Caveolae-Associated Molecules, Tumor Stroma, and Cancer Drug Resistance: Current Findings and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cancer Drug Resistance Is Associated with Changes in the Caveolae
3. Mechanisms of Drug Resistance by CAV1 Associated with P-gp
4. CAV1-Linked Drug Resistance Mechanisms Independent of P-gp
4.1. Lung Cancers
4.2. Breast Cancer
4.3. Renal Cancers
4.4. Sarcomas
4.5. Liver Cancer
4.6. Pancreas Cancer
4.7. Colorectal and Gastric Cancers
4.8. Glioblastoma (GBM)
4.9. Prostate Cancer
5. Stromal CAV1 and Drug Resistance
6. CAVIN1 and Drug Resistance
7. Stromal CAVIN1 and Drug Resistance
8. Perspectives and Future Approaches
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CAV1 | caveolin-1 |
CAV2 | caveolin-2 |
CAV3 | caveolin-3 |
MBCD | methyl-β-Cyclodextrin |
CAVIN1 | caveola-associated protein-1 |
P-gp | P-glycoprotein |
References
- Yamada, E. The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1955, 1, 445–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.G.W. The caveolae membrane system. Annu. Rev. Biochem. 1998, 67, 199–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parton, R.G.; Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 2007, 8, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Parton, R.G.; del Pozo, M.A. Caveolae as plasma membrane sensors, protectors and organizers. Nat. Rev. Mol. Cell Biol. 2013, 14, 98–112. [Google Scholar] [CrossRef]
- Parat, M.O. The biology of caveolae: Achievements and perspectives. Int. Rev. Cell Mol. Biol. 2009, 273, 117–162. [Google Scholar]
- Carver, L.A.; Schnitzer, J.E. Caveolae: Mining little caves for new cancer targets. Nat. Rev. Cancer 2003, 3, 571–581. [Google Scholar] [CrossRef]
- Nassar, Z.D.; Parat, M.O. Cavin Family: New Players in the Biology of Caveolae. Int. Rev. Cell Mol. Biol. 2015, 320, 235–305. [Google Scholar]
- Drab, M.; Verkade, P.; Elger, M.; Kasper, M.; Lohn, M.; Lauterbach, B.; Menne, J.; Lindschau, C.; Mende, F.; Luft, F.C.; et al. Loss of Caveolae, Vascular Dysfunction, and Pulmonary Defects in Caveolin-1 Gene-Disrupted Mice. Science 2001, 293, 2449–2452. [Google Scholar] [CrossRef] [Green Version]
- Fra, A.M.; Williamson, E.; Simons, K.; Parton, R. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl. Acad. Sci. USA 1995, 92, 8655–8659. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Yang, G.; Timme, T.L.; Saika, T.; Truong, L.D.; Satoh, T.; Goltsov, A.; Park, S.H.; Men, T.; Kusaka, N.; et al. Disruption of the Caveolin-1 Gene Impairs Renal Calcium Reabsorption and Leads to Hypercalciuria and Urolithiasis. Am. J. Pathol. 2003, 162, 1241–1248. [Google Scholar] [CrossRef]
- Jansa, P.; Mason, S.W.; Hoffmann-Rohrer, U.; Grummt, I. Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J. 1998, 17, 2855–2864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, M.M.; Bastiani, M.; Luetterforst, R.; Kirkham, M.; Kirkham, A.; Nixon, S.J.; Walser, P.; Abankwa, D.; Oorschot, V.M.; Martin, S.; et al. PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function. Cell 2008, 132, 113–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, J.Y.; Nicholson, H.D. Emerging role of polymerase-1 and transcript release factor (PTRF/Cavin-1) in health and disease. Cell Tissue Res. 2014, 357, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Alston, L.; Ruschman, J.; Hegele, R.A. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 2008, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Galbiati, F.; Volonte, D.; Sargiacomo, M.; Engelman, J.A.; Das, K.; Scherer, P.E.; Lisanti, M.P. Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett. 1998, 434, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Razani, B.; Wang, X.B.; Engelman, J.A.; Battista, M.; Lagaud, G.; Zhang, X.L.; Kneitz, B.; Hou, H.; Christ, G.J.; Edelmann, W.; et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol. Cell. Biol. 2002, 22, 2329–2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, C.G.; Bright, N.A.; Howard, G.; Nichols, B.J. SDPR induces membrane curvature and functions in the formation of caveolae. Nat. Cell Biol. 2009, 11, 807–814. [Google Scholar] [CrossRef] [Green Version]
- McMahon, K.-A.; Zajicek, H.; Li, W.-P.; Peyton, M.J.; Minna, J.D.; Hernandez, V.J.; Luby-Phelps, K.; Anderson, R.G.W. SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J. 2009, 28, 1001–1015. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Hansen, C.G.; Honeyman, B.J.; Nichols, B.J.; Pilch, P.F. Cavin-3 Knockout Mice Show that Cavin-3 Is Not Essential for Caveolae Formation, for Maintenance of Body Composition, or for Glucose Tolerance. PLoS ONE 2014, 9, e102935. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Scherer, P.E.; Okamoto, T.; Song, K.; Chu, C.; Kohtz, D.S.; Nishimoto, I.; Lodish, H.F.; Lisanti, M.P. Molecular Cloning of Caveolin-3, a Novel Member of the Caveolin Gene Family Expressed Predominantly in Muscle. J. Biol. Chem. 1996, 271, 2255–2261. [Google Scholar] [CrossRef] [Green Version]
- Tagawa, M.; Ueyama, T.; Ogata, T.; Takehara, N.; Nakajima, N.; Isodono, K.; Asada, S.; Takahashi, T.; Matsubara, H.; Oh, H. MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis. Am. J. Physiol. Cell Physiol. 2008, 295, C490–C498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, K.S.; Scherer, P.E.; Tang, Z.L.; Okamoto, T.; Li, S.; Chafel, M.; Chu, C.; Kohtz, D.S.; Lisanti, M.P. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 1996, 71, 15160–15165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capozza, F.; Combs, T.P.; Cohen, A.W.; Cho, Y.-R.; Park, S.-Y.; Schubert, W.; Williams, T.M.; Brasaemle, D.L.; Jelicks, L.A.; Scherer, P.E.; et al. Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. Am. J. Physiol. Cell Physiol. 2005, 288, C1317–C1331. [Google Scholar] [CrossRef] [PubMed]
- Galbiati, F.; Engelman, J.A.; Volonte, D.; Zhang, X.L.; Minetti, C.; Li, M.; Hou, H.; Kneitz, B.; Edelmann, W.; Lisanti, M.P. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J. Biol. Chem. 2001, 276, 21425–21433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata, T.; Naito, D.; Nakanishi, N.; Hayashi, Y.K.; Taniguchi, T.; Miyagawa, K.; Hamaoka, T.; Maruyama, N.; Matoba, S.; Ikeda, K.; et al. MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors. Proc. Natl. Acad. Sci. USA 2014, 111, 3811–3816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Caveolae and signalling in cancer. Nat. Rev. Cancer 2015, 15, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726. [Google Scholar] [CrossRef]
- Marusyk, A.; Polyak, K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta 2010, 1805, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Zahreddine, H.; Borden, K.L.B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 2013, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef]
- Lavie, Y.; Liscovitch, M. Changes in lipid and protein constituents of rafts and caveolae in multidrug resistant cancer cells and their functional consequences. Glycoconj. J. 2000, 17, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Lavie, Y.; Fiucci, G.; Liscovitch, M. Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J. Biol. Chem. 1998, 273, 32380–32383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavie, Y.; Fiucci, G.; Liscovitch, M. Upregulation of caveolin in multidrug resistant cancer cells: Functional implications. Adv. Drug Deliv. Rev. 2001, 49, 317–323. [Google Scholar] [CrossRef]
- Ketteler, J.; Klein, D. Caveolin-1, cancer and therapy resistance. Int. J. Cancer 2018, 143, 2092–2104. [Google Scholar] [CrossRef]
- Kamposioras, K.; Vassilakopoulou, M.; Anthoney, A.; Bariuoso, J.; Mauri, D.; Mansoor, W.; Papadopoulos, V.; Dimas, K. Prognostic significance and therapeutic implications of Caveolin-1 in gastrointestinal tract malignancies. Pharmacol. Ther. 2021, 108028. [Google Scholar] [CrossRef]
- Demeule, M.; Jodoin, J.; Gingras, D.; Béliveau, R. P-glycoprotein is localized in caveolae in resistant cells and in brain capillaries. FEBS Lett. 2000, 466, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, H.M.; Al-Abd, A.M.; El-Dine, R.S.; El-Halawany, A.M. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review. J. Adv. Res. 2015, 6, 45–62. [Google Scholar] [CrossRef]
- Ehrhardt, C.; Kneuer, C.; Laue, M.; Schaefer, U.F.; Kim, K.-J.; Lehr, C.-M. 16HBE14o- human bronchial epithelial cell layers express P-glycoprotein, lung resistance-related protein, and caveolin-1. Pharm. Res. 2003, 20, 545–551. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, J.; Zhao, L.; Luo, Q.; Jin, X. Expression and clinical significance of multidrug resistance proteins in brain tumors. J. Exp. Clin. Cancer Res. 2010, 29, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Cai, Z.; Chen, J. Suppression of P-glycoprotein gene expression in Hs578T/Dox by the overexpression of caveolin-1. FEBS Lett. 2004, 576, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Chen, J. Overexpression of caveolin-1 induces alteration of multidrug resistance in Hs578T breast adenocarcinoma cells. Int. J. Cancer 2004, 111, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Zhu, H.; Chen, J. Overexpression of caveolin-1 increases plasma membrane fluidity and reduces P-glycoprotein function in Hs578T/Dox. Biochem. Biophys. Res. Commun. 2004, 320, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Troost, J.; Lindenmaier, H.; Haefeli, W.E.; Weiss, J. Modulation of Cellular Cholesterol Alters P-Glycoprotein Activity in Multidrug-Resistant Cells. Mol. Pharmacol. 2004, 66, 1332–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-Y.; Lai, T.-Y.; Tsai, M.-K.; Ou-Yang, P.; Tsai, C.-Y.; Wu, S.-W.; Hsu, L.-C.; Chen, J.-S. The influence of a caveolin-1 mutant on the function of P-glycoprotein. Sci. Rep. 2016, 6, 20486. [Google Scholar] [CrossRef] [Green Version]
- Barakat, S.; Demeule, M.; Pilorget, A.; Régina, A.; Gingras, D.; Baggetto, L.G.; Béliveau, R. Modulation of p-glycoprotein function by caveolin-1 phosphorylation. J. Neurochem. 2007, 101, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, X.; Teng, Y.; Li, Z.; Xu, L.; Liu, J.; Ma, Y.; Fan, Y.; Li, C.; Liu, S.; et al. Cbl-b inhibits P-gp transporter function by preventing its translocation into caveolae in multiple drug-resistant gastric and breast cancers. Oncotarget 2015, 6, 6737–6748. [Google Scholar] [CrossRef]
- Fan, Y.; Si, W.; Ji, W.; Wang, Z.; Gao, Z.; Tian, R.; Song, W.; Zhang, H.; Niu, R.; Zhang, F. Rack1 mediates Src binding to drug transporter P-glycoprotein and modulates its activity through regulating Caveolin-1 phosphorylation in breast cancer cells. Cell Death Dis. 2019, 10, 394. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, X.; Li, C.; Fan, Y.; Che, X.; Wang, X.; Cai, Y.; Hu, X.; Liu, Y. miR-103/107 modulates multidrug resistance in human gastric carcinoma by downregulating Cav-1. Tumour Biol. 2015, 36, 2277–2285. [Google Scholar] [CrossRef]
- Kanlikilicer, P.; Bayraktar, R.; Denizli, M.; Rashed, M.H.; Ivan, C.; Aslan, B.; Mitra, R.; Karagoz, K.; Bayraktar, E.; Zhang, X.; et al. Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. eBioMedicine 2018, 38, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.M.; Lisanti, M.P. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am. J. Physiol. Cell Physiol. 2005, 288, C494–C506. [Google Scholar] [CrossRef]
- Nassar, Z.D.; Hill, M.M.; Parton, R.G.; Parat, M.O. Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nat. Rev. Urol. 2013, 10, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Witkiewicz, A.K.; Dasgupta, A.; Sotgia, F.; Mercier, I.; Pestell, R.G.; Sabel, M.; Kleer, C.G.; Brody, J.R.; Lisanti, M.P. An Absence of Stromal Caveolin-1 Expression Predicts Early Tumor Recurrence and Poor Clinical Outcome in Human Breast Cancers. Am. J. Pathol. 2009, 174, 2023–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonuccelli, G.; Casimiro, M.C.; Sotgia, F.; Wang, C.; Liu, M.; Katiyar, S.; Zhou, J.; Dew, E.; Capozza, F.; Daumer, K.M.; et al. Caveolin-1 (P132L), a Common Breast Cancer Mutation, Confers Mammary Cell Invasiveness and Defines a Novel Stem Cell/Metastasis-Associated Gene Signature. Am. J. Pathol. 2009, 174, 1650–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-P.H.; Galbiati, F.; Volonté, D.; Horwitz, S.B.; Lisanti, M.P. Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells. FEBS Lett. 1998, 439, 368–372. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Zhang, L.; Zhou, Y.; Yi, X. Caveolin-1 regulates cell apoptosis and invasion ability in paclitaxel-induced multidrug-resistant A549 lung cancer cells. Int. J. Clin. Exp. Pathol. 2015, 8, 8937–8947. [Google Scholar]
- Bélanger, M.M.; Gaudreau, M.; Roussel, É.; Couet, J. Role of caveolin-1 in etoposide resistance development in A549 lung cancer cells. Cancer Biol. Ther. 2004, 3, 954–959. [Google Scholar] [CrossRef] [Green Version]
- Linge, A.; Meleady, P.; Henry, M.; Clynes, M.; Kasper, M.; Barth, K. Bleomycin treatment of A549 human lung cancer cells results in association of MGr1-Ag and caveolin-1 in lipid rafts. Int. J. Biochem. Cell Biol. 2011, 43, 98–105. [Google Scholar] [CrossRef]
- Wongvaranon, P.; Pongrakhananon, V.; Chunhacha, P.; Chanvorachote, P. Acquired resistance to chemotherapy in lung cancer cells mediated by prolonged nitric oxide exposure. Anticancer Res. 2013, 33, 5433–5444. [Google Scholar]
- Ho, C.-C.; Kuo, S.-H.; Huang, P.-H.; Huang, H.-Y.; Yang, C.-H.; Yang, P.-C. Caveolin-1 expression is significantly associated with drug resistance and poor prognosis in advanced non-small cell lung cancer patients treated with gemcitabine-based chemotherapy. Lung Cancer 2008, 59, 105–110. [Google Scholar] [CrossRef]
- Songserm, T.; Pongrakhananon, V.; Chanvorachote, P. Sub-toxic cisplatin mediates anoikis resistance through hydrogen peroxide-induced caveolin-1 up-regulation in non-small cell lung cancer cells. Anticancer Res. 2012, 32, 1659–1669. [Google Scholar]
- Brodie, S.A.; Lombardo, C.; Li, G.; Kowalski, J.; Gandhi, K.; You, S.; Khuri, F.R.; Marcus, A.; Vertino, P.M.; Brandes, J.C. Aberrant Promoter Methylation of Caveolin-1 Is Associated with Favorable Response to Taxane-Platinum Combination Chemotherapy in Advanced NSCLC. PLoS ONE 2014, 9, e107124. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.B.P.; Hutcheson, I.R.; Campbell, L.; Gee, J.; Taylor, K.; Nicholson, R.I.; Gumbleton, M. Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance. Breast Cancer Res. Treat. 2010, 119, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Herzog, M.; Storch, C.H.; Gut, P.; Kotlyar, D.; Füllekrug, J.; Ehehalt, R.; Haefeli, W.E.; Weiss, J. Knockdown of caveolin-1 decreases activity of breast cancer resistance protein (BCRP/ABCG2) and increases chemotherapeutic sensitivity. Naunyn-Schmiedebergs Arch. Pharmakol. 2010, 383, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shajahan, A.N.; Wang, A.; Decker, M.; Minshall, R.D.; Liu, M.C.; Clarke, R. Caveolin-1 Tyrosine Phosphorylation Enhances Paclitaxel-mediated Cytotoxicity. J. Biol. Chem. 2007, 282, 5934–5943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, N.; Li, W.; Liu, P.; Chen, Q.; Situ, H.; Zhong, S.; Guo, L.; Lin, Y.; Shen, J.; et al. Caveolin-1 mediates chemoresistance in breast cancer stem cells via beta-catenin/ABCG2 signaling pathway. Carcinogenesis 2014, 3, 2346–2356. [Google Scholar] [CrossRef] [Green Version]
- Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.J.; Lutz, R.J.; et al. Targeting HER2-Positive Breast Cancer with Trastuzumab-DM1, an Antibody–Cytotoxic Drug Conjugate. Cancer Res. 2008, 68, 9280–9290. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.-Y.; Diéras, V.; Guardino, E.; et al. Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.-C.; Kuo, J.-F.; Wei, W.-C.; Chang, K.-J.; Chao, W.-T. Caveolin-1 Dependent Endocytosis Enhances the Chemosensitivity of HER-2 Positive Breast Cancer Cells to Trastuzumab Emtansine (T-DM1). PLoS ONE 2015, 10, e0133072. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.-C.; Chang, C.-M.; Wei, W.-C.; Chang, T.-W.; Chang, K.-J.; Chao, W.-T. Metformin-induced caveolin-1 expression promotes T-DM1 drug efficacy in breast cancer cells. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Sung, M.; Tan, X.; Lu, B.; Golas, J.; Hosselet, C.; Wang, F.; Tylaska, L.; King, L.; Zhou, D.; Dushin, R.; et al. Caveolae-Mediated Endocytosis as a Novel Mechanism of Resistance to Trastuzumab Emtansine (T-DM1). Mol. Cancer Ther. 2018, 17, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Bae, E.; Lee, C.; Yoon, S.-S.; Chae, Y.S.; Ahn, K.-S.; Won, N.H. RNA interference-directed caveolin-1 knockdown sensitizes SN12CPM6 cells to doxorubicin-induced apoptosis and reduces lung metastasis. Tumour. Biol. 2010, 31, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.; Li, X.; Yang, H.; Song, Z.; Tong, J.; Cao, Q.; Wang, K.; Xiao, W.; Xiao, H.; Chen, X.; et al. Enhanced expression of caveolin-1 possesses diagnostic and prognostic value and promotes cell migration, invasion and sunitinib resistance in the clear cell renal cell carcinoma. Exp. Cell Res. 2017, 358, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Faggi, F.; Mitola, S.; Sorci, G.; Riuzzi, F.; Donato, R.; Codenotti, S.; Poliani, P.L.; Cominelli, M.; Vescovi, R.; Rossi, S.; et al. Phosphocaveolin-1 Enforces Tumor Growth and Chemoresistance in Rhabdomyosarcoma. PLoS ONE 2014, 9, e84618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirado, O.M.; MacCarthy, C.M.; Fatima, N.; Villar, J.; Mateo-Lozano, S.; Notario, V. Caveolin-1 promotes resistance to chemotherapy-induced apoptosis in Ewing’s sarcoma cells by modulating PKCalpha phosphorylation. Int. J. Cancer 2010, 126, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Meena, A.S.; Sharma, A.; Kumari, R.; Muhammad, N.; Singh, S.V.; Bhat, M.K. Inherent and Acquired Resistance to Paclitaxel in Hepatocellular Carcinoma: Molecular Events Involved. PLoS ONE 2013, 8, e61524. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, M.; Ben-Josef, E.; Thomas, D.G.; Morgan, M.A.; Zalupski, M.M.; Khan, G.; Robinson, C.A.; Griffith, K.A.; Chen, C.-S.; Ludwig, T.; et al. Caveolin-1 is Associated with Tumor Progression and Confers a Multi-Modality Resistance Phenotype in Pancreatic Cancer. Sci. Rep. 2015, 5, 10867. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, M.; Ben-Josef, E.; Robb, R.; Vedaie, M.; Seum, S.; Thirumoorthy, K.; Palanichamy, K.; Harbrecht, M.; Chakravarti, A.; Williams, T.M. Caveolae-Mediated Endocytosis Is Critical for Albumin Cellular Uptake and Response to Albumin-Bound Chemotherapy. Cancer Res. 2017, 77, 5925–5937. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, A.R.; Robb, R.; Hegazi, A.; Abushahin, L.; Yang, L.; Shyu, D.-L.; Trevino, J.G.; Cruz-Monserrate, Z.; Jacob, J.R.; Palanichamy, K.; et al. Altered Gemcitabine and Nab-paclitaxel Scheduling Improves Therapeutic Efficacy Compared with Standard Concurrent Treatment in Preclinical Models of Pancreatic Cancer. Clin. Cancer Res. 2020, 27, 554–565. [Google Scholar] [CrossRef]
- Salem, A.F.; Bonuccelli, G.; Bevilacqua, G.; Arafat, H.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Caveolin-1 promotes pancreatic cancer cell differentiation and restores membranous E-cadherin via suppression of the epithelial-mesenchymal transition. Cell Cycle 2011, 10, 3692–3700. [Google Scholar] [CrossRef] [Green Version]
- Hehlgans, S.; Eke, I.; Storch, K.; Haase, M.; Baretton, G.B.; Cordes, N. Caveolin-1 mediated radioresistance of 3D grown pancreatic cancer cells. Radiother. Oncol. 2009, 92, 362–370. [Google Scholar] [CrossRef]
- Tencer, L.; Burgermeister, E.; Ebert, M.P.; Liscovitch, M. Rosiglitazone induces caveolin-1 by PPARgamma-dependent and PPRE-independent mechanisms: The role of EGF receptor signaling and its effect on cancer cell drug resistance. Anticancer Res. 2008, 28, 895–906. [Google Scholar] [PubMed]
- Selga, E.; Morales, C.; Noé, V.; Peinado, M.A.; Ciudad, C.J. Role of caveolin 1, E-cadherin, Enolase 2 and PKCalpha on resistance to methotrexate in human HT29 colon cancer cells. BMC Med. Genom. 2008, 1, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, G.; Regel, I.; Lian, F.; Friedrich, T.; Hitkova, I.; Hofheinz, R.D.; Ströbel, P.; Langer, R.; Keller, G.; Röcken, C.; et al. WNT6 is a novel target gene of caveolin-1 promoting chemoresistance to epirubicin in human gastric cancer cells. Oncogene 2013, 32, 375–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Valdivia, N.I.; Calderón, C.C.; Díaz, J.E.; Lobos-Gonzalez, L.; Sepulveda, H.; Ortíz, R.J.; Martinez, S.; Silva, V.; Maldonado, H.; Silva, P.; et al. Anti-neoplastic drugs increase caveolin-1-dependent migration, invasion and metastasis of cancer cells. Oncotarget 2017, 8, 111943–111965. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Zeng, A.; Zhang, Z.; Shi, Z.; Yan, W.; You, Y. Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. eBioMedicine 2019, 42, 238–251. [Google Scholar] [CrossRef] [Green Version]
- Mouraviev, V.; Li, L.; Tahir, S.A.; Yang, G.; Timme, T.L.; Goltsov, A.; Ren, C.; Satoh, T.; Wheeler, T.M.; Ittmann, M.M.; et al. The role of caveolin-1 in androgen insensitive prostate cancer. J. Urol. 2002, 168, 1589–1596. [Google Scholar] [CrossRef]
- Nasu, Y.; Timme, T.L.; Yang, G.; Bangma, C.H.; Li, L.; Ren, C.; Park, S.H.; DeLeon, M.; Wang, J.; Thompson, T.C. Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nat. Med. 1998, 4, 1062–1064. [Google Scholar] [CrossRef]
- Karam, J.A.; Lotan, Y.; Roehrborn, C.G.; Ashfaq, R.; Karakiewicz, P.I.; Shariat, S.F. Caveolin-1 overexpression is associated with aggressive prostate cancer recurrence. Prostate 2007, 67, 614–622. [Google Scholar] [CrossRef]
- Gao, Y.; Li, L.; Li, T.; Ma, L.; Yuan, M.; Sun, W.; Cheng, H.L.; Niu, L.; Du, Z.; Quan, Z.; et al. Simvastatin delays castration-resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin-1. Int. J. Oncol. 2019, 54, 2054–2068. [Google Scholar] [CrossRef] [Green Version]
- Tahir, S.A.; Kurosaka, S.; Tanimoto, R.; Goltsov, A.A.; Park, S.; Thompson, T.C. Serum caveolin-1, a biomarker of drug response and therapeutic target in prostate cancer models. Cancer Biol. Ther. 2013, 14, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Sotgia, F.; Martinez-Outschoorn, U.E.; Howell, A.; Pestell, R.G.; Pavlides, S.; Lisanti, M.P. Caveolin-1 and cancer metabolism in the tumor microenvironment: Markers, models, and mechanisms. Annu. Rev. Pathol. 2012, 7, 423–467. [Google Scholar] [CrossRef] [PubMed]
- Yeong, J.; Thike, A.A.; Ikeda, M.; Lim, J.C.T.; Lee, B.; Nakamura, S.; Iqbal, J.; Tan, P.H. Caveolin-1 expression as a prognostic marker in triple negative breast cancers of Asian women. J. Clin. Pathol. 2017, 71, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.S.; Mun, D.G.; Lee, H.; Park, J.; Lee, J.W.; Lee, J.S.; Kim, S.; Cho, B.; Lee, S.; Ko, Y. PTRF/cavin-1 is essential for multidrug resistance in cancer cells. J. Proteome Res. 2013, 12, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, T.; Bai, Y.; Liao, H.; Qiu, S.; Chang, Z.; Liu, Y.; Yan, X.; Guo, H. Polymerase I and Transcript Release Factor Acts as an Essential Modulator of Glioblastoma Chemoresistance. PLoS ONE 2014, 9, e93439. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, K.; Wada, T.; Nakamura, M.; Uzawa, K.; Tanzawa, H.; Fujita, S. Expression of caveolin-1 and its correlation with cisplatin sensitivity in oral squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 2005, 131, 445–452. [Google Scholar] [CrossRef]
- Bertino, E.M.; Williams, T.M.; Nana-Sinkam, S.P.; Shilo, K.; Chatterjee, M.; Mo, X.; Rahmani, M.; Phillips, G.S.; Villalona-Calero, M.A.; Otterson, G.A. Stromal Caveolin-1 is Associated with Response and Survival in a Phase II Trial of Nab-Paclitaxel with Carboplatin for Advanced NSCLC Patients. Clin. Lung Cancer 2015, 16, 466–474.e4. [Google Scholar] [CrossRef] [Green Version]
- Paulitschke, V.; Eichhoff, O.; Gerner, C.; Paulitschke, P.; Bileck, A.; Mohr, T.; Cheng, P.F.; Leitner, A.; Guenova, E.; Saulite, I.; et al. Proteomic identification of a marker signature for MAPKi resistance in melanoma. Embo J. 2019, 38, e95874. [Google Scholar] [CrossRef]
- Zou, W.; Ma, X.; Hua, W.; Chen, B.; Cai, G. Caveolin-1 mediates chemoresistance in cisplatin-resistant ovarian cancer cells by targeting apoptosis through the Notch-1/Akt/NF-κB pathway. Oncol. Rep. 2015, 34, 3256–3263. [Google Scholar] [CrossRef] [Green Version]
- Witkiewicz, A.K.; Whitaker-Menezes, D.; Dasgupta, A.; Phlip, N.J.; Lin, J.; Gandara, R.; Sneddon, S.; Martines-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Using the “reverse Warburg effect” to identify high-risk breast cancer patients: Stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 2012, 11, 1108–1117. [Google Scholar] [CrossRef] [Green Version]
- Ayala, G.; Morello, M.; Frolov, A.; You, S.; Li, R.; Rosati, F.; Bartolucci, G.; Danza, G.; Adam, R.M.; Thompson, T.C.; et al. Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression. J. Pathol. 2013, 231, 77–87. [Google Scholar] [CrossRef]
- Panic, A.; Ketteler, J.; Reis, H.; Sak, A.; Herskind, C.; Maier, P.; Rübben, H.; Jendrossek, V.; Klein, D. Progression-related loss of stromal Caveolin 1 levels fosters the growth of human PC3 xenografts and mediates radiation resistance. Sci. Rep. 2017, 7, srep41138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, M.L.; Williams, G.; Nicholson, H.D. Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression. Prostate 2010, 70, 1609–1621. [Google Scholar] [CrossRef] [PubMed]
- Goetz, J.G.; Minguet, S.; Navarro-Lérida, I.; Lazcano, J.J.; Samaniego, R.; Calvo, E.; Tello, M.; Osteso-Ibáñez, T.; Pellinen, T.; Echarri, A.; et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 2011, 146, 148–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koleske, A.J.; Baltimore, D.; Lisanti, M.P. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl. Acad. Sci. USA 1995, 92, 1381–1385. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.W.; Park, D.S.; Woodman, S.E.; Williams, T.M.; Chandra, M.; Shirani, J.; de Souza, A.P.; Kitsis, R.N.; Russell, R.G.; Weiss, L.M.; et al. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am. J. Physiol. Cell Physiol. 2003, 284, C457–C474. [Google Scholar] [CrossRef]
- Lolo, F.N.; Jiménez-Jiménez, V.; Sánchez-Álvarez, M.; Del Pozo, M. Tumor-stroma biomechanical crosstalk: A perspective on the role of caveolin-1 in tumor progression. Cancer Metastasis Rev. 2020, 39, 485–503. [Google Scholar] [CrossRef]
- Yang, G.; Timme, T.L.; Naruishi, K.; Fujita, T.; Fattah, E.M.A.; Cao, G.; Rajocopolan, K.; Troung, L.D.; Thompson, T.C. Mice with cav-1 gene disruption have benign stromal lesions and compromised epithelial differentiation. Exp. Mol. Pathol. 2008, 84, 131–140. [Google Scholar] [CrossRef]
- Mercier, I.; Camacho, J.; Titchen, K.; Gonzales, D.M.; Quann, K.; Bryant, K.G.; Molchansky, A.; Milliman, J.N.; Whitaker-Menezes, D.; Sotgia, F.; et al. Caveolin-1 and accelerated host aging in the breast tumor microenvironment: Chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug. Am. J. Pathol. 2012, 181, 278–293. [Google Scholar] [CrossRef]
- Hammarsten, P.; Scherdin, T.D.; Hägglöf, C.; Andersson, P.; Wikström, P.; Stattin, P.; Egevad, L.; Granfors, T.; Bergh, A. High caveolin-1 expression in tumor stroma is associated with a favourable outcome in prostate cancer patients managed by watchful waiting. PLoS ONE 2016, 11, e0164016. [Google Scholar] [CrossRef] [Green Version]
- Ketteler, J.; Panic, A.; Reis, H.; Wittka, A.; Maier, P.; Herskind, C.; Yagüe, E.; Jendrossek, V.; Klein, D. Progression-related loss of stromal caveolin 1 levels mediates radiation resistance in prostate carcinoma via the apoptosis inhibitor TRIAP1. J. Clin. Med. 2019, 8, 348. [Google Scholar] [CrossRef] [Green Version]
- Scatena, C.; Fanelli, G.; Fanelli, G.N.; Menicagli, M.; Aretini, P.; Ortenzi, V.; Civitelli, S.P.; Innocenti, L.; Sotgia, F.; Lisanti, M.P.; et al. New insights in the expression of stromal caveolin 1 in breast cancer. Sci. Rep. 2011, 11, 2755. [Google Scholar] [CrossRef] [PubMed]
- Witkiewicz, A.K.; Kline, J.; Queenan, M.; Brody, J.R.; Tsirigos, A.; Bilal, E.; Pavlides, S.; Ertel, A.; Sotgia, F.; Lisanti, M.P. Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle 2011, 10, 1794–1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capozza, F.; Trimmer, C.; Castello-Cros, R.; Katiyar, S.; Whitaker-Menezes, D.; Follenzi, A.; Crosariol, M.; Llaverias, G.; Sotgia, F.; Pestell, R.G.; et al. Genetic ablation of cav1 differentially affects melanoma tumor growth and metastasis in mice: Role of cav1 in shh heterotypic signaling and transendothelial migration. Cancer Res. 2012, 72, 2262–2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamposioras, K.; Tsimplouli, C.; Verbeke, C.; Anthoney, A.; Daoukopoulou, A.; Papandreou, C.N.; Sakellaridis, N.; Vassilopoulos, G.; Potamianos, S.P.; Liakouli, V.; et al. Silencing of caveolin-1 in fibroblasts as opposed to epithelial tumor cells results in increased tumor growth rate and chemoresistance in a human pancreatic cancer model. Int. J. Oncol. 2019, 54, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; BioResource, T.A.P.C.; Lee, C.S.; Inder, K.; Sharma, S.; Choi, E.; Black, D.; Le Cao, K.-A.; Winterford, C.; Coward, J.; et al. PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. Oncogene 2013, 33, 3561–3570. [Google Scholar] [CrossRef] [Green Version]
- Inder, K.L.; Zheng, Y.Z.; Davis, M.J.; Moon, H.; Loo, D.; Nguyen, H.; Clements, J.; Parton, R.; Foster, L.J.; Hill, M.M. Expression of PTRF in PC-3 cells modulates cholesterol dynamics and the actin cytoskeleton impacting secretion pathways. Mol. Cell. Proteom. 2012, 11. [Google Scholar] [CrossRef] [Green Version]
- Nassar, Z.D.; Parat, M.-O. Caveola-forming proteins and prostate cancer. Cancer Metastasis Rev. 2020, 39, 415–433. [Google Scholar] [CrossRef]
- Guo, Q.; Guan, G.; Cheng, W.; Zou, C.; Zhu, C.; Cheng, P.; Wu, A. Integrated profiling identifies caveolae-associated protein 1 as a prognostic biomarker of malignancy in glioblastoma patients. CNS Neurosci. Ther. 2018, 25, 343–354. [Google Scholar] [CrossRef]
- Pu, W.; Nassar, Z.D.; Khabbazi, S.; Xie, N.; McMahon, K.-A.; Parton, R.G.; Riggins, G.J.; Harris, J.M.; Parat, M.-O. Correlation of the invasive potential of glioblastoma and expression of caveola-forming proteins caveolin-1 and CAVIN1. J. Neuro-Oncol. 2019, 143, 207–220. [Google Scholar] [CrossRef]
- Liu, L.; Xu, H.-X.; Wang, W.-Q.; Wu, C.-T.; Chen, T.; Qin, Y.; Liu, C.; Xu, J.; Long, J.; Zhang, B.; et al. Cavin-1 is essential for the tumor-promoting effect of caveolin-1 and enhances its prognostic potency in pancreatic cancer. Oncogene 2014, 33, 2728–2736. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zheng, Y.; Orange, M.; Yang, C.; Yang, B.; Liu, J.; Tan, T.; Ma, X.; Chen, T.; Yin, X.; et al. PTRF suppresses the progression of colorectal cancers. Oncotarget 2017, 8, 48650–48659. [Google Scholar] [CrossRef]
- Gamez-Pozo, A.; Sánchez-Navarro, I.; Calvo, E.; Ortuño, M.T.A.; López-Vacas, R.; Díaz, E.; Camafeita, E.; Nistal, M.; Maderò, R.S.; Espinosa, E.; et al. PTRF/cavin-1 and MIF proteins are identified as non-small cell lung cancer biomarkers by label-free proteomics. PLoS ONE 2012, 7, e33752. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Hwang, S.G.; Kim, J.K.; Park, T.H.; Kim, Y.R.; Myeong, H.S.; Choi, J.D.; Kwon, K.; Jang, C.S.; Ro, Y.T.; et al. Identification of novel therapeutic target genes in acquired lapatinib-resistant breast cancer by integrative meta-analysis. Tumor Biol. 2015, 37, 2285–2297. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, M.; Yamashita, K.; Waraya, M.; Minatani, N.; Ushiku, H.; Kojo, K.; Ema, A.; Kosaka, Y.; Katoh, H.; Sengoku, N.; et al. Epigenetic regulation of ZEB1-RAB25/ESRP1 axis plays a critical role in phenylbutyrate treatment-resistant breast cancer. Oncotarget 2016, 7, 1741–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, J.-Y.; Brennen, W.N.; Meeker, A.K.; Ikonen, E.; Simons, B.W.; Laiho, M. Stromal CAVIN1 controls prostate cancer microenvironment and metastasis by modulating lipid distribution and inflammatory signaling. Mol. Cancer Res. 2020, 18, 1414–1426. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pilch, P.F.; Waraya, M.; Minatani, N.; Ushiku, H.; Kojo, K.; Ema, A.; Kosaka, Y.; Katoh, H.; Sengoku, N.; et al. Cavin-1/PTRF mediates insulin-dependent focal adhesion remodeling and ameliorates high-fat diet–induced inflammatory responses in mice. J. Biol. Chem. 2019, 294, 10544–10552. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, J.; Zaveri, S.R.; Murti, S.C.; Alexander, A.A.; Connors, C.Q.; Shukla, H.D.; Vujaskovic, Z. Caveolin-1: A novel prognostic biomarker of radioresistance in cancer. Int. J. Radiat. Biol. 2016, 92, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Tomassian, T.; Humphries, L.A.; Liu, S.D.; Silva, O.; Brooks, D.G.; Miceli, M.C. Caveolin-1 orchestrates TCR synaptic polarity, signal specificity, and function in cd8 t cells. J. Immunol. 2011, 187, 2993–3002. [Google Scholar] [CrossRef] [Green Version]
- Medina, F.A.; Williams, T.M.; Sotgia, F.; Tanowitz, H.B.; Lisanti, M.P. A novel role for caveolin-1 in b lymphocyte function and the development of thymus-independent immune responses. Cell Cycle 2006, 5, 1865–1871. [Google Scholar] [CrossRef]
- Oakley, F.D.; Smith, R.L.; Engelhardt, J.F. Lipid rafts and caveolin-1 coordinate interleukin-1beta (IL-1beta)-dependent activation of NFkappaB by controlling endocytosis of Nox2 and IL-1beta receptor 1 from the plasma membrane. J. Biol. Chem. 2009, 284, 33255–33264. [Google Scholar] [CrossRef] [Green Version]
- Conze, D.; Weiss, L.; Regen, P.S.; Bhushan, A.; Weaver, D.; Johnson, P.; Rincón, M. Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res. 2001, 61, 8851–8858. [Google Scholar] [PubMed]
- He, W.; Luistro, L.; Carvajal, D.; Smith, M.; Nevins, T.; Yin, X.; Cai, J.; Higgins, B.; Kolinsky, K.; Rizzo, C.; et al. High tumor levels of IL6 and IL8 abrogate preclinical efficacy of the gamma-secretase inhibitor, RO4929097. Mol. Oncol. 2011, 5, 292–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassar, Z.D.; Moon, H.; Duong, T.; Neo, L.; Hill, M.M.; Francois, M.; Parton, R.; Parat, M.-O. PTRF/Cavin-1 decreases prostate cancer angiogenesis and lymphangiogenesis. Oncotarget 2013, 4, 1844–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, T.; Lu, H.; Ji, H.; Li, Y.; Guo, J.; Chen, X.; Wu, T. Loss of stromal caveolin-1 expression: A novel tumor microenvironment biomarker that can predict poor clinical outcomes for pancreatic cancer. PLoS ONE 2014, 9, e97239. [Google Scholar] [CrossRef]
- Trédan, O.; Galmarini, C.M.; Patel, K.; Tannock, I.F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 2007, 99, 1441–1454. [Google Scholar] [CrossRef] [Green Version]
- Mumenthaler, S.M.; Foo, J.; Choi, N.C.; Heise, N.; Leder, K.; Agus, D.B.; Pao, W.; Michor, F.; Mallick, P. The impact of microenvironmental heterogeneity on the evolution of drug resistance in cancer cells. Cancer Inform. 2015, 14 (Suppl. S4), 19–31. [Google Scholar] [CrossRef]
- Morin, P.J. Drug resistance and the microenvironment: Nature and nurture. Drug Resist. Updates 2003, 6, 169–172. [Google Scholar] [CrossRef]
- Witkiewicz, A.K.; Dasgupta, A.; Sammons, S.; Er, O.; Potoczek, M.B.; Guiles, F.; Sotgia, F.; Brody, J.R.; Mitchell, E.P.; Lisanti, M.P. Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biol. Ther. 2010, 10, 135–143. [Google Scholar] [CrossRef]
- Sotgia, F.; Martinez-Outschoorn, U.E.; Pavlides, S.; Howell, A.; Pestell, R.G.; Lisanti, M.P. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res. 2011, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.-M.J.; Zhang, L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. 2012, 83, 1104–1111. [Google Scholar] [CrossRef]
- Xu, X.; Ho, W.; Zhang, X.; Bertrand, N.; Farokhzad, O. Cancer nanomedicine: From targeted delivery to combination therapy. Trends Mol. Med. 2015, 21, 223–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peitzsch, C.; Cojoc, M.; Hein, L.; Kurth, I.; Mäbert, K.; Trautmann, F.; Klink, B.; Schröck, E.; Wirth, M.P.; Krause, M.; et al. An epigenetic reprogramming strategy to resensitize radioresistant prostate cancer cells. Cancer Res. 2016, 76, 2637–2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cancer Type | Molecule | Tumor vs. Stroma | Expression Status | Effect on Drug Resistance |
---|---|---|---|---|
Breast | CAV1 | Tumor | High | Knockdown of CAV1 resulted in downregulation of Breast cancer resistant protein (BCRP) leading to sensitivity to mitoxantrone [63] Downregulation of CAV1 in breast cancer stem cells promotes chemosensitivity [65] High CAV1 correlated with responsiveness to Trastuzumab emtansine in HER2 positive breast cancer cells [68] High CAV1 correlated with reduced response to Trastuzumab emtansine [70] |
Tumor | Low | Low CAV1 associated with doxorubicin resistance. Overexpression downregulated P-gp expression, resulting in a shift from drug resistance to drug-sensitivity [40,41,42,43] | ||
Stroma | Low | Association with tamoxifen resistance [91,92] | ||
CAVIN1 | Tumor | High | Resistance to adriamycin [93] | |
Colorectal and gastric | CAV1 | Tumor | High | Resistance to methotrexate [82] Resistance to epirubicin and doxorubicin [83] |
Glioblastoma | CAV1 | Tumor | Low | Resistance to temozolomide [85] |
CAVIN1 | Tumor | High | Resistance to imatinib, downregulation of CAVIN1 sensitized cells to imatinib, etoposide and temozolomide [94] | |
Head and neck | CAV1 | Tumor | High | Correlation with cisplatin resistance [95] |
Liver | CAV1 | Tumor | High | Resistance to methotrexate, vinblastine and doxorubicin [75] |
Lung | CAV1 | Tumor | High | Resistance to paclitaxel, etoposide, doxorubicin, bleomycin, gemcitabine and cisplatin [54,56,58,60] |
Low | Correlation to better outcomes with taxane-platinum therapies [61] | |||
Stroma | High | High stromal CAV1 expression associated with improved survival in patients who received nanoparticle albumin-bound (nab)-paclitaxel [96] | ||
Melanoma | CAVIN1 | Tumor | High | Resistance to MAPK inhibitor [97] |
Ovary | CAV1 | Tumor | High | Resistance to cisplatin [98] |
Pancreas | CAV1 | Tumor | High | Knockdown of CAV1 sensitizes to chemotherapies and ionizing radiation [76,79] |
Low | Uptake of nab-paclitaxel dependent on CAV1 [77,78] | |||
Stroma | High | Downregulation of stromal CAV1 in pancreatic cells promoted tumor resistance to gemcitabine [99] | ||
Prostate | CAV1 | Tumor | High | Decrease in CAV1 sensitizes to dasatinib and sunitinib [90] |
Resistance to antiandrogens [100] | ||||
Stroma | Low | Resistance of prostate epithelial cells to radiation [101] | ||
Renal | CAV1 | Tumor | High | Resistance to doxorubicin and sunitinib [71,72] |
Sarcomas | CAV1 | Tumor | High | Resistance to cisplatin and doxorubicin [73,74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Low, J.-Y.; Laiho, M. Caveolae-Associated Molecules, Tumor Stroma, and Cancer Drug Resistance: Current Findings and Future Perspectives. Cancers 2022, 14, 589. https://doi.org/10.3390/cancers14030589
Low J-Y, Laiho M. Caveolae-Associated Molecules, Tumor Stroma, and Cancer Drug Resistance: Current Findings and Future Perspectives. Cancers. 2022; 14(3):589. https://doi.org/10.3390/cancers14030589
Chicago/Turabian StyleLow, Jin-Yih, and Marikki Laiho. 2022. "Caveolae-Associated Molecules, Tumor Stroma, and Cancer Drug Resistance: Current Findings and Future Perspectives" Cancers 14, no. 3: 589. https://doi.org/10.3390/cancers14030589
APA StyleLow, J. -Y., & Laiho, M. (2022). Caveolae-Associated Molecules, Tumor Stroma, and Cancer Drug Resistance: Current Findings and Future Perspectives. Cancers, 14(3), 589. https://doi.org/10.3390/cancers14030589