Q.; Qiu, W.; Chen, Y.; Li, G.; Wang, L. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: A systematic review and meta-analysis of cohort studies. Int. J. Cancer 2012, 130, 1639–1648. [Google Scholar] [CrossRef]
- El-Serag, H.B.; Tran, T.; Everhart, J.E. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology 2004, 126, 460–468. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R.; Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 32–42. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Muzica, C.M.; Sfarti, C.; Trifan, A.; Zenovia, S.; Cuciureanu, T.; Nastasa, R.; Huiban, L.; Cojocariu, C.; Singeap, A.M.; Girleanu, I.; et al. Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: A Bidirectional Relationship. Can. J. Gastroenterol. Hepatol. 2020, 2020, 6638306. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.D.; Ahmed, F.; Mara, K.C.; Addissie, B.D.; Allen, A.M.; Gores, G.J.; Roberts, L.R. Diabetes Is Associated With Increased Risk of Hepatocellular Carcinoma in Patients With Cirrhosis From Nonalcoholic Fatty Liver Disease. Hepatology 2020, 71, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Doycheva, I.; Zhang, T.; Amjad, W.; Thuluvath, P.J. Diabetes and Hepatocellular Carcinoma: Incidence Trends and Impact of Liver Disease Etiology. J. Clin. Exp. Hepatol. 2020, 10, 296–303. [Google Scholar] [CrossRef]
- Kanwal, F.; Kramer, J.R.; Mapakshi, S.; Natarajan, Y.; Chayanupatkul, M.; Richardson, P.A.; Li, L.; Desiderio, R.; Thrift, A.P.; Asch, S.M.; et al. Risk of Hepatocellular Cancer in Patients With Non-Alcoholic Fatty Liver Disease. Gastroenterology 2018, 155, 1828–1837.e1822. [Google Scholar] [CrossRef] [Green Version]
- Warren, J.L.; Klabunde, C.N.; Schrag, D.; Bach, P.B.; Riley, G.F. Overview of the SEER-Medicare data: Content, research applications, and generalizability to the United States elderly population. Med. Care 2002, 40, IV3–IV18. [Google Scholar] [CrossRef]
- Warren, J.L.; Benner, S.; Stevens, J.; Enewold, L.; Huang, B.; Zhao, L.; Tilahun, N.; Bradley, C.J. Development and Evaluation of a Process to Link Cancer Patients in the SEER Registries to National Medicaid Enrollment Data. J. Natl. Cancer Inst. Monogr. 2020, 2020, 89–95. [Google Scholar] [CrossRef]
- Engels, E.A.; Pfeiffer, R.M.; Ricker, W.; Wheeler, W.; Parsons, R.; Warren, J.L. Use of surveillance, epidemiology, and end results-medicare data to conduct case-control studies of cancer among the US elderly. Am. J. Epidemiol. 2011, 174, 860–870. [Google Scholar] [CrossRef]
- Enewold, L.; Parsons, H.; Zhao, L.; Bott, D.; Rivera, D.R.; Barrett, M.J.; Virnig, B.A.; Warren, J.L. Updated Overview of the SEER-Medicare Data: Enhanced Content and Applications. J. Natl. Cancer Inst. Monogr. 2020, 2020, 3–13. [Google Scholar] [CrossRef]
- National Cancer Institute, Division of Cancer Control and Population Sciences. SEER-Medicare: How the SEER & Medicare Data are Linked. Available online: https://healthcaredelivery.cancer.gov/seermedicare/overview/linked.html (accessed on 24 October 2022).
- National Cancer Institute, Division of Cancer Control and Population Sciences. Available online: https://healthcaredelivery.cancer.gov/seermedicare/ (accessed on 12 September 2022).
- Hamilton, S.R.; Aaltonen, L.A. Pathology and Genetics of Tumours of the Digestive System; IARC Press: Lyon, France, 2000; Volume 2. [Google Scholar]
- Hagström, H.; Adams, L.A.; Allen, A.M.; Byrne, C.D.; Chang, Y.; Grønbaek, H.; Ismail, M.; Jepsen, P.; Kanwal, F.; Kramer, J.; et al. Administrative Coding in Electronic Health Care Record-Based Research of NAFLD: An Expert Panel Consensus Statement. Hepatology 2021, 74, 474–482. [Google Scholar] [CrossRef]
- Antwi, S.O.P.D.; Li, Z.; Mody, K.; Roberts, L.R.; Patel, T. Independent and joint use of statins and metformin by elderly patients with diabetes and overall survival following HCC diagnosis. J. Clin. Gastroenterol. 2020, 54, 468. [Google Scholar] [CrossRef] [PubMed]
- Nasereldin, D.S.; White, L.J.; Hodge, D.O.; Roberts, L.R.; Patel, T.; Antwi, S.O. Association of metabolic health phenotypes, obesity, and hepatocellular carcinoma risk. Dig. Liver Dis. 2022, 54, 964–972. [Google Scholar] [CrossRef] [PubMed]
- White, D.L.; Kanwal, F.; El-Serag, H.B. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin. Gastroenterol. Hepatol. 2012, 10, 1342–1359.e2. [Google Scholar] [CrossRef] [Green Version]
- Welzel, T.M.; Graubard, B.I.; Zeuzem, S.; El-Serag, H.B.; Davila, J.A.; McGlynn, K.A. Metabolic syndrome increases the risk of primary liver cancer in the United States: A study in the SEER-Medicare database. Hepatology 2011, 54, 463–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [CrossRef] [PubMed]
- Wiley, L.K.; Shah, A.; Xu, H.; Bush, W.S. ICD-9 tobacco use codes are effective identifiers of smoking status. J. Am. Med. Inform. Assoc. 2013, 20, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Petrick, J.L.; Yang, B.; Altekruse, S.F.; Van Dyke, A.L.; Koshiol, J.; Graubard, B.I.; McGlynn, K.A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: A population-based study in SEER-Medicare. PLoS ONE 2017, 12, e0186643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graubard, B.I.; Fears, T.R. Standard errors for attributable risk for simple and complex sample designs. Biometrics 2005, 61, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Kramer, J.R.; Natarajan, Y.; Dai, J.; Yu, X.; Li, L.; El-Serag, H.B.; Kanwal, F. Effect of diabetes medications and glycemic control on risk of hepatocellular cancer in patients with nonalcoholic fatty liver disease. Hepatology 2022, 75, 1420–1428. [Google Scholar] [CrossRef]
- Chiang, C.H.; Lee, L.T.; Hung, S.H.; Lin, W.Y.; Hung, H.F.; Yang, W.S.; Sung, P.K.; Huang, K.C. Opposite association between diabetes, dyslipidemia, and hepatocellular carcinoma mortality in the middle-aged and elderly. Hepatology 2014, 59, 2207–2215. [Google Scholar] [CrossRef]
- Kasmari, A.J.; Welch, A.; Liu, G.; Leslie, D.; McGarrity, T.; Riley, T. Independent of Cirrhosis, Hepatocellular Carcinoma Risk Is Increased with Diabetes and Metabolic Syndrome. Am. J. Med. 2017, 130, 746.e1–746.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Angelantonio, E.; Kaptoge, S.; Wormser, D.; Willeit, P.; Butterworth, A.S.; Bansal, N.; O’Keeffe, L.M.; Gao, P.; Wood, A.M.; Burgess, S.; et al. Association of Cardiometabolic Multimorbidity With Mortality. Jama 2015, 314, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Oldridge, N.B.; Stump, T.E.; Nothwehr, F.K.; Clark, D.O. Prevalence and outcomes of comorbid metabolic and cardiovascular conditions in middle-and older-age adults. J. Clin. Epidemiol. 2001, 54, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Tateishi, R.; Yasunaga, H.; Horiguchi, H.; Yoshida, H.; Matsuda, S.; Koike, K. Mortality and morbidity of hepatectomy, radiofrequency ablation, and embolization for hepatocellular carcinoma: A national survey of 54,145 patients. J. Gastroenterol. 2012, 47, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, Y.; Wong, G.; Lee, I.H.; Akhtar, O.; Lopes, R.; Sumida, Y. Hepatocellular carcinoma and other complications of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in Japan: A structured review of published works. Hepatol. Res. 2021, 51, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Boutari, C.; Lefkos, P.; Athyros, V.G.; Karagiannis, A.; Tziomalos, K. Nonalcoholic Fatty Liver Disease vs. Nonalcoholic Steatohepatitis: Pathological and Clinical Implications. Curr. Vasc. Pharmacol. 2018, 16, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Ertle, J.; Dechêne, A.; Sowa, J.P.; Penndorf, V.; Herzer, K.; Kaiser, G.; Schlaak, J.F.; Gerken, G.; Syn, W.K.; Canbay, A. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int. J. Cancer 2011, 128, 2436–2443. [Google Scholar] [CrossRef]
- Mohamad, B.; Shah, V.; Onyshchenko, M.; Elshamy, M.; Aucejo, F.; Lopez, R.; Hanouneh, I.A.; Alhaddad, R.; Alkhouri, N. Characterization of hepatocellular carcinoma (HCC) in non-alcoholic fatty liver disease (NAFLD) patients without cirrhosis. Hepatol. Int. 2016, 10, 632–639. [Google Scholar] [CrossRef]
- Mittal, S.; El-Serag, H.B.; Sada, Y.H.; Kanwal, F.; Duan, Z.; Temple, S.; May, S.B.; Kramer, J.R.; Richardson, P.A.; Davila, J.A. Hepatocellular Carcinoma in the Absence of Cirrhosis in United States Veterans is Associated With Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2016, 14, 124–131.e121. [Google Scholar] [CrossRef]
- Ekstedt, M.; Franzén, L.E.; Mathiesen, U.L.; Thorelius, L.; Holmqvist, M.; Bodemar, G.; Kechagias, S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006, 44, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Sada, Y.H.; El-Serag, H.B.; Kanwal, F.; Duan, Z.; Temple, S.; May, S.B.; Kramer, J.R.; Richardson, P.A.; Davila, J.A. Temporal trends of nonalcoholic fatty liver disease-related hepatocellular carcinoma in the veteran affairs population. Clin. Gastroenterol. Hepatol. 2015, 13, 594–601.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sydor, S.; Best, J.; Messerschmidt, I.; Manka, P.; Vilchez-Vargas, R.; Brodesser, S.; Lucas, C.; Wegehaupt, A.; Wenning, C.; Aßmuth, S.; et al. Altered Microbiota Diversity and Bile Acid Signaling in Cirrhotic and Noncirrhotic NASH-HCC. Clin. Transl. Gastroenterol. 2020, 11, e00131. [Google Scholar] [CrossRef]
- Sutti, S.; Albano, E. Adaptive immunity: An emerging player in the progression of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Poulsen, K.L.; Wu, L.; Liu, S.; Miyata, T.; Song, Q.; Wei, Q.; Zhao, C.; Lin, C.; Yang, J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct. Target. Ther. 2022, 7, 287. [Google Scholar] [CrossRef]
- Wegermann, K.; Hyun, J.; Diehl, A.M. Molecular Mechanisms Linking Nonalcoholic Steatohepatitis to Cancer. Clin. Liver Dis. 2021, 17, 6–10. [Google Scholar] [CrossRef]
- Kulik, L.; El-Serag, H.B. Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology 2019, 156, 477–491.e1. [Google Scholar] [CrossRef]
NAFLD-HCC (N = 1310) | NAFLD-Controls (N = 9835) | p-Value | |
---|---|---|---|
Age (years) | 77.5 (5.8) | 76.7 (6.6) | <0.001 |
Sex (Male) | 786 (60.0%) | 3063 (31.1%) | <0.001 |
Ethnicity | <0.001 | ||
White | 935 (71.4%) | 7735 (78.6%) | |
Black | <35 † | 562 (5.7%) | |
Hispanic | 214 (16.3%) | 458 (4.7%) | |
Asian | 128 (9.8%) | 670 (6.8%) | |
Other | <35 † | 410 (4.2%) | |
Smoking history | 484 (36.9%) | 2534 (25.8%) | <0.001 |
Geographic location | <0.001 | ||
San Francisco—Oakland | 30 (2.3%) | 227 (2.3%) | |
Connecticut | 69 (5.3%) | 451 (4.6%) | |
Metropolitan Detroit | 39 (3.0%) | 327 (3.3%) | |
Hawaii | 42 (3.2%) | 167 (1.7%) | |
Iowa | 55 (4.2%) | 253 (2.6%) | |
New Mexico | 40 (3.1%) | 171 (1.7%) | |
Seattle (Puget Sound) | 41 (3.1%) | 250 (2.5%) | |
Utah | 35 (2.7%) | 183 (1.9%) | |
Metropolitan Atlanta | 17 (1.3%) | 135 (1.4%) | |
San Jose—Monterey | 26 (2.0%) | 177 (1.8%) | |
Los Angeles | 95 (7.3%) | 762 (7.7%) | |
Greater California | 164 (12.5%) | 1325 (13.5%) | |
Kentucky | 90 (6.9%) | 583 (5.9%) | |
Louisiana | 47 (3.6%) | 370 (3.8%) | |
New Jersey | 99 (7.6%) | 1057 (10.7%) | |
Greater Georgia | 89 (6.8%) | 682 (6.9%) | |
Idaho | 18 (1.4%) | 125 (1.3%) | |
New York | 212 (16.2%) | 1941 (19.7%) | |
Massachusetts | 102 (7.8%) | 649 (6.6%) | |
Geographic US regions | <0.001 | ||
Midwest | 94 (7.2%) | 580 (5.9%) | |
Northeast | 482 (36.8%) | 4098 (41.7%) | |
Southeast | 243 (18.5%) | 1770 (18.0%) | |
Southwest | 40 (3.1%) | 171 (1.7%) | |
West | 451 (34.4%) | 3216 (32.7%) | |
Medicare/Medicaid dual enrollment | 357 (27.3%) | 3558 (36.2%) | <0.001 |
Years from NAFLD diagnosis to HCC | 6.7 (3.2) | - |
NAFLD-HCC (N = 1310) | NAFLD Controls (N = 9835) | p-Value | |
---|---|---|---|
Metabolic conditions | |||
Obesity | 544 (41.5%) | 3261 (33.2%) | <0.001 |
Dyslipidemia | 1191 (90.9%) | 9090 (92.4%) | 0.16 |
Hypertension | 1250 (95.4%) | 9365 (95.2%) | 0.84 |
Hypothyroidism | 186 (14.2%) | 1491 (15.2%) | 0.39 |
Diabetes mellitus | 1085 (82.8%) | 6539 (66.5%) | <0.001 |
Metabolic syndrome | 1051 (80.2%) | 6887 (70.0%) | <0.001 |
Other liver condition | |||
Cirrhosis | 668 (51.0%) | 495 (5.0%) | <0.001 |
NAFLD-HCC Risk Compared to NAFLD Controls | ||
---|---|---|
OR (95% CI) | PAF (95% CI) | |
Overall | ||
Obesity | 1.62 (1.43, 1.85) | 13.2% (9.6, 16.8) |
Dyslipidemia | 0.73 (0.59, 1.11) | −19.1% (−23.4, 13.2) |
Hypertension | 1.03 (0.76, 1.38) | 2.0% (−19.5, 23.5) |
Hypothyroidism | 1.06 (0.89, 1.26) | 0.6% (−1.4, 2.6) |
Diabetes mellitus | 2.39 (2.04, 2.79) | 42.1% (35.7, 48.5) |
Metabolic syndrome | 1.73 (1.49, 2.01) | 28.8% (21.7, 35.9) |
Male | ||
Obesity | 1.48 (1.24, 1.76) | 9.8% (5.4, 14.3) |
Dyslipidemia | 0.81 (0.60, 1.08) | −15.6% (−38.1, 6.9) |
Hypertension | 0.85 (0.59, 1.23) | −12.2% (−40.0, 15.5) |
Hypothyroidism | 1.05 (0.81, 1.36) | 0.4% (−1.8, 2.5) |
Diabetes mellitus | 2.19 (1.79, 2.69) | 37.2% (28.7, 45.7) |
Metabolic syndrome | 1.57 (1.29, 1.91) | 22.8% (13.6, 32.1) |
Female | ||
Obesity | 1.80 (1.48, 2.19) | 18.0% (11.9, 24.2) |
Dyslipidemia | 0.65 (0.47, 0.89) | −40.6% (−72.4, −8.7) |
Hypertension | 1.32 (0.80, 2.18) | 21.2% (−12.7, 55.0) |
Hypothyroidism | 1.06 (0.84, 1.35) | 0.9% (−2.9, 4.7) |
Diabetes mellitus | 2.71 (2.12, 3.46) | 49.3% (39.7, 58.9) |
Metabolic syndrome | 1.95 (1.54, 2.48) | 36.7% (25.5, 47.9) |
NAFLD-HCC Risk Compared to NAFLD-Controls | ||
---|---|---|
OR (95% CI) | PAF (95% CI) | |
Cirrhosis | ||
Obesity | 1.79 (1.36, 2.34) | 8.5% (4.6, 12.5) |
Dyslipidemia | 0.86 (0.43, 1.22) | −13.5% (−27.2, 14.2) |
Hypertension | 0.95 (0.52, 1.74) | −1.9% (−22.3, 18.5) |
Hypothyroidism | 1.01 (0.71, 1.42) | 0.0% (−2.0, 2.1) |
Diabetes mellitus | 2.03 (1.48, 2.79) | 21.1% (11.8, 30.4) |
Metabolic syndrome | 1.43 (1.05, 1.95) | 10.5% (1.6, 19.3) |
No cirrhosis | ||
Obesity | 1.55 (1.30, 1.86) | 12.0% (6.9, 17.2) |
Dyslipidemia | 1.02 (0.73, 1.43) | 1.5% (−24.2, 27.3) |
Hypertension | 1.14 (0.74, 1.76) | 10.2% (−21.4, 41.7) |
Hypothyroidism | 1.01 (0.79, 1.30) | 0.1% (−2.6, 2.9) |
Diabetes mellitus | 2.04 (1.65, 2.51) | 36.7% (27.3, 46.1) |
Metabolic syndrome | 1.68 (1.36, 2.06) | 28.3% (18.1, 38.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antwi, S.O.; Craver, E.C.; Nartey, Y.A.; Sartorius, K.; Patel, T. Metabolic Risk Factors for Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease: A Prospective Study. Cancers 2022, 14, 6234. https://doi.org/10.3390/cancers14246234
Antwi SO, Craver EC, Nartey YA, Sartorius K, Patel T. Metabolic Risk Factors for Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease: A Prospective Study. Cancers. 2022; 14(24):6234. https://doi.org/10.3390/cancers14246234
Chicago/Turabian StyleAntwi, Samuel O., Emily C. Craver, Yvonne A. Nartey, Kurt Sartorius, and Tushar Patel. 2022. "Metabolic Risk Factors for Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease: A Prospective Study" Cancers 14, no. 24: 6234. https://doi.org/10.3390/cancers14246234
APA StyleAntwi, S. O., Craver, E. C., Nartey, Y. A., Sartorius, K., & Patel, T. (2022). Metabolic Risk Factors for Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease: A Prospective Study. Cancers, 14(24), 6234. https://doi.org/10.3390/cancers14246234