Benchmarking Eliminative Radiomic Feature Selection for Head and Neck Lymph Node Classification
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Contrast-Enhanced Computed Tomography Scans
2.3. Segmentation and Classification of Lymph Nodes
2.4. Export of Segmented Lymph Nodes for Feature Extraction
2.5. Feature Selection
2.6. Candidate Feature Selection Algorithms
2.6.1. Highly-Correlated-Feature Removal (HCFR)
2.6.2. Recursive Feature Elimination (RFE)
2.6.3. Sparse Discriminant Analysis (SDA)
2.6.4. Genetic Algorithms (GA)
2.6.5. Random Feature Selection (RND)
2.6.6. Dual-Phase Feature Elimination
2.6.7. RFE with Highly Anti-Weighted Feature Elimination Filter (HAFF) Preprocessing
2.7. Candidate Feature Selection Procedure
3. Results
3.1. Classification of Lymph Nodes and Feature Extraction
3.2. Candidate Feature Selection Algorithms
3.3. EFS-Algorithm for LN-Label “Pathologic”, “Pathologic with ECS”, and “Non-Pathologic”
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gor, D.M.; Langer, J.E.; Loevner, L.A. Imaging of Cervical Lymph Nodes in Head and Neck Cancer: The Basics. Radiol. Clin. 2006, 44, 101–110. [Google Scholar] [CrossRef]
- Mermod, M.; Tolstonog, G.; Simon, C.; Monnier, Y. Extracapsular spread in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Oral Oncol. 2016, 62, 60–71. [Google Scholar] [CrossRef]
- Faisal, M.; Dhanani, R.; Ullah, S.; Bakar, M.A.; Irfan, N.; Malik, K.I.; Loya, A.; Boban, E.M.; Hussain, R.; Jamshed, A. Prognostic outcomes of treatment naïve oral tongue squamous cell carcinoa (OTSCC): A comprehensive analysis of 14 years. Eur. Arch. Otorhinolaryngol. 2021, 278, 3045–3053. [Google Scholar] [CrossRef]
- Meccariello, G.; Maniaci, A.; Bianchi, G.; Cammaroto, G.; Iannella, G.; Catalano, A.; Sgarzani, R.; De Vito, A.; Capaccio, P.; Pelucchi, S.; et al. Neck dissection and trans oral robotic surgery for oropharyngeal squamous cell carcinoma. Auris Nasus Larynx 2021. [Google Scholar] [CrossRef]
- Van den Brekel, M.W.M.; Stel, H.V.; Castelijns, J.A.; Nauta, J.J.; Van der Waal, I.; Valk, J.; Meyer, C.J.; Snow, G.B. Cervical lymph node metastasis: Assessment of radiologic criteria. Radiology 1990, 177, 379–384. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Url, C.; Schartinger, V.; Riechelmann, H.; Glückert, R.; Maier, H.; Trumpp, M.; Widmann, G. Radiological detection of extracapsular spread in head and neck squamous cell carcinoma (HNSCC) cervical metastases. Eur. J. Radiol. 2013, 82, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of image analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar] [CrossRef] [PubMed]
- Remeseiro, B.; Bolon-Canedo, V. A review of feature selection methods in medical applications. Comput. Biol. Med. 2019, 112, 103375. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, B.; Anuradha, J. A Review of Feature Selection and Its Methods. Cybern. Inf. Technol. 2019, 19, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Howard, F.M.; Kochanny, S.; Koshy, M.; Spiotto, M.; Pearson, A.T. Machine Learning–Guided Adjuvant Treatment of Head and Neck Cancer. JAMA Netw. Open 2020, 3, e2025881. [Google Scholar] [CrossRef]
- LeCun, Y.; Haffner, P.; Bottou, L.; Bengio, Y. Object recognition with gradient-based learning. In Shape, Contour and Grouping in Computer Vision; Springer: Berlin/Heidelberg, Germany, 1999; pp. 319–345. [Google Scholar]
- Cireşan, D.; Meier, U.; Masci, J.; Schmidhuber, J. Multi-column deep neural network for traffic sign classification. Neural Netw. 2012, 32, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Gichoya, J.W.; Nuthakki, S.; Maity, P.G.; Purkayastha, S. Phronesis of ai in radiology: Superhuman meets natural stupidity. arXiv 2018, arXiv:1803.11244. [Google Scholar]
- Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining Explanations: An Overview of Interpretability of Machine Learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 80–89. [Google Scholar] [CrossRef] [Green Version]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med. 2007, 4, e296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; De Vet, H.C.; et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015, 351, h5527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noor, A.; Stepan, L.; Kao, S.S.-T.; Dharmawardana, N.; Ooi, E.; Hodge, J.-C.; Krishnan, S.; Foreman, A. Reviewing indications for panendoscopy in the investigation of head and neck squamous cell carcinoma. J. Laryngol. Otol. 2018, 132, 901–905. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Guidelines for Head and Neck Cancers, Version 1.2022. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1437 (accessed on 8 January 2022).
- Shav, K.S.V.; Ethunanda, M. Tumour seeding after fine-needle aspiration and core biopsy of the head and neck—A systematic review. Br. J. Oral Maxillofac. Surg. 2016, 54, 260–265. [Google Scholar]
- Aja-Fernandez, S.; García, R.L.; Tao, D.; Li, X. (Eds.) Tensors in Image Processing and Computer Vision; Springer Science + Business Media: London, UK, 2009. [Google Scholar]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J.W. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, 104–107. [Google Scholar] [CrossRef] [Green Version]
- PyRadiomics. Available online: https://github.com/Radiomics/pyradiomics (accessed on 19 November 2021).
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Weich, M.L.; McIntosh, C.; Haibe-Kains, B.; Milosevic, M.F.; Wee, L.; Dekker, A.; Huang, S.H.; Purdie, T.G.; O’Sullivan, B.; Aerts, H.J.W.; et al. Vulnerabilities of radiomic signature development: The need for safeguards. Radiother. Oncol. 2019, 130, 2–9. [Google Scholar]
- Costello, A.B.; Osborn, W.J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 2005, 10, 7. [Google Scholar]
- Noes, T.; Mevik, B.H. Understanding the collinearity problem in regression and discriminant analysis. J. Chemom. 2001, 15, 413–426. [Google Scholar] [CrossRef]
- Sima, C.; Dougherty, E.R. The peaking phenomenon in the presence of feature-selection. Pattern Recognit. Lett. 2008, 29, 1667–1674. [Google Scholar] [CrossRef]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Mylavarapu, S.; Kaban, A. Random projections versus random selection of features for classification of high dimensional data. In Proceedings of the 2013 13th UK Workshop on Computational Intelligence (UKCI), Guildford, UK, 9–11 September 2013; pp. 305–312. [Google Scholar] [CrossRef]
- Clemmensen, L.; Hastie, T.; Witten, D.; Ersbøll, B. Sparse Discriminant Analysis. Technometrics 2011, 53, 406–413. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, C.M.; Fleming, P.J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In Proceedings of the 5th International Conference on Genetic Algorithms, Champaign, IL, USA, 1 June 1993; pp. 416–423. [Google Scholar]
- Müllner, D. Modern hierarchical, agglomerative clustering algorithms. arXiv 2011, arXiv:1109.2378v1. [Google Scholar]
- Hussein, F.; Kharma, N.N.; Ward, R.K. Genetic algorithms for feature selection and weighting, a review and study. In Proceedings of the 6th International Conference on Document Analysis and Recognition, Seattle, WA, USA, 13 September 2001. [Google Scholar]
- Wutzl, B.; Leibnitz, K.; Rattay, F.; Kronbichler, M.; Murata, M.; Golaszweski, S.M. Genetic algorithms for feature selection when classifying severe chronic disorders of conciousness. PLoS ONE 2019, 14, e0219683. [Google Scholar] [CrossRef] [Green Version]
- Bommert, A.; Sun, X.; Bischl, B.; Rahnenführer, J.; Lang, M. Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 2019, 143, 106839. [Google Scholar] [CrossRef]
- Feinstein, A.J.; Alonso, J.; Yang, S.-E.; John, M.S. Diagnostic Accuracy of Fine-Needle Aspiration for Parotid and Submandibular Gland Lesions. Otolaryngol. Neck Surg. 2016, 155, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Dejaco, D.; Uprimny, C.; Widmann, G.; Riedl, D.; Moser, P.; Arnold, C.; Steinbichler, T.B.; Kofler, B.; Schartinger, V.H.; Virgolini, I.; et al. Response evaluation of cervical lymph nodes after chemoradiation in patients with head and neck cancer—Does additional [18F]FDG-PET-CT help? Cancer Imaging 2020, 20, 69. [Google Scholar] [CrossRef]
- Ho, T.-Y.; Chao, C.-H.; Chin, S.-C.; Ng, S.-H.; Kang, C.-J.; Tsang, N.-M. Classifying Neck Lymph Nodes of Head and Neck Squamous Cell Carcinoma in MRI Images with Radiomic Features. J. Digit. Imaging 2020, 33, 613–618. [Google Scholar] [CrossRef]
Sex | male | 20 |
female | 8 | |
Age | ≤50 years | 1 |
51–60 years | 9 | |
61–70 years | 9 | |
71–80 years | 8 | |
≥80 years | 2 | |
p16 Status 1 | Negative | 14 |
Positive | 6 | |
Unknown | 8 | |
Primary Tumor Site | oral cavity | 6 |
oropharynx | 6 | |
hypopharynx | 6 | |
larynx | 6 | |
CUP 2 | 4 | |
Clinical T-stage | T1 | 0 |
T2 | 7 | |
T3 | 6 | |
T4 | 11 | |
Clinical N-stage 3 | N0 | 0 |
N1 | 4 | |
N2 | 19 | |
N3 | 5 |
Type 1 | Name 2 | Number 3 |
---|---|---|
Shape | surface-to-volume ratio | 100/100 |
Intensity | first order statistics median | 80/100 |
first order statistics skewness | 100/100 | |
Texture | gray level co-occurrence matrix inverse difference moment | 95/100 |
gray level co-occurrence matrix inverse difference normalized | 45/100 | |
gray level dependence matrix low gray level emphasis | 75/100 | |
gray level run length matrix long run gray level emphasis | 30/100 | |
gray level run length matrix run entropy | 70/100 | |
gray level run length matrix short run emphasis | 35/100 | |
gray level size zone matrix zone entropy | 100/100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardosi, Z.R.; Dejaco, D.; Santer, M.; Kloppenburg, M.; Mangesius, S.; Widmann, G.; Ganswindt, U.; Rumpold, G.; Riechelmann, H.; Freysinger, W. Benchmarking Eliminative Radiomic Feature Selection for Head and Neck Lymph Node Classification. Cancers 2022, 14, 477. https://doi.org/10.3390/cancers14030477
Bardosi ZR, Dejaco D, Santer M, Kloppenburg M, Mangesius S, Widmann G, Ganswindt U, Rumpold G, Riechelmann H, Freysinger W. Benchmarking Eliminative Radiomic Feature Selection for Head and Neck Lymph Node Classification. Cancers. 2022; 14(3):477. https://doi.org/10.3390/cancers14030477
Chicago/Turabian StyleBardosi, Zoltan R., Daniel Dejaco, Matthias Santer, Marcel Kloppenburg, Stephanie Mangesius, Gerlig Widmann, Ute Ganswindt, Gerhard Rumpold, Herbert Riechelmann, and Wolfgang Freysinger. 2022. "Benchmarking Eliminative Radiomic Feature Selection for Head and Neck Lymph Node Classification" Cancers 14, no. 3: 477. https://doi.org/10.3390/cancers14030477
APA StyleBardosi, Z. R., Dejaco, D., Santer, M., Kloppenburg, M., Mangesius, S., Widmann, G., Ganswindt, U., Rumpold, G., Riechelmann, H., & Freysinger, W. (2022). Benchmarking Eliminative Radiomic Feature Selection for Head and Neck Lymph Node Classification. Cancers, 14(3), 477. https://doi.org/10.3390/cancers14030477