Endocrine Toxicities of Antineoplastic Therapy: The Adrenal Topic
Abstract
:Simple Summary
Abstract
1. Introduction
2. PAI Epidemiology and Aetiology
3. Clinical Aspects of PAI
4. Diagnosis of Adrenal Insufficiency
5. Drug-Induced Adrenal Insufficiency
6. Drug-Induced Adrenal Insufficiency in Cancer Patients
7. ICI-Induced Adrenal Insufficiency
8. TKI-Induced Adrenal Insufficiency
9. Adrenal Enzyme Inhibitors-Induced Adrenal Insufficiency
10. Treatment of Primary Adrenal Insufficiency Induced by Anticancer Drugs
11. Management of the Anticancer Drug Causing Primary Adrenal Insufficiency
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adrenal Insufficiency. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279083/ (accessed on 21 October 2021).
- Adrenal Insufficiency. Available online: https://pubmed.ncbi.nlm.nih.gov/28722862/ (accessed on 21 October 2021).
- Hahner, S.; Ross, R.J.; Arlt, W.; Bancos, I.; Burger-Stritt, S.; Torpy, D.J.; Husebye, E.S.; Quinkler, M. Adrenal insufficiency. Nat. Rev. Dis. Primers 2021, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Laureti, S.; Vecchi, L.; Santeusanio, F.; Falorni, A. Is the prevalence of Addison’s disease underestimated? J. Clin. Endocrinol. Metab. 1999, 84, 1762. [Google Scholar] [CrossRef] [PubMed]
- Olafsson, A.S.; Sigurjonsdottir, H.A. Increasing prevalence of Addison disease: Results from a nationwide study. Endocr. Pract. 2016, 22, 30–35. [Google Scholar] [CrossRef]
- Chantzichristos, D.; Persson, A.; Eliasson, B.; Miftaraj, M.; Franzén, S.; Svensson, A.M.; Johannsson, G. Incidence, prevalence and seasonal onset variation of Addison’s disease among persons with type 1 diabetes mellitus: Nationwide, matched cohort studies. Eur. J. Endocrinol. 2018, 178, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betterle, C.; Dal Pra, C.; Mantero, F.; Zanchetta, R. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: Autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr. Rev. 2002, 23, 327–364. [Google Scholar] [CrossRef] [PubMed]
- Laureti, S.; De Bellis, A.; Muccitelli, V.I.; Calcinaro, F.; Bizzarro, A.; Rossi, R.; Bellastella, A.; Santeusanio, F.; Falorni, A. Levels of adrenocortical autoantibodies correlate with the degree of adrenal dysfunction in subjects with preclinical Addison’s disease. J. Clin. Endocrinol. Metab. 1998, 83, 3507–3511. [Google Scholar] [CrossRef] [Green Version]
- Afreen, B.; Khan, K.A.; Riaz, A. Adrenal insufficiency in Pakistani HIV infected patients. J. Ayub Med. Coll. Abbottabad 2017, 29, 428–431. [Google Scholar]
- Mofokeng, T.R.P.; Beshyah, S.A.; Mahomed, F.; Ndlovu, K.C.Z.; Ross, I.L. Significant barriers to diagnosis and management of adrenal insufficiency in Africa. Endocr. Connect. 2020, 9, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Odeniyi, I.A.; Fasanmade, O.A.; Ajala, M.O.; Ohwovoriole, A.E. Adrenocortical function in Nigerians with human immunodeficiency virus infection. Ghana. Med. J. 2013, 47, 171–177. [Google Scholar] [PubMed]
- Tripathy, S.K.; Agrawala, R.K.; Baliarsinha, A.K. Endocrine alterations in HIV-infected patients. Indian. J. Endocrinol. Metab. 2015, 19, 143–147. [Google Scholar]
- Erichsen, M.M.; Løvås, K.; Skinningsrud, B.; Wolff, A.B.; Undlien, D.E.; Svartberg, J.; Fougner, K.J.; Berg, T.J.; Bollerslev, J.; Mella, B.; et al. Clinical, immunological, and genetic features of autoimmune primary adrenal insufficiency: Observations from a Norwegian registry. J. Clin. Endocrinol. Metab. 2009, 94, 4882–4890. [Google Scholar] [CrossRef] [Green Version]
- Dunlop, D. Eighty-six cases of Addison’s disease. Br. Med. J. 1963, 2, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, F.; Achermann, J.C. Primary adrenal insufficiency: New genetic causes and their long-term consequences. Clin. Endocrinol. (Oxf.) 2020, 92, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellesen, A.; Bratland, E.; Husebye, E.S. Autoimmune Addison’s disease—An update on pathogenesis. Ann. Endocrinol. 2018, 79, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Younes, N.; Bourdeau, I.; Lacroix, A. Latent Adrenal Insufficiency: From Concept to Diagnosis. Front. Endocrinol. (Lausanne) 2021, 12, 720769. [Google Scholar] [CrossRef] [PubMed]
- Herndon, J.; Nadeau, A.M.; Davidge-Pitts, C.J.; Young, W.F.; Bancos, I. Primary adrenal insufficiency due to bilateral infiltrative disease. Endocrine 2018, 62, 721–728. [Google Scholar] [CrossRef]
- Betterle, C.; Scalici, C.; Presotto, F.; Pedini, B.; Moro, L.; Rigon, F.; Mantero, F. The Natural History of Adrenal Function in Autoimmune Patients with Adrenal Autoantibodies. J. Endocrinol. 1988, 117, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Bancos, I.; Hahner, S.; Tomlinson, J.; Arlt, W. Diagnosis and management of adrenal insufficiency. Lancet Diabetes Endocrinol. 2015, 3, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Bornstein, S.R.; Allolio, B.; Arlt, B.; Barthel, A.; Don-Wauchope, A.; Hammer, G.D.; Husebye, E.S.; Merke, D.P.; Murad, M.H.; Stratakis, C.A.; et al. Diagnosis and treatment of primary adrenal insufficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2016, 101, 364–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hägg, E.; Asplund, K.; Lithner, F. Value of basal plasma cortisol assays in the assessment of pituitary-adrenal insufficiency. Clin. Endocrinol. 1987, 26, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.; Forsham, P.H.; Laidlaw, J.C.; Reddy, W.J.; Thorn, G.W. Use of ACTH in the diagnosis of adrenal cortical insufficiency. Am. J. Med. 1955, 18, 3–14. [Google Scholar] [CrossRef]
- Deutschbein, T.; Unger, N.; Mann, K.; Petersenn, S. Diagnosis of secondary adrenal insufficiency: Unstimulated early morning cortisol in saliva and serum in comparison with the insulin tolerance test. Horm. Metab. Res. 2009, 41, 834–839. [Google Scholar] [CrossRef]
- Saenger, P.; Levine, L.S.; Irvine, W.J.; Gottesdiener, K.; Rauh, W.; Sonino, N.; Chow, D.; New, M.I. Progressive adrenal failure in polyglandular autoimmune disease. J. Clin. Endocrinol. Metab. 1982, 54, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Perniola, R.; Fierabracci, A.; Falorni, A. Autoimmune Addison’s disease as part of the autoimmune polyglandular syndrome type I: Historical overview and current evidence. Front. Immunol. 2021, 12, 606860. [Google Scholar] [CrossRef]
- De Bellis, A.; Bizzarro, A.; Rossi, R.; Paglionico, V.A.; Criscuolo, T.; Lombardi, G.; Bellastella, A. Remission of subclinical adrenocortical failure in subjects with adrenal autoantibodies. J. Clin. Endocrinol. Metab. 1993, 76, 1002–1007. [Google Scholar] [CrossRef]
- D’Amuri, F.V.; Maestroni, U.; Pagnini, F.; Russo, U.; Melani, E.; Ziglioli, F.; Negrini, G.; Cella, S.; Cappabianca, S.; Reginelli, A.; et al. Magnetic resonance imaging of adrenal gland: State of the art. Gland. Surg. 2019, 8 (Suppl. S3), S223–S232. [Google Scholar] [CrossRef]
- Sundin, A.; Hindié, E.; Avram, A.M.; Tabarin, A.; Pacak, K.; Taïeb, D. A Clinical Challenge: Endocrine and Imaging Investigations of Adrenal Masses. J. Nucl. Med. 2021, 62 (Suppl. S2), 26S–33S. [Google Scholar] [CrossRef] [PubMed]
- Presotto, F.; Fornasini, F.; Betterle, C.; Federspil, G.; Rossato, M. Acute adrenal failure as the heralding symptom of primary antiphospholipid syndrome: Report of a case and review of the literature. Eur. J. Endocrinol. 2005, 153, 507–514. [Google Scholar] [CrossRef]
- Laureti, S.; Aubourg, P.; Calcinaro, F.; Rocchiccioli, F.; Casucci, G.; Angeletti, G.; Brunetti, P.; Lernmark, A.; Santeusanio, F.; Falorni, A. Etiological diagnosis of primary adrenal insufficiency using an original flowchart of immune and biochemical markers. J. Clin. Endocrinol. Metab. 1998, 83, 3163–3168. [Google Scholar] [CrossRef]
- Falorni, A.; Laureti, S.; De Bellis, A.; Zanchetta, R.; Tiberti, C.; Arnaldi, G.; Bini, V.; Beck-Peccoz, P.; Bizzarro, A.; Dotta, F.; et al. Italian addison network study: Update of diagnostic criteria for the etiological classification of primary adrenal insufficiency. J. Clin. Endocrinol. Metab. 2004, 89, 1598–1604. [Google Scholar] [CrossRef] [Green Version]
- Nieman, L.K. Diagnosis of adrenal insufficiency in adults. In UpToDate; Post, T.W., Ed.; UpToDate: Waltham, MA, USA, 2021. [Google Scholar]
- Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 2018, 62, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Abu-Sbeih, H.; Ascierto, P.A.; Brufsky, J.; Cappelli, L.C.; Cortazar, F.B.; Gerber, D.E.; Hamad, L.; Hansen, E.; Johnson, D.B.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J. Immunother. Cancer 2021, 9, e002435. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.S.; Barroso-Sousa, R.; Tolaney, S.M.; Hodi, F.S.; Kaiser, U.B.; Min, L. Endocrine toxicity of cancer immunotherapy targeting immune checkpoints. Endocr. Rev. 2019, 40, 17–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnabei, A.; Carpano, S.; Chiefari, A.; Bianchini, M.; Lauretta, R.; Mormando, M.; Puliani, G.; Paoletti, G.; Appetecchia, M.; Torino, F. Case Report: Ipilimumab-Induced Panhypophysitis: An Infrequent Occurrence and Literature Review. Front. Oncol. 2020, 10, 582394. [Google Scholar] [CrossRef] [PubMed]
- De Filette, J.; Andreescu, C.E.; Cools, F.; Bravenboer, B.; Velkeniers, B. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. Horm. Metab. Res. 2019, 51, 145–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barroso-Sousa, R.; Barry, W.T.; Garrido-Castro, A.C.; Hodi, F.S.; Min, L.; Krop, I.E.; Tolaney, S.M. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Tshuma, N.; Glynn, N.; Evanson, J.; Powles, T.; Drake, W.M. Hypothalamitis and severe hypothalamic dysfunction associated with anti-programmed cell death ligand 1 antibody treatment. Eur. J. Cancer 2018, 104, 247–249. [Google Scholar] [CrossRef]
- Arnaud-Coffin, P.; Maillet, D.; Gan, H.K.; Stelmes, J.-J.; You, B.; Dalle, S.; Péron, J. A systematic review of adverse events in randomized trials assessing immune checkpoint inhibitors. Int. J. Cancer 2019, 145, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Grouthier, V.; Lebrun-Vignes, B.; Moey, M.; Douglas, B.J.; Moslehi, J.J.; Salem, J.E.; Bachelot, A. Immune Checkpoint Inhibitor-Associated Primary Adrenal Insufficiency: WHO VigiBase Report Analysis. Oncologist 2020, 25, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.H.; Iyengar, R.; Mizokami-Stout, K.; Yentz, S.; MacEachern, M.P.; Shen, L.Y.; Redman, B.; Gianchandani, R. Spectrum of immune checkpoint inhibitors-induced endocrinopathies in cancer patients: A scoping review of case reports. Clin. Diabetes Endocrinol. 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Shen, M.; Zheng, X.; Yang, T. Immune Checkpoint Inhibitor-Induced Adrenalitis and Primary Adrenal Insufficiency: Systematic Review and Optimal Management. Endocr. Pract. 2021, 27, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.J.; Powers, A.C.; Johnson, D.B. Endocrine toxicities of immune checkpoint inhibitors. Nat. Rev. Endocrinol. 2021, 17, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Akarca, F.K.; Can, O.; Yalcinli, S.; Altunci, Y.A. Nivolumab, a new immunomodulatory drug, a new adverse effect; adrenal crisis. Turk. J. Emerg. Med. 2017, 17, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Trainer, H.; Hulse, P.; Higham, C.E.; Lorigan, P. Hyponatraemia secondary to nivolumab-induced primary adrenal failure. Endocrinol. Diabetes Metab. Case Rep. 2016, 2016, 16–108. [Google Scholar] [CrossRef] [PubMed]
- Paschou, S.A.; Stefanaki, K.; Psaltopoulou, T.; Liontos, M.; Koutsoukos, K.; Zagouri, F.; Lambrinoudaki, I.; Dimopoulos, M.A. How we treat endocrine complications of immune checkpoint inhibitors. ESMO Open 2021, 6, 100011. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef] [PubMed]
- Corsello, S.M.; Salvatori, R.; Barnabei, A.; De Vecchis, L.; Marchetti, P.; Torino, F. Ipilimumab-induced endocrinopathies: When to start corticosteroids (or not). Cancer Chemother. Pharmacol. 2013, 72, 489–490. [Google Scholar] [CrossRef]
- Haanen, J.; Carbonnel, F.; Robert, C.; Kerr, K.; Peters, S.; Larkin, J.; Jordan, K. Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guidelines. Ann. Oncol. 2017, 28 (Suppl. S4), iv119–iv142. [Google Scholar] [CrossRef]
- Castinetti, F.; Albarel, F.; Archambeaud, F.; Bertherat, J.; Bouillet, B.; Buffier, P.; Briet, C.; Cariou, B.; Caron, P.; Chabre, O.; et al. French Endocrine Society Guidance on endocrine side effects of immunotherapy. Endocr. Relat. Cancer. 2019, 26, G1–G18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higham, C.E.; Olsson-Brown, A.; Carroll, P.; Cooksley, T.; Larkin, J.; Lorigan, P.; Morganstein, D.; Trainer, P.J.; Society for Endocrinology Clinical Committee; Society for Endocrinology. Endocrine emergency guidance: Acute management of the endocrine complications of checkpoint inhibitor therapy. Endocr. Connect. 2018, 7, G1–G7. [Google Scholar] [CrossRef] [PubMed]
- NCCN. National Comprehensive Cancer Network©. Management of Immunotherapy-Related Toxicities. Available online: https://www.nccn.org/guidelines (accessed on 21 October 2021).
- Lodish, M.B. Clinical review: Kinase inhibitors: Adverse effects related to the endocrine system. J. Clin. Endocrinol. Metab. 2013, 98, 1333–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallahi, P.; Ferrari, S.M.; Elia, G.; Ragusa, F.; Paparo, S.R.; Camastra, S.; Mazzi, V.; Miccoli, M.; Benvenga, S.; Antonelli, A. Therapy of endocrine disease: Endocrine-metabolic effects of treatment with multikinase inhibitors. Eur. J. Endocrinol. 2021, 184, R29–R40. [Google Scholar] [CrossRef]
- Castinetti, F.; Albarel, F.; Archambeaud, F.; Bertherat, J.; Bouillet, B.; Buffier, P.; Briet, C.; Cariou, B.; Caron, P.; Chabre, O.; et al. Endocrine side-effects of new anticancer therapies: Overall monitoring and conclusions. Ann. Endocrinol. 2018, 79, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Rock, E.; Goodman, V.; Jiang, J.X.; Mahjoob, K.; Leigh Verbois, S.; Morse, D.; Dagher, R.; Justice, R.; Pazdur, R. Food and Drug Administration Drug Approval Summary: Sunitinib Malate for the Treatment of Gastrointestinal Stromal Tumor and Advanced Renal Cell Carcinoma. Oncologist 2007, 12, 107–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilgir, O.; Kebapcilar, L.; Bilgir, F.; Sarì, I.; Oner, P.; Karaca, B.; Alacacioglu, I. Is there any relationship between imatinib mesylate medication and hypothalamic-pituitary-adrenal axis dysfunction? Int. J. Clin. Pract. 2010, 64, 45–50. [Google Scholar] [CrossRef]
- Brassard, M.; Neraud, B.; Trabado, S.; Salenave, S.; Brailly-Tabard, S.; Borget, I.; Baudin, E.; Leboulleux, S.; Chanson, P.; Schlumberger, M.; et al. Endocrine effects of the tyrosine kinase inhibitor vandetanib in patients treated for thyroid cancer. J. Clin. Endocrinol. Metab. 2011, 96, 2741–2749. [Google Scholar] [CrossRef] [Green Version]
- Colombo, C.; De Leo, S.; Di Stefano, M.; Vannucchi, G.; Persani, L.; Fugazzola, L. Primary adrenal insufficiency during lenvatinib or vandetanib and improvement of fatigue after cortisone acetate therapy. J. Clin. Endocrinol. Metab. 2019, 104, 779–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshimy, G.; Gandhi, A.; Guo, R.; Correa, R. Tyrosine Kinase Inhibitors’ Newly Reported Endocrine Side Effect: Pazopanib-Induced Primary Adrenal Insufficiency in a Patient With Metastatic Renal Cell Cancer. Investig. Med. High Impact Case Rep. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Baloch, H.M.; Grice-Patil, Z.J.; Selig, D.J.; Hoang, T.D.; Mai, V.H.; Shakir, M.K. Recognition and Treatment of Adrenal Insufficiency Secondary to Abiraterone: A Case Report and Literature Review. Oncology 2019, 97, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Arlt, W.; Callies, F.; van Vlijmen, J.C.; Koehler, I.; Reincke, M.; Bidlingmaier, M.; Huebler, D.; Oettel, M.; Ernst, M.; Schulte, H.M.; et al. Dehydroepiandrosterone replacement in women with adrenal insufficiency. N. Engl. J. Med. 1999, 341, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Løvås, K.; Gebre-Medhin, G.; Trovik, T.S.; Fougner, K.J.; Bjørn, S.U.; Nedrebø, G.; Myking, O.-L.-; Kämpe, O.; Husebye, E.S. Replacement of dehydroepiandrosterone in adrenal failure: No benefit for subjective health status and sexuality in a 9-month, randomized, parallel group clinical trial. J. Clin. Endocrinol. Metab. 2003, 88, 1112–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkatib, A.A.; Cosma, M.; Elamin, M.B.; Erickson, D.; Swiglo, B.A.; Erwin, P.J.; Montori, V.M. A systematic review and meta-analysis of randomized placebo-controlled trials of DHEA treatment effects on quality of life in women with adrenal insufficiency. J. Clin. Endocrinol. Metab. 2009, 94, 3676–3681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paragliola, R.M.; Torino, F.; Papi, G.; Locantore, P.; Pontecorvi, A.; Corsello, S.M. Role of Mitotane in Adrenocortical Carcinoma—Review and State of the art. Eur. Endocrinol. 2018, 14, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, S.; Calabrese, A.; Basile, V.; Pia, A.; Reimondo, G.; Perotti, P.; Terzolo, M. New perspectives for mitotane treatment of adrenocortical carcinoma. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101415. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, A.; Hammer, G.D. Treatment of adrenocortical carcinoma. In UpToDate; Post, T.W., Ed.; UpToDate: Waltham, MA, USA, 2021. [Google Scholar]
Causes | Pathogenesis | Frequency |
---|---|---|
Autoimmunity | T and B cell autoimmunity against adrenocortical cells | 70–90% |
Infectious diseases | Mycobacteria, bacteria (e.g., Neisseria meningitidis, Haemophilus influenzae, Pseudomonas aeruginosa), viruses (e.g., human immunodeficiency virus, herpes simplex, cytomegalovirus) or fungi (e.g., Pneumocystis jirovecii) | 10–30% |
Tumour | Primary tumour (bilateral), metastases (bilateral), adrenal lymphoma (bilateral) | |
Bleeding | Anti-phospholipid syndrome, anticoagulant therapy, disseminated intravascular coagulation | |
Surgery | Bilateral adrenalectomy | |
Infiltrative | Amyloidosis, hemochromatosis, histiocytosis | |
Genetic | Congenital adrenal hyperplasia, congenital lipoid adrenal hyperplasia, adrenoleukodystrophy (X- linked), adrenal hypoplasia congenita, autoimmune polyglandular syndrome type 1 | |
Drugs | Enzyme inhibition (ketoconazole, fluconazole, itraconazole, etomidate, aminoglutethimide, metyrapone, rifampicin, phenytoin, phenobarbital, trilostane, osilodrostat etomidate, suramine, mifepristone, tramadol, abiraterone acetate) Adrenolytic effect and increased cortisol metabolism (mitotane, tramadol) Autoimmunity/inflammation (immune checkpoint inhibitors) Uncertain/unknown (tyrosine kinase inhibitors) |
Assessment | Results |
---|---|
Plasma ACTH (early morning) | Normal or elevated |
Serum cortisol level | Inappropriately reduced (Attention to cortisol binding globulin or albumin alterations, such as in cirrhosis, nephrotic syndrome, or individuals on oral oestrogen treatment) |
Cosyntropin stimulation test (250 mcg i.v) | Peak cortisol levels <18 mcg/dL (<500 nmol/l) |
Renin or plasma renin activity | Increased |
Aldosterone | Reduced |
Stage | Laboratory Findings |
---|---|
I | High plasma renin activity and normal or low serum aldosterone |
II | Impaired serum cortisol response to ACTH stimulation |
III | Increased morning plasma ACTH with normal serum cortisol |
IV | Low morning serum cortisol and overt clinical adrenal insufficiency |
PAI | ICI(s) | |
---|---|---|
Grade 1 (Asymptomatic or mild symptoms) |
|
|
Grade 2 (Moderate symptoms) |
|
|
Grade 3 (Severe symptoms) Or Grade 4 (life-threatening) |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnabei, A.; Senes, P.; Scoppola, A.; Chiefari, A.; Iannantuono, G.M.; Appetecchia, M.; Torino, F. Endocrine Toxicities of Antineoplastic Therapy: The Adrenal Topic. Cancers 2022, 14, 593. https://doi.org/10.3390/cancers14030593
Barnabei A, Senes P, Scoppola A, Chiefari A, Iannantuono GM, Appetecchia M, Torino F. Endocrine Toxicities of Antineoplastic Therapy: The Adrenal Topic. Cancers. 2022; 14(3):593. https://doi.org/10.3390/cancers14030593
Chicago/Turabian StyleBarnabei, Agnese, Paola Senes, Alessandro Scoppola, Alfonsina Chiefari, Giovanni Maria Iannantuono, Marialuisa Appetecchia, and Francesco Torino. 2022. "Endocrine Toxicities of Antineoplastic Therapy: The Adrenal Topic" Cancers 14, no. 3: 593. https://doi.org/10.3390/cancers14030593
APA StyleBarnabei, A., Senes, P., Scoppola, A., Chiefari, A., Iannantuono, G. M., Appetecchia, M., & Torino, F. (2022). Endocrine Toxicities of Antineoplastic Therapy: The Adrenal Topic. Cancers, 14(3), 593. https://doi.org/10.3390/cancers14030593