Platelet Count and Survival after Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Population, and Data
2.2. Construction of the Cohort
2.3. Exposure Definition
2.4. Outcome Definition
2.5. Baseline Variables
2.6. Baseline Platelet Analysis
2.7. Time-Dependent Platelet Analysis
2.8. Sensitivity Analysis
3. Results
3.1. Baseline Platelet Count Analysis
3.2. Time-Dependent Platelet Count Analysis
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franco, A.T.; Corken, A.; Ware, J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood 2015, 126, 582–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menter, D.G.; Tucker, S.C.; Kopetz, S.; Sood, A.K.; Crissman, J.D.; Honn, K.V. Platelets and cancer: A casual or causal relationship: Revisited. Cancer Metastasis Rev. 2014, 33, 231–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gay, L.J.; Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer 2011, 11, 123–134. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Wojtukiewicz, M.Z.; Sierko, E.; Hempel, D.; Tucker, S.C.; Honn, K.V. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev. 2017, 36, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Janowska-Wieczorek, A.; Wysoczynski, M.; Kijowski, J.; Marquez-Curtis, L.; Machalinski, B.; Ratajczak, J.; Ratajczak, M.Z. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer 2005, 113, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, J.S.; Talmage, K.E.; Massari, J.V.; La Jeunesse, C.M.; Flick, M.J.; Kombrinck, K.W.; Jirousková, M.; Degen, J.L. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 2005, 105, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Varki, A. Trousseau’s syndrome: Multiple definitions and multiple mechanisms. Blood 2007, 110, 1723–1729. [Google Scholar] [CrossRef]
- George, J.N. Systemic malignancies as a cause of unexpected microangiopathic hemolytic anemia and thrombocytopenia. Oncology 2011, 25, 908–914. [Google Scholar]
- Ishizuka, M.; Nagata, H.; Takagi, K.; Iwasaki, Y.; Kubota, K. Preoperative thrombocytosis is associated with survival after surgery for colorectal cancer. J. Surg. Oncol. 2012, 106, 887–891. [Google Scholar] [CrossRef]
- Lee, Y.S.; Suh, K.W.; Oh, S.Y. Preoperative thrombocytosis predicts prognosis in stage II colorectal cancer patients. Ann. Surg. Treat. Res. 2016, 90, 322–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, X.D.; Zhang, H.; Xu, Z.S.; Cheng, H.; Shen, W.; Wang, X.P. Poor prognostic role of the pretreatment platelet counts in colorectal cancer: A meta-analysis. Medicine 2018, 97, e10831. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Chang, H.; Yang, H.C.; Kim, Y.J.; Lee, C.T.; Lee, J.H.; Jheon, S.; Kim, K.; Chung, J.H.; Lee, J.S. Preoperative thrombocytosis is a significant unfavorable prognostic factor for patients with resectable non-small cell lung cancer. World J. Surg. Oncol. 2014, 12, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ran, Y. Prognostic role of elevated platelet count in patients with lung cancer: A systematic review and meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 5379–5387. [Google Scholar]
- Pedersen, L.M.; Milman, N. Prognostic significance of thrombocytosis in patients with primary lung cancer. Eur. Respir. J. 1996, 9, 1826–1830. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, M.; Furukawa, H.; Imamura, H.; Shimizu, J.; Ishida, H.; Masutani, S.; Tatsuta, M.; Satomi, T. Poor prognosis associated with thrombocytosis in patients with gastric cancer. Ann. Surg. Oncol. 2002, 9, 287–291. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, H.; Huang, S.; Hong, H.; Huang, X.; Wang, X.; Liao, W.; Wang, X.; Chen, X.; Jiang, L. The prognostic role of pretreatment thrombocytosis in gastric cancer: A systematic review and meta-analysis. Medicine 2018, 97, e11763. [Google Scholar] [CrossRef]
- Bensalah, K.; Leray, E.; Fergelot, P.; Rioux-Leclercq, N.; Tostain, J.; Guillé, F.; Patard, J.J. Prognostic value of thrombocytosis in renal cell carcinoma. J. Urol. 2006, 175, 859–863. [Google Scholar] [CrossRef]
- Hutterer, G.C.; Krieger, D.; Mrsic, E.; Pohlmann, K.; Bezan, A.; Stojakovic, T.; Pummer, K.; Zigeuner, R.; Pichler, M. Preoperative Leucocytosis, Thrombocytosis and Anemia as Potential Prognostic Factors in Non-metastatic Renal Cell Carcinoma. Anticancer Res. 2015, 35, 3463–3469. [Google Scholar]
- Taucher, S.; Salat, A.; Gnant, M.; Kwasny, W.; Mlineritsch, B.; Menzel, R.C.; Schmid, M.; Smola, M.G.; Stierer, M.; Tausch, C.; et al. Impact of pretreatment thrombocytosis on survival in primary breast cancer. Thromb. Haemost. 2003, 89, 1098–1106. [Google Scholar]
- Rachidi, S.; Kaur, M.; Lautenschlaeger, T.; Li, Z. Platelet count correlates with stage and predicts survival in melanoma. Platelets 2019, 30, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.L.; Nick, A.M.; McNeish, I.A.; Balkwill, F.; Han, H.D.; Bottsford-Miller, J.; Rupairmoole, R.; Armaiz-Pena, G.N.; Pecot, C.V.; Coward, J.; et al. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 2012, 366, 610–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Q.; Cheng, J.; Ye, M.; Liu, D.; Zhang, Y. Association of pretreatment thrombocytosis with prognosis in ovarian cancer: A systematic review and meta-analysis. J. Gynecol. Oncol. 2019, 30, e5. [Google Scholar] [CrossRef] [PubMed]
- Robles, S.C.; Marrett, L.D.; Clarke, E.A.; Risch, H.A. An application of capture-recapture methods to the estimation of completeness of cancer registration. J. Clin. Epidemiol. 1988, 41, 495–501. [Google Scholar] [CrossRef]
- Arnold, D.M.; Cuker, A. Diagnostic Approach to the Adult with Unexplained Thrombocytopenia. UpToDate. 2021. Available online: https://www-uptodate-com.myaccess.library.utoronto.ca/contents/diagnostic-approach-to-the-adult-with-unexplained-thrombocytopenia (accessed on 21 July 2021).
- Robins, J.M.; Hernán, M.A.; Brumback, B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000, 11, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.R.; Hernán, M.A. Constructing inverse probability weights for marginal structural models. Am. J. Epidemiol. 2008, 168, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Shirai, T.; Revenko, A.S.; Tibbitts, J.; Ngo, A.T.P.; Mitrugno, A.; Healy, L.D.; Johnson, J.; Tucker, E.I.; Hinds, M.T.; Coussens, L.M.; et al. Hepatic thrombopoietin gene silencing reduces platelet count and breast cancer progression in transgenic MMTV-PyMT mice. Blood Adv. 2019, 3, 3080–3091. [Google Scholar] [CrossRef] [Green Version]
- Rothwell, P.M.; Wilson, M.; Price, J.F.; Belch, J.F.; Meade, T.W.; Mehta, Z. Effect of daily aspirin on risk of cancer metastasis: A study of incident cancers during randomised controlled trials. Lancet 2012, 379, 1591–1601. [Google Scholar] [CrossRef]
- Chen, W.Y.; Ligibel, J.A. Anti-inflammatory Agents for Breast Cancer: Case Closed or Is the Jury Still Out? JAMA Oncol. 2021, 7, 1289–1290. [Google Scholar] [CrossRef]
- Tao, D.L.; Tassi Yunga, S.; Williams, C.D.; McCarty, O.J.T. Aspirin and antiplatelet treatments in cancer. Blood 2021, 137, 3201–3211. [Google Scholar] [CrossRef]
- Iskander, C.; McArthur, E.; Nash, D.M.; Gandhi-Banga, S.; Weir, M.A.; Muanda, F.T.; Garg, A.X. Identifying Ontario geographic regions to assess adults who present to hospital with laboratory-defined conditions: A descriptive study. CMAJ Open 2019, 7, E624–E629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Description | Value | Total |
---|---|---|
Overall | 112,231 | |
General demographics | ||
Calendar year | Mean (SD) | 2013.2 (2.4) |
Median (IQR) | 2014 (2011–2015) | |
Sex | Female | 56,524 (50.4%) |
Male | 55,707 (49.6%) | |
Age | Mean (SD) | 66.9 (14.3) |
Median (IQR) | 68.0 (57.8–77.5) | |
Neighborhood income quintile | 1—Low | 22,374 (19.9%) |
2 | 23,340 (20.8%) | |
3 | 22,225 (19.8%) | |
4 | 21,812 (19.4%) | |
5—High | 22,171 (19.8%) | |
Missing | 309 (0.3%) | |
Residence location | Urban | 97,523 (86.9%) |
Rural | 14,571 (13.0%) | |
Missing | 137 (0.1%) | |
Landed immigrant | Non-immigrant | 99,372 (88.5%) |
Recent immigrant (≤10 years) | 3135 (2.8%) | |
Past immigrant (>10 years) | 9724 (8.7%) | |
Time eligible in OHIP (years) | Mean (SD) | 21.1 (5.8) |
Median (IQR) | 22.9 (19.6–25.0) | |
Health service utilization | ||
Core primary care visits to GP/FP (2 years prior) | Mean (SD) | 2.9 (3.5) |
Median (IQR) | 2 (1–4) | |
0 | 4750 (4.2%) | |
1–2 | 61,661 (54.9%) | |
3–4 | 24,009 (21.4%) | |
5–9 | 16,980 (15.1%) | |
10+ | 4831 (4.3%) | |
Chronic conditions | ||
Asthma | Yes | 10,397 (9.3%) |
Congestive heart failure | Yes | 9509 (8.5%) |
Inflammatory bowel disease | Yes | 435 (0.4%) |
Chronic obstructive pulmonary disease | Yes | 11,578 (10.3%) |
HIV | Yes | 171 (0.2%) |
Hypertension | Yes | 63,988 (57.0%) |
Dementia | Yes | 4807 (4.3%) |
Diabetes | Yes | 23,222 (20.7%) |
Chronic rheumatoid arthritis | Yes | 1464 (1.3%) |
Osteoarthritis | Yes | 20,042 (17.9%) |
Mood disorder | Yes | 13,807 (12.3%) |
Other mental health disorder | Yes | 6629 (5.9%) |
Osteoporosis | Yes | 1831 (1.6%) |
Renal disease | Yes | 6303 (5.6%) |
Stroke | Yes | 2486 (2.2%) |
Chronic coronary syndrome | Yes | 12,131 (10.8%) |
Acute myocardial infarction | Yes | 2830 (2.5%) |
Medication use (patients aged 66+) | ||
Concurrent medication use | ||
Number of concurrent medications | Mean (SD) | 4.6 (3.3) |
Median (IQR) | 4 (2–7) | |
Recent medication use | ||
Antiplatelet | ||
Nonsteroidal anti-inflammatory (ASA-based) | Yes | 2062 (3.3%) |
Nonsteroidal anti-inflammatory (non-ASA-based) | Yes | 11,481 (18.4%) |
Adenosine disphosphonate inhibitor | Yes | 4772 (7.7%) |
Cardiovascular | ||
Coronary vasodilator (nitrate) | Yes | 5415 (8.7%) |
Beta blocker | Yes | 18,561 (29.8%) |
Calcium channel blocker | Yes | 19,725 (31.7%) |
ACE inhibitor | Yes | 19,838 (31.9%) |
Angiotensin receptor agonist | Yes | 14,684 (23.6%) |
Lipid-lowering | ||
Statin | Yes | 33,080 (53.1%) |
Psychotropics | ||
Tricyclic antidepressant | Yes | 2975 (4.8%) |
Selective serotonin reuptake inhibitor | Yes | 7311 (11.7%) |
Incident cancer events (Ontario Cancer Registry) | ||
Lung | Yes | 20,583 (18.3%) |
Colon | Yes | 17,259 (15.4%) |
Breast | Yes | 9857 (8.8%) |
Prostate | Yes | 8587 (7.7%) |
Other solid tumor | Yes | 8051 (7.2%) |
Bladder | Yes | 6963 (6.2%) |
Thyroid | Yes | 5944 (5.3%) |
Kidney | Yes | 5272 (4.7%) |
Pancreas | Yes | 5195 (4.6%) |
Endometrium | Yes | 4500 (4.0%) |
Stomach | Yes | 3365 (3.0%) |
Head and neck | Yes | 3160 (2.8%) |
Ovary | Yes | 3085 (2.7%) |
Melanoma | Yes | 2815 (2.5%) |
Brain | Yes | 2563 (2.3%) |
Other GI | Yes | 1726 (1.5%) |
Esophagus | Yes | 1483 (1.3%) |
Testis | Yes | 990 (0.9%) |
Cervix | Yes | 833 (0.7%) |
Complete blood count | ||
Number of baseline CBC observations | 1 | 83,819 (74.7%) |
2 | 18,559 (16.5%) | |
3+ | 9853 (8.8%) | |
Platelet count [109 platelets/L] | Mean (SD) | 275.1 (103.6) |
Median (IQR) | 256 (208–320) | |
Number of CBC observations in the follow-up period | Mean (SD) | 15.0 (20.3) |
Median (IQR) | 8 (3–20) | |
Follow-up period | ||
Follow-up time (years) | Mean (SD) | 2.6 (2.4) |
Median (IQR) | 1.9 (0.7–3.9) | |
Any death | Yes | 51,738 (46.1%) |
Any cancer death | Yes | 41,968 (37.4%) |
Cancer-specific death | Yes | 40,329 (35.9%) |
Cancer | Platelet Category | Person-Years | Cancer-Specific Deaths | Rate (% per Year) | Unadjusted | p-Value | Patient Variable Adjustment * | Patient Variable and Cancer Stage Adjustment ** | ||
---|---|---|---|---|---|---|---|---|---|---|
HR (95% CI) | HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||||||
All cancers | 1—Low (≤25th pctl) | 76,425.8 | 8666 | 11.3 | 0.91 (0.88–0.93) | <0.0001 | 0.84 (0.82–0.86) | <0.0001 | 0.91 (0.88–0.94) | <0.0001 |
2—Medium (>25 to <75th pctl) | 153,022.0 | 18,845 | 12.3 | 1.00 (Reference) | 1.00 (Reference) | 1.00 (Reference) | ||||
3—High (≥75th pctl) | 65,811.5 | 12,818 | 19.5 | 1.52 (1.48–1.55) | <0.0001 | 1.55 (1.52–1.59) | <0.0001 | 1.23 (1.20–1.26) | <0.0001 | |
Colon | 1—Low (≤25th pctl) | 13,656.9 | 926 | 6.8 | 0.70 (0.65–0.76) | <0.0001 | 0.69 (0.64–0.75) | <0.0001 | 0.92 (0.84–0.99) | 0.0334 |
2—Medium (>25 to <75th pctl) | 26,021.7 | 2510 | 9.6 | 1.00 (Reference) | 1.00 (Reference) | 1.00 (Reference) | ||||
3—High (≥75th pctl) | 10,913.0 | 1884 | 17.3 | 1.70 (1.60–1.80) | <0.0001 | 1.71 (1.61–1.81) | <0.0001 | 1.32 (1.24–1.40) | <0.0001 | |
Lung | 1—Low (≤25th pctl) | 8415.3 | 2798 | 33.2 | 0.80 (0.77–0.84) | <0.0001 | 0.75 (0.72–0.79) | <0.0001 | 0.93 (0.89–0.97) | 0.0024 |
2—Medium (>25 to <75th pctl) | 14,959.1 | 6504 | 43.5 | 1.00 (Reference) | 1.00 (Reference) | 1.00 (Reference) | ||||
3—High (≥75th pctl) | 4977.9 | 3872 | 77.8 | 1.55 (1.48–1.61) | <0.0001 | 1.57 (1.51–1.63) | <0.0001 | 1.35 (1.29–1.40) | <0.0001 | |
Breast | 1—Low (≤25th pctl) | 9436.4 | 298 | 3.2 | 1.19 (1.03–1.37) | 0.0193 | 1.05 (0.91–1.21) | 0.5042 | 1.11 (0.96–1.30) | 0.1654 |
2—Medium (>25 to <75th pctl) | 19,744.7 | 516 | 2.6 | 1.00 (Reference) | 1.00 (Reference) | 1.00 (Reference) | ||||
3—High (≥75th pctl) | 9377.9 | 428 | 4.6 | 1.73 (1.52–1.97) | <0.0001 | 1.80 (1.58–2.04) | <0.0001 | 1.23 (1.07–1.41) | 0.0028 | |
Prostate | 1—Low (≤25th pctl) | 7499.3 | 365 | 4.9 | 1.66 (1.45−1.90) | <0.0001 | 1.39 (1.21–1.60) | <0.0001 | 1.30 (1.11–1.51) | 0.0009 |
2—Medium (>25 to <75th pctl) | 16,960.5 | 474 | 2.8 | 1.00 (Reference) | 1.00 (Reference) | 1.00 (Reference) | ||||
3—High (≥75th pctl) | 8034.9 | 434 | 5.4 | 1.91 (1.68–2.17) | <0.0001 | 1.87 (1.64–2.13) | <0.0001 | 1.39 (1.21–1.61) | <0.0001 | |
Ovary | 1—Low (≤25th pctl) | 2161.7 | 226 | 10.5 | 0.65 (0.56–0.76) | <0.0001 | 0.63 (0.54–0.74) | <0.0001 | 0.78 (0.64–0.95) | 0.0143 |
2—Medium (>25 to <75th pctl) | 4017.9 | 650 | 16.2 | 1.00 (Reference) | 1.00 (Reference) | 1.00 (Reference) | ||||
3—High (≥75th pctl) | 1699.2 | 459 | 27.0 | 1.60 (1.42–1.80) | <0.0001 | 1.60 (1.42–1.81) | <0.0001 | 1.27 (1.10–1.48) | 0.0016 | |
Stomach | 1—Low (≤25th pctl) | 1441.4 | 478 | 33.2 | 0.88 (0.79–0.99) | 0.0265 | 0.87 (0.78–0.97) | 0.0111 | 1.08 (0.91–1.28) | 0.3949 |
2—Medium (>25 to <75th pctl) | 2745.4 | 1035 | 37.7 | 1.00 (Reference) | 1.00 (Reference) | 1.00 (Reference) | ||||
3—High (≥75th pctl) | 1191.1 | 574 | 48.2 | 1.25 (1.13–1.38) | <0.0001 | 1.23 (1.11–1.36) | 0.0001 | 1.03 (0.88–1.21) | 0.6992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannakeas, V.; Kotsopoulos, J.; Brooks, J.D.; Cheung, M.C.; Rosella, L.; Lipscombe, L.; Akbari, M.R.; Austin, P.C.; Narod, S.A. Platelet Count and Survival after Cancer. Cancers 2022, 14, 549. https://doi.org/10.3390/cancers14030549
Giannakeas V, Kotsopoulos J, Brooks JD, Cheung MC, Rosella L, Lipscombe L, Akbari MR, Austin PC, Narod SA. Platelet Count and Survival after Cancer. Cancers. 2022; 14(3):549. https://doi.org/10.3390/cancers14030549
Chicago/Turabian StyleGiannakeas, Vasily, Joanne Kotsopoulos, Jennifer D. Brooks, Matthew C. Cheung, Laura Rosella, Lorraine Lipscombe, Mohammad R. Akbari, Peter C. Austin, and Steven A. Narod. 2022. "Platelet Count and Survival after Cancer" Cancers 14, no. 3: 549. https://doi.org/10.3390/cancers14030549
APA StyleGiannakeas, V., Kotsopoulos, J., Brooks, J. D., Cheung, M. C., Rosella, L., Lipscombe, L., Akbari, M. R., Austin, P. C., & Narod, S. A. (2022). Platelet Count and Survival after Cancer. Cancers, 14(3), 549. https://doi.org/10.3390/cancers14030549