Pharmacogenomics of Vincristine-Induced Peripheral Neuropathy in Children with Cancer: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Study Selection
2.5. Risk of Bias Assessment
2.6. Data Extraction and Synthesis
2.7. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias
Author and Year of Publication | Study Design | Patients with Genotype + VIPN Data (n) | Patient Characteristics | Vincristine Dosage | VIPN | Global Rating Risk of Bias Assessment | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Disease Studied | Age | Male (%) | Race (%) | Single Dosage, (per mg/m2 and max) | Cumulative Dosage (mg) | Method Used for VIPN Assessment | Prevalence VIPN | ||||
Abaji et al., 2018—QcALL cohort [52] | EWAS | 237 | ALL | 82.7% <10 y/o, 17.3% ≥10 y/o. | 54.9 | All white | 1.5, max. 2.0 | Not available | NCI-CTCAE 3.0, retrospective Grade 3–4 peripheral neuropathy | 14.8% | Strong |
Abaji et al., 2018—AIEOP cohort [52] | EWAS | 405 | ALL | 83.2% <10 y/o, 16.8% ≥10 y/o. | 53.1 | All white | 1.5, max. 2.0 | Not available | NCI-CTCAE 3.0, retrospective Grade 3–4 peripheral neuropathy | 3.2% | Strong |
Abo–Bakr et al., 2017 [47] | Candidate gene | 97 | ALL | 79.4% ≤10 y/o, 20.6% >10 y/o | 58.8 | All white | 1.5, max. 2.0 | Not available | NCI-CTCAE 3.0, prospective Foot drop, ileus, vocal cord paralysis, ptosis | Foot drop: 4.1% | Moderate |
Aplenc et al., 2003 [28] | Candidate gene, case–control | 533 | ALL | 70.0% ≤5 y/o, 30.0% >5 y/o | 32.5 | 5.8 black 94.2 other | 1.5, max. not available | 46.5–64.5 | CCG toxicity criteria, prospective Grade 3 or 4 peripheral neuropathy | 5.3% | Moderate |
Ceppi et al., 2014 [8] | Candidate gene | 320 | ALL | 80.0% ≤10 y/o, 20.0% >10 y/o | 55.3 | All white | 1.5–2.0, max. 2.0 | 73.5–74.0 | NCI-CTCAE 3.0, retrospective Peripheral neuropathy | Grade 1–2: 20.0% Grade 3–4: 10.6% | Strong |
Diouf et al., 2015—St. Jude cohort [9] | GWAS | St. Jude: 222. | ALL | 68.9% ≤10 y/o, 31.1% >10 y/o | 42.3 | 67.1 white, 19.8 black, 14.0 other | 1.5, max. 2.0 COG: 1.5– | 54.0 | NCI-CTCAE 1.0, prospective Grade 2–4 peripheral neuropathy | 28.8% | Moderate |
Diouf et al., 2015—COG cohort [9] | GWAS | 99 | Relapsed ALL | 47.5% ≤10 y/o, 52.5% >10 y/o | 59.6 | 60.6 white, 1.0 black, 38.3 other | 1.5–2.0, max. 2.0–2.5 | 78.0–97.5 | Modified Balis scale, prospective Grade 2–4 peripheral neuropathy | 22.9% | Moderate |
Egbelakin et al., 2011 [29] | Candidate gene | 107 | ALL | Not available | Not available | 92.5 white 0.9 black 6.5 other | 1.5, max. 2.0 | Not available | NCI-CTCAE 3.0, retrospective Peripheral and autonomic neuropathy | Grade 1–4: 98.1% Grade 3–4: 53.2% | Strong |
Guilhaumou et al., 2011 [20] | Candidate–gene | 24 | Solid tumors | 57.7% <10 y/o, 42.3% ≥10 y/o | 57.7 | All white | 1.5, max 2.0 | Mean (SD) at time of enrolment: 7.35 (5.30) | NCI-CTCAE 3.0, prospective Pain, peripheral neuropathy, gastro–intestinal toxicity | 33.3% | Moderate |
Gutierrez–Camino et al., 2016 [10] | Candidate gene | 142 | ALL | 88.7% ≤10 y/o, 11.3% >10 y/o | 57.0 | All white | 1.5, max 2.0 | 15.0–30.0 | NCI-CTCAE 1.0, retrospective Grade 2–4 peripheral neuropathy | 25.4% | Strong |
Gutierrez–Camino et al., 2017 [48] | Candidate gene (miRNA) | 155 | ALL | Mean (SD): 5.1 (3.2) y/o | 58.9 | Mainly white | 1.5, max 2.0 | 15.0–30.0 | WHO criteria, retrospective Peripheral neuropathy | Grade 1–2: 16.0% Grade 3–4: 10.1% | Strong |
Kayilioğlu et al., 2017 [30] | Candidate gene, case–control | Cases: 115 (VCR), controls: 50 (no VCR) | Cases: ALL and solid tumors. Controls: no neurological disorders or symptoms | Mean (SD): ALL 7.0 (4.6), solid tumors 7.5 (5.0), controls 10.2 (4.6) | ALL and solid tumors: 61.7 Controls: 62.0 | All white | 1.5, max 2.0 | Mean (SD) total: ALL 7.71 (0.89), solid tumors 6.5 (1.5) | NCI-CTCAE 3.0, retrospective Grade 2–5 neurotoxicity | 20.8% | Strong |
Kishi et al., 2007 [13] | Candidate gene | 240 | ALL | 70.4% ≤10 y/o, 29.6% >10 y/o | 59.2 | 69.6 white 18.3 black 12.1 other | 1.5, max 2.0 | 54.0–97.5 | NCI-CTCAE 1.0, prospective/retrospective not available. Peripheral neuropathy and constipation | Grade 3: 12.1% Grade 4: 0.4% | Moderate |
Li et al., 2019—POG cohort [53] | GWAS | 1069. | ALL | Not available | 52.3 | All white | 1.5, max not available | 18–23 doses of 1.5 mg/m2 | NCI-CTCAE 2.0, prospective Grade 3–5 peripheral neuropathy. | 4.8% | Moderate |
Li et al., 2019—ADVANCE cohort [53] | GWAS | 63 | ALL | Mean (SD): 8.2 (4.7) y/o | 46.0 | All white | 1.5, max 2.0 | Not available | TNS–PV, prospective. Sensory symptoms, temperature and vibration sensibility, strength, tendon reflexes. | Mean + SD: 3.8 (2.6) | Moderate |
Lopez–Lopez et al., 2016 [11] | Candidate gene | 133 | ALL | Mean (SD): 5.5 (3.4) y/o | 56.6 | Mainly white | 1.5, max 2.0 | 15.0–30.0 | WHO criteria, retrospective Peripheral neuropathy | Grade 1–2: 18.4% Grade 3–4: 11.8% | Strong |
Martin–Guerrero et al., 2019 [49] | Candidate gene | 133 | ALL | Mean (SD): 5.5 (3.4) y/o | 56.6 | Mainly white | 1.5, max 2.0 | 15.0–30.0 | WHO criteria, retrospective Grade 2–4 peripheral neuropathy | 25.4% | Strong |
McClain et al., 2018 [31] | Candidate gene | 239 | ALL | Mean (SD): 5.8 (3.9) y/o | 53.1 | All white | Not available | Mean (SD), at time of event: extensive metabolizers: 10.0 (5.7), intermediate: 13.4 (13.6), poor: 10.4 (8.9) | Modified Balis scale, retrospective Grade 3–4 peripheral neuropathy | Grade 3–4: 18.4% | Strong |
Plasschaert et al., 2004 [22] | Candidate gene | 52 | ALL | 73.1% < 10 y/o, 26.9% ≥ 10 y/o | 61.5 | 98.1 white 1.9 other | Once 1.5, other doses 2.0, max. 2.5 | 13.5 mg/m2 | NCI common toxicity criteria Constipation | Grade 1–2: 55.8%, Grade 3–4 26.9% | Strong |
Renbarger et al., 2008 [14] | Race as surrogate for genotype, case–control | Cases: 21 black Controls: 92 white | ALL | Mean (SD): black: 8.2 (4.8) y/o, white: 5.0 (3.1) y/o | Cases + controls: 50.4 | 81.4 white 18.6 black | Not available | Mean (SD), Caucasians: 48.5 (14.3), AAs: 42.4 (11.6) | NCI-CTCAE 3.0, retrospective Neurotoxicity | Grade 1–4: 34.8% white, 4.8 black | Moderate |
Sims et al., 2016 [32] | Candidate gene | 52 | BALL | 77.4% < 10 y/o, 22.6% ≥ 10 y/o | 62.2 | 68.5 white 31.5 black | 1.5, max. 2.0 | Not available | Modified Balis scale, prospective Peripheral neuropathy, constipation if grade 3–4 | Grade 1–4: 80.6% white, 76.5% black | Moderate |
Skiles et al., 2018 [16] | Candidate gene | 72 | Leukemia, lymphoma, solid tumors | Mean (SD): low expressers: 6.1 (5.2), intermediate: 6.5 (4.0), high: 6.1 (4.6) | 53.8 | All black Kenyan | 2.0, max. 2.5 | 8.5 mg/m2 | NCI-CTCAE 4.0, modified Balis scale, Faces Pain Scale, Pediatric Neuropathic Pain Scale, ped–mTNS, all prospective. Peripheral neuropathy and neuropathic pain | NCI–CTCAE: grade 2–4: 2.8%. Ped–mTNS: 4.3% 5 or higher. | Moderate |
Wright et al., 2019 [51] | Candidate gene, case–control | Cases: 167 (VIPN), controls: 57 (no VIPN) | ALL | Median (IQR): cases 4.8 (3.3–9.0), controls: 5.4 (3.3–9.0) | Cases: 60.4, controls: 40.4 | Mainly white | Not available | Median + IQR: cases: 61.4 (48.0–72.0), controls: 66.0 (51.0–74.8) | NCI-CTCAE 4.0, retrospective Peripheral neuropathy | Grade 2–4: 167 cases | Strong |
Zgheib et al., 2018 [50] | Candidate gene | 133 | ALL | Mean (SD): 6.7 (5.0) | 57.1 | All white | Induction and re–induction: 1.5, max. 2.0. Continuation: 2.0, max. 2.0 | Mean (SD), patients without VIPN: 66.0 (6.1), with VIPN grade 2–4: 27.9 (12.1) | NCI-CTCAE 4.0, retrospective Peripheral neuropathy | Grade 2–4: 19.5% | Strong |
Gene | SNP | Allele, Major/Minor | Author and Year of Publication | MAF (%) | Number of Patients (n) | Method Effect Size | Effect Size with 95% CI (If Applicable) | Effect | |
---|---|---|---|---|---|---|---|---|---|
Cases of VIPN * | Controls * | ||||||||
Transport | |||||||||
ABCB1 | rs4728709 | C/T | Ceppi et al., 2014 [8] | TT/TC: 17.1 CC: 82.9 | 63 (grade 1–2) | 214 (grade 0) | Dominant OR | 0.3 (0.1–0.9) | Protective 1 |
rs10244266 | T/G | Lopez-Lopez et al., 2016 [11] | 14.3 | 46 (WHO grade 1–4) | 103 (WHO grade 0) | Dominant OR | 2.60 (1.16–5.83) | Risk 2 | |
rs10268314 | T/C | Lopez-Lopez et al., 2016 [11] | 14.3 | 27 (WHO grade 1–2) | 103 (WHO grade 0) | Dominant OR | 3.19 (1.23–8.25) | Risk 2 | |
rs10274587 | G/A | Lopez-Lopez et al., 2016 [11] | 14.6 | 27 (WHO grade 1–2) | 103 (WHO grade 0) | Dominant OR | 3.48 (1.36–8.86) | Risk 2 | |
ABCC1 | rs1967120 | T/C | Lopez-Lopez et al., 2016 [11] | 27.3 | 18 (WHO grade 3–4) | 103 (WHO grade 0) | Dominant OR | 0.29 (0.09–0.99) | Protective 2 |
rs3743527 | C/T | Lopez-Lopez et al., 2016 [11] | 19.7 | 46 (WHO grade 1–4) | 103 (WHO grade 0) | Dominant OR | 0.32 (0.13–0.79) | Protective 2 | |
rs3784867 | C/T | Wright et al., 2019 [51] | 32.0 | 170 (grade 2–4) | 57 (grade 0) | Additive OR | 4.91 (1.99–12.10) | Risk 3 | |
rs11642957 | T/C | Lopez-Lopez et al., 2016 [11] | 48.1 | 46 (WHO grade 1–4) | 103 (WHO grade 0) | Dominant OR | 0.43 (0.19–0.98) | Protective 2 | |
rs11864374 | G/A | Lopez-Lopez et al., 2016 [11] | 24.4 | 46 (WHO grade 1–4) | 103 (WHO grade 0) | Dominant OR | 0.35 (0.15–0.79) | Protective 2 | |
rs12923345 | T/C | Lopez-Lopez et al., 2016 [11] | 15.4 | 46 (WHO grade 1–4) | 103 (WHO grade 0) | Dominant OR | 2.39 (1.08–5.25) | Risk 2 | |
rs17501331 | A/G | Lopez-Lopez et al., 2016 [11] | 13.2 | 46 (WHO grade 1–4) | 103 (WHO grade 0) | Dominant OR | 2.50 (1.10–5.68) | Risk 2 | |
ABCC2 | rs12826 | G/A | Lopez-Lopez et al., 2016 [11] | 42.6 | 46 (WHO grade 1–4) | 103 (WHO grade 0) | Dominant OR | 0.24 (0.10–0.54) | Protective |
rs3740066 | G/A | Lopez-Lopez et al., 2016 [11] | 36.2 | 46 (WHO grade 1–4) | 103 (WHO grade 0) | Dominant OR | 0.23 (0.10–0.53) | Protective | |
rs2073337 | A/G | Lopez-Lopez et al., 2016 [11] | 45.8 | 18 (WHO grade 3–4) | 103 (WHO grade 0) | Dominant OR | 0.35 (0.10–1.24) | Protective | |
rs4148396 | C/T | Lopez-Lopez et al., 2016 [11] | 42.1 | 46 (WHO grade 1–4) | 103 (WHO grade 0) | Dominant OR | 0.36 (0.16–0.81) | Protective | |
rs11190298 | G/A | Lopez-Lopez et al., 2016 [11] | 45.0 | 46 (WHO grade 1–4) | 103 (WHO grade 0) | Recessive OR | 2.44 (1.01–5.86) | Risk | |
ABCC1/RALPB1: miR–3117 | rs12402181 | G/A | Gutierrez–Camino et al., 2017 [48] | 14.8 | 19 (WHO grade 3–4) | 128 (WHO grade 0) | Dominant OR | 0.13 (0.02–0.99) | Protective 2 |
Vincristine metabolism | |||||||||
CYP3A4 | rs2740574 | A/G(*1B) | Aplenc et al., 2003 [28] | 8.6 | 28 (CCG grade 3–4) | 505 (CCG grade 0–2) | Allelic OR | 0 (0–0.75) | Protective 2 |
Guilhaumou et al., 2011 [20] | 6.3 | Nr of neurotoxicity events | Chi–square | p = 1.00 | Not significant | ||||
Kishi et al., 2007 [13] | AA: 79.6 AG + GG: 20.4 | 30 (grade 2–4) | 210 (grade 0–1) | Dominant OR | 1.37 (0.57–3.29) | Not significant | |||
GSTM1 | Deletion | Non–null/null | Kishi et al., 2007 [13] | Non–null: 57.5 Null: 42.5 | 30 (grade 2–4) | 210 (grade 0–1) | OR | 0.46 (0.22–0.94) | Protective2 |
VDR | rs1544410 | G/A | Kishi et al., 2007 [13] | GG: 45.8 AA and AG: 54.2 | 30 (grade 2–4) | 210 (grade 0–1) | Recessive OR | 2.22 (1.06–4.67) | Risk |
Cytoskeleton–associated | |||||||||
ACTG1 | rs1135989 | G/A | Ceppi et al., 2014 [8] | 36.5 | 38 (grade 3–4) | 214 (grade 0) | Dominant OR | 2.8 (1.3–6.3) | Risk 1 |
CAPG | rs2229668 | G/A | Ceppi et la. 2014 [8] | 12.6 | 39 (grade 3–4) | 214 (grade 0) | Dominant OR | 2.1 (1.1–3.7) | Risk 1 |
rs3770102 | C/A | Ceppi et al., 2014 [8] | 41.4 | 39 (grade 3–4) | 214 (grade 0) | Dominant OR | 0.1 (0.01–0.8) | Protective 1 | |
CEP72 | rs924607 | C/T | Diouf et al., 2015—St. Jude cohort [9] | 36.7 | 64 (grade 2–4) | 158 (grade 0) | Recessive OR | 5.5 (2.5–12.2) | Risk |
Diouf et al., 2015—COG cohort [9] | 36.4 | 22 (grade 2–4) | 74 (grade 0) | Recessive OR | 3.8 (1.3–11.4) | Risk | |||
Gutierrez–Camino et al., 2016 [10] | 39.4 | 36 (WHO grade 2–4) | 106 (WHO grade 0–1) | Recessive OR | 0.7 (0.2–2.4) | Not significant | |||
Wright et al., 2019 [51] | TT: 13.5 CT and CC: 86.5 | 156 (grade 2–4) | 56 (grade 0) | Recessive OR | 3.4 (0.9–12.6) | Not significant | |||
Zgheib et al., 2018 [50] | 36.9 | 23 (grade 2–4) | 107 (grade 0–1) | Recessive OR | 1.04 (0.32–3.43) | Not significant | |||
MAPT | rs11867549 | A/G | Martin–Guerrero et al., 2019 [49] | 22.5 | 18 (WHO grade 3–4) | 103 (WHO grade 0) | Dominant OR | 0.21 (0.04–0.96) | Protective 2 |
SYNE2 | rs2781377 | G/A | Abaji et al., 2018—QcALL cohort [52] | 7.8 | 35 (grade 3–4) | 201 (grade 0) | Additive OR | 2.5 (1.2–5.2) | Risk |
TUBB2B: miR–202 | rs12355840 | T/C | Martin–Guerrero et al., 2019 [49] | 23.4 | 27 (WHO grade 1–2) | 103 (WHO grade 0) | Dominant OR | 2.88 (1.07–7.72) | Risk |
Hereditary neuropathy | |||||||||
SLC5A7 | rs1013940 | T/C | Wright et al., 2019 [51] | 15.2 | 170 (grade 2–4) | 57 (grade 0) | Additive OR | 8.60 (1.68–44.15) | Risk 3 |
Other (GWAS/EWAS studies) | |||||||||
BAHD1 | rs3803357 | C/A | Abaji et al., 2018—QcALL cohort [52] | 41.7 | 35 (grade 3–4) | 201 (grade 0) | Dominant OR | 0.35 (0.2–0.7) | Protective |
COCH | rs1045466 | T/G | Li et al., 2020—POG cohort [53] | 38 | Maximum neuropathy score | Dominant HR | 0.27 (0.16–0.50) | Protective | |
Li et al., 2020—ADVANCE cohort [53] | 33 | Linear regression | −3.56 (−5.45;−1.67) | Protective | |||||
Chromosome 12/ chemerin | rs7963521 | T/C | Li et al., 2020—POG cohort [53] | 41 | Maximum neuropathy score | Additive HR | 2.23 (1.49–3.35) | Risk | |
Li et al., 2020—ADVANCE cohort [53] | 43 | Additive HR | 2.16 (0.53–3.70) | Not significant | |||||
ETAA1 | rs17032980 | A/G | Diouf et al., 2015—St. Jude cohort [9] | 26.6 | 64 (grade 2–4) | 158 (grade 0) | Allelic OR | 3.17 (1.95–5.17) | Risk |
Diouf et al., 2015—COG cohort [9] | 19.2 | 22 (grade 2–4) | 74 (grade 0) | Allelic OR | 10.4 (2.97–36.15) | Risk | |||
MRPL4 | rs10513762 | C/T | Abaji et al., 2018—QcALL cohort [52] | 7.0 | 35 (grade 3–4) | 202 (grade 0) | Dominant OR | 3.3 (1.4–7.7) | Risk |
MTNR1B | rs12786200 | C/T | Diouf et al., 2015—St. Jude cohort [9] | 22.7 | 64 (grade 2–4) | 158 (grade 0) | Allelic OR | 0.23 (0.13–0.40) | Protective |
Diouf et al., 2015—COG cohort [9] | 20.7 | 22 (grade 2–4) | 74 (grade 0) | Allelic OR | 0.24 (0.08–0.76) | Protective | |||
Zgheib et al., 2018 [50] | 18.1 | 23 (grade 2–4) | 107 (grade 0–1) | Dominant OR | 0.59 (0.22–1.62) | Not significant | |||
NDUFAF6 | rs7818688 | C/A | Diouf et al., 2015—St. Jude cohort [9] | 12.6 | 64 (grade 2–4) | 158 (grade 0) | Allelic OR | 4.26 (2.45–7.42) | Risk |
Diouf et al., 2015—COG cohort [9] | 14.1 | 22 (grade 2–4) | 74 (grade 0) | Allelic OR | 4.59 (1.35–15.59) | Risk | |||
TMEM215 | rs4463516 | C/G | Diouf et al., 2015—St. Jude cohort [9] | 33.6 | 64 (grade 2–4) | 158 (grade 0) | Allelic OR | 3.17 (1.95–5.17) | Risk |
Diouf et al., 2015—COG cohort [9] | 24.2 | 22 (grade 2–4) | 74 (grade 0) | Allelic OR | 4.94 (1.65–14.79) | Risk | |||
miRNA | |||||||||
miR–4481 | rs7896283 | T/C | Gutierrez–Camino et al., 2017 [48] | 37.5 | 19 (WHO grade 3–4) | 128 (WHO grade 0) | Dominant OR | 4.69 (1.43–15.43) | Risk 2 |
miR–6076 | rs35650931 | G/C | Gutierrez–Camino et al., 2017 [48] | 8.7 | 47 (WHO grade 1–4) | 128 (WHO grade 0) | Dominant OR | 0.22 (0.05–0.97) | Protective 2 |
3.4. Association between Pharmacogenomic Parameters and VIPN
Gene | SNP | Author and Year of Publication |
---|---|---|
ABCB1 | rs1045642 | Plasschaert et al., 2004 [22], Ceppi et al., 2014 [8], Zgheib et al., 2018 [50] |
rs1128503 | Ceppi et al., 2014 [8], Zgheib et al., 2018 [50] | |
rs2032582 | Plasschaert et al., 2004 [22], Ceppi et al., 2014 [8] | |
ABCC2 | rs717620 | Zgheib et al., 2018 [50] |
ACTG1 | rs1139405 | Ceppi et al., 2014 [8] |
rs7406609 | Ceppi et al., 2014 [8] | |
CAPG | rs6886 | Ceppi et al., 2014 [8] |
CYP1A1 | rs4646903 | Abo-Bakr et al., 2017 1 [47] |
GSTP1 | rs1695 | Kishi et al., 2007 [13], Abo-Bakr et al., 2017 1 [47] |
GSTT1 | Deletion | Kishi et al., 2007 [13] |
MAP4 | rs11268924 | Ceppi et al., 2014 [8] |
rs1137524 | Ceppi et al., 2014 [8] | |
rs1875103 | Ceppi et al., 2014 [8] | |
rs11711953 | Ceppi et al., 2014 [8] | |
MDR1 | Exon 21, G > T/A | Kishi et al., 2007 [13] |
Exon 26, C/T | Kishi et al., 2007 [13] | |
MTHFR | rs1801133 | Kishi et al., 2007 [13] |
rs1801131 | Kishi et al., 2007 [13] | |
SLC19A1 | rs1051266 | Kishi et al., 2007 [13] |
TPMT | Combined genotypes: 238GG, 460GG, 719AA/others | Kishi et al., 2007 [13] |
TUBB | rs6070697 | Ceppi et al., 2014 [8] |
rs10485828 | Ceppi et al., 2014 [8] | |
TYMS | Enhancer repeat: others/3AND3 | Kishi et al., 2007 [13] |
UGT1A1 | Enhancer repeat: others/7AND7 | Kishi et al., 2007 [13] |
VDR | rs2228570 | Kishi et al., 2007 [13] |
XRCC1 | rs1799782 | Abo-Bakr et al., 2017 1 [47] |
3.5. CYP3A4 and CYP3A5
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mora, E.; Smith, E.M.L.; Donohoe, C.; Hertz, D.L. Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am. J. Cancer Res. 2016, 6, 2416–2430. [Google Scholar] [PubMed]
- Smith, E.M.L.; Kuisell, C.; Cho, Y.; Kanzawa-Lee, G.A.; Gilchrist, L.S.; Park, S.B.; Scott, M.R.; Alberti, P. Characteristics and patterns of pediatric chemotherapy-induced peripheral neuropathy: A systematic review. Cancer Treat. Res. Commun. 2021, 28, 100420. [Google Scholar] [CrossRef] [PubMed]
- Van de Velde, M.E.; Kaspers, G.L.; Abbink, F.C.H.; Wilhelm, A.J.; Ket, J.C.F.; van den Berg, M.H. Vincristine-induced peripheral neuropathy in children with cancer: A systematic review. Crit. Rev. Oncol. Hematol. 2017, 114, 114–130. [Google Scholar] [CrossRef] [PubMed]
- Madsen, M.L.; Due, H.; Ejskjær, N.; Jensen, P.; Madsen, J.; Dybkær, K. Aspects of vincristine-induced neuropathy in hematologic malignancies: A systematic review. Cancer Chemother. Pharmacol. 2019, 84, 471–485. [Google Scholar] [CrossRef] [Green Version]
- Lavoie Smith, E.M.; Li, L.; Chiang, C.; Thomas, K.; Hutchinson, R.J.; Wells, E.M.; Ho, R.H.; Skiles, J.; Chakraborty, A.; Bridges, C.M.; et al. Patterns and severity of vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia. J. Peripher. Nerv. Syst. JPNS 2015, 20, 37–46. [Google Scholar] [CrossRef]
- Van de Velde, M.E.; van den Berg, M.H.; Kaspers, G.J.L.; Abbink, F.C.H.; Twisk, J.W.R.; van der Sluis, I.M.; van den Bos, C.; van den Heuvel-Eibrink, M.M.; Segers, H.; Chantrain, C.; et al. The association between vincristine-induced peripheral neuropathy and health-related quality of life in children with cancer. Cancer Med. 2021, 10, 8172–8181. [Google Scholar] [CrossRef]
- Tay, C.G.; Lee, V.W.M.; Ong, L.C.; Goh, K.J.; Ariffin, H.; Fong, C.Y. Vincristine-induced peripheral neuropathy in survivors of childhood acute lymphoblastic leukaemia. Pediatr. Blood Cancer 2017, 64, e26471. [Google Scholar] [CrossRef]
- Ceppi, F.; Langlois-Pelletier, C.; Gagné, V.; Rousseau, J.; Ciolino, C.; De Lorenzo, S.; Kevin, K.M.; Cijov, D.; Sallan, S.E.; Silverman, L.B.; et al. Polymorphisms of the vincristine pathway and response to treatment in children with childhood acute lymphoblastic leukemia. Pharmacogenomics 2014, 15, 1105–1116. [Google Scholar] [CrossRef] [Green Version]
- Diouf, B.; Crews, K.R.; Lew, G.; Pei, D.; Cheng, C.; Bao, J.; Zheng, J.J.; Yang, W.; Fan, Y.; Wheeler, H.E.; et al. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 2015, 313, 815–823. [Google Scholar] [CrossRef]
- Gutierrez-Camino, A.; Martin-Guerrero, I.; Lopez-Lopez, E.; Echebarria-Barona, A.; Zabalza, I.; Ruiz, I.; Guerra-Merino, I.; Garcia-Orad, A. Lack of association of the CEP72 rs924607 TT genotype with vincristine-related peripheral neuropathy during the early phase of pediatric acute lymphoblastic leukemia treatment in a Spanish population. Pharm. Genom. 2016, 26, 100–102. [Google Scholar] [CrossRef]
- Lopez-Lopez, E.; Gutierrez-Camino, A.; Astigarraga, I.; Navajas, A.; Echebarria-Barona, A.; Garcia-Miguel, P.; Garcia de Andoin, N.; Lobo, C.; Guerra-Merino, I.; Martin-Guerrero, I.; et al. Vincristine pharmacokinetics pathway and neurotoxicity during early phases of treatment in pediatric acute lymphoblastic leukemia. Pharmacogenomics 2016, 17, 731–741. [Google Scholar] [CrossRef]
- Anghelescu, D.L.; Faughnan, L.G.; Jeha, S.; Relling, M.V.; Hinds, P.S.; Sandlund, J.T.; Cheng, C.; Pei, D.; Hankins, G.; Pauley, J.L.; et al. Neuropathic pain during treatment for childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer 2011, 57, 1147–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishi, S.; Cheng, C.; French, D.; Pei, D.; Das, S.; Cook, E.H.; Hijiya, N.; Rizzari, C.; Rosner, G.L.; Frudakis, T.; et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood 2007, 109, 4151–4157. [Google Scholar] [CrossRef] [PubMed]
- Renbarger, J.L.; McCammack, K.C.; Rouse, C.E.; Hall, S.D. Effect of race on vincristine-associated neurotoxicity in pediatric acute lymphoblastic leukemia patients. Pediatr. Blood Cancer 2008, 50, 769–771. [Google Scholar] [CrossRef]
- Smitherman, A.B.; Faircloth, C.B.; Deal, A.; Troy, M.; Gold, S.H. Vincristine toxicity with co-administration of fluconazole during induction therapy for pediatric acute lymphoblastic leukemia. Pediatr. Blood Cancer 2017, 64, e26525. [Google Scholar] [CrossRef]
- Skiles, J.L.; Chiang, C.; Li, C.H.; Martin, S.; Smith, E.L.; Olbara, G.; Jones, D.R.; Vik, T.A.; Mostert, S.; Abbink, F.; et al. CYP3A5 genotype and its impact on vincristine pharmacokinetics and development of neuropathy in Kenyan children with cancer. Pediatr. Blood Cancer 2018, 65, e26854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavoie Smith, E.M.; Li, L.; Hutchinson, R.J.; Ho, R.; Burnette, W.B.; Wells, E.; Bridges, C.; Renbarger, J. Measuring vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia. Cancer Nurs. 2013, 36, E49–E60. [Google Scholar] [CrossRef] [Green Version]
- Van de Velde, M.E.; Panetta, J.C.; Wilhelm, A.J.; van den Berg, M.H.; van der Sluis, I.M.; van den Bos, C.; Abbink, F.C.H.; van den Heuvel-Eibrink, M.M.; Segers, H.; Chantrain, C.; et al. Population pharmacokinetics of vincristine related to infusion duration and peripheral neuropathy in pediatric oncology patients. Cancers 2020, 12, 1789. [Google Scholar] [CrossRef]
- Crom, W.R.; de Graaf, S.S.; Synold, T.; Uges, D.R.; Bloemhof, H.; Rivera, G.; Christensen, M.L.; Mahmoud, H.; Evans, W.E. Pharmacokinetics of vincristine in children and adolescents with acute lymphocytic leukemia. J. Pediatr. 1994, 125, 642–649. [Google Scholar] [CrossRef]
- Guilhaumou, R.; Simon, N.; Quaranta, S.; Verschuur, A.; Lacarelle, B.; Andre, N.; Solas, C. Population pharmacokinetics and pharmacogenetics of vincristine in paediatric patients treated for solid tumour diseases. Cancer Chemother. Pharmacol. 2011, 68, 1191–1198. [Google Scholar] [CrossRef]
- Moore, A.S.; Norris, R.; Price, G.; Nguyen, T.; Ni, M.; George, R.; van Breda, K.; Duley, J.; Charles, B.; Pinkerton, R. Vincristine pharmacodynamics and pharmacogenetics in children with cancer: A limited-sampling, population modelling approach. J. Paediatr. Child Health 2011, 47, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Plasschaert, S.L.; Groninger, E.; Boezen, M.; Kema, I.; de Vries, E.G.; Uges, D.; Veerman, A.J.; Kamps, W.A.; Vellenga, E.; de Graaf, S.S.; et al. Influence of functional polymorphisms of the MDR1 gene on vincristine pharmacokinetics in childhood acute lymphoblastic leukemia. Clin. Pharm. 2004, 76, 220–229. [Google Scholar]
- Dennison, J.B.; Jones, D.R.; Renbarger, J.L.; Hall, S.D. Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. J. Pharmacol. Exp. Ther. 2007, 321, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Arbitrio, M.; Scionti, F.; Di Martino, M.T.; Pensabene, L.; Tassone, P.; Tagliaferri, P. Pharmacogenetics/pharmacogenomics of drug-metabolizing enzymes and transporters. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, J.G.; Edick, M.J.; Hancock, M.L.; Winick, N.J.; Dervieux, T.; Amylon, M.D.; Bash, R.O.; Behm, F.G.; Camitta, B.M.; Pui, C.-H.; et al. Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharm. Genom. 2002, 12, 605–611. [Google Scholar] [CrossRef]
- Roy, J.-N.; Lajoie, J.; Zijenah, L.S.; Barama, A.; Poirier, C.; Ward, B.J.; Roger, M. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab. Dispos. 2005, 33, 884–887. [Google Scholar] [CrossRef]
- Aplenc, R.; Glatfelter, W.; Han, P.; Rappaport, E.; La, M.; Cnaan, A.; Blackwood, M.A.; Lange, B.; Rebbeck, T. CYP3A genotypes and treatment response in paediatric acute lymphoblastic leukaemia. Br. J. Haematol. 2003, 122, 240–244. [Google Scholar] [CrossRef]
- Egbelakin, A.; Ferguson, M.J.; MacGill, E.A.; Lehmann, A.S.; Topletz, A.R.; Quinney, S.K.; Li, L.; McCammack, K.C.; Hall, S.D.; Renbarger, J.L. Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr. Blood Cancer 2011, 56, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Kayilioğlu, H.; Kocak, U.; Kan Karaer, D.; Percin, E.F.; Sal, E.; Tekkesin, F.; Isik, M.; Oner, N.; Belen, F.B.; Yilmaz Keskin, E.; et al. Association of CYP3A5 expression and vincristine neurotoxicity in pediatric malignancies in Turkish population. J. Pediatr. Hematol. Oncol. 2017, 39, 458–462. [Google Scholar] [CrossRef]
- McClain, C.A.; Bernhardt, M.B.; Berger, A.; Bernini, J.C.; Marquez-Do, D.; Winslow, R.; Scheurer, M.E.; Schafer, E.S. Pharmacogenetic association with neurotoxicity in Hispanic children with acute lymphoblastic leukaemia. Br. J. Haematol. 2018, 181, 684–687. [Google Scholar] [CrossRef] [Green Version]
- Sims, R.P. The effect of race on the CYP3A-mediated metabolism of vincristine in pediatric patients with acute lymphoblastic leukemia. J. Oncol. Pharm. Pract. 2016, 22, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Aminkeng, F.; Bhavsar, A.P.; Shaw, K.; Carleton, B.C.; Hayden, M.R.; Ross, C.J. The emerging era of pharmacogenomics: Current successes, future potential, and challenges. Clin. Genet. 2014, 86, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinshilboum, R.M.; Wang, L. Pharmacogenomics: Precision medicine and drug response. Mayo Clin. Proc. 2017, 92, 1711–1722. [Google Scholar] [CrossRef]
- Alwi, Z.B. The Use of SNPs in pharmacogenomics studies. Malays. J. Med. Sci. 2005, 12, 4–12. [Google Scholar]
- Wang, J.; Pang, G.S.; Chong, S.S.; Lee, C.G. SNP web resources and their potential applications in personalized medicine. Curr. Drug Metab. 2012, 13, 978–990. [Google Scholar] [CrossRef] [PubMed]
- Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Clarke, G.M.; Anderson, C.A.; Pettersson, F.H.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Basic statistical analysis in genetic case-control studies. Nat. Protoc. 2011, 6, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Zondervan, K.T.; Cardon, L.R. Designing candidate gene and genome-wide case-control association studies. Nat. Protoc. 2007, 2, 2492–2501. [Google Scholar] [CrossRef] [Green Version]
- Lennard, L.; Cartwright, C.S.; Wade, R.; Vora, A. Thiopurine methyltransferase and treatment outcome in the UK acute lymphoblastic leukaemia trial ALL2003. Br. J. Haematol. 2015, 170, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Stocco, G.; Cheok, M.H.; Crews, K.R.; Dervieux, T.; French, D.; Pei, D.; Yang, W.; Cheng, C.; Pui, C.H.; Relling, M.V.; et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin. Pharm. 2009, 85, 164–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uittenboogaard, A.; Van de Velde, M.E.; Kaspers, G.J. Pharmacogenomics of Vincristine-Induced Peripheral Neuropathy: A Systematic Review (CRD42021210437). Available online: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=210437 (accessed on 30 September 2021).
- Armijo-Olivo, S.; Stiles, C.R.; Hagen, N.A.; Biondo, P.D.; Cummings, G.G. Assessment of study quality for systematic reviews: A comparison of the cochrane collaboration risk of bias tool and the effective public health practice project quality assessment tool: Methodological research. J. Eval. Clin. Pract. 2012, 18, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Harrer, M.; Cuijpers, P.; Furukawa, T.A.; Ebert, D.D. Doing Meta-Analysis with R: A Hands-On Guide, 1st ed.; Chapman & Hall/CRC Press: Boca Raton, FL, USA; London, UK, 2021. [Google Scholar]
- Abo-Bakr, A.; Mossallam, G.; El Azhary, N.; Hafez, H.; Badawy, R. Impact of CYP1A1, GSTP1 and XRCC1 genes polymorphisms on toxicity and response to chemotherapy in childhood acute lymphoblastic leukemia. J. Egypt. Natl. Cancer Inst. 2017, 29, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Camino, Ã.; Umerez, M.; Martin-Guerrero, I.; García de Andoin, N.; Santos, B.; Sastre, A.; Echebarria-Barona, A.; Astigarraga, I.; Navajas, A.; Garcia-Orad, A. Mir-pharmacogenetics of Vincristine and peripheral neurotoxicity in childhood B-cell acute lymphoblastic leukemia. Pharm. J. 2017, 18, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Martin-Guerrero, I.; Gutierrez-Camino, A.; Echebarria-Barona, A.; Astigarraga, I.; Garcia de Andoin, N.; Navajas, A.; Garcia-Orad, A. Variants in vincristine pharmacodynamic genes involved in neurotoxicity at induction phase in the therapy of pediatric acute lymphoblastic leukemia. Pharm. J. 2019, 19, 564–569. [Google Scholar] [CrossRef]
- Zgheib, N.K.; Ghanem, K.M.; Tamim, H.; Aridi, C.; Shahine, R.; Tarek, N.; Saab, R.; Abboud, M.R.; El-Solh, H.; Muwakkit, S.A. Genetic polymorphisms in candidate genes are not associated with increased vincristine-related peripheral neuropathy in Arab children treated for acute childhood leukemia: A single institution study. Pharm. Genom. 2018, 28, 189–195. [Google Scholar] [CrossRef]
- Wright, G.E.B.; Amstutz, U.; Drögemöller, B.I.; Shih, J.; Rassekh, S.R.; Hayden, M.R.; Carleton, B.C.; Ross, C.J.D. Pharmacogenomics of vincristine-induced peripheral neuropathy implicates pharmacokinetic and inherited neuropathy genes. Clin. Pharmacol. Ther. 2019, 105, 402–410. [Google Scholar] [CrossRef] [Green Version]
- Abaji, R.; Ceppi, F.; Patel, S.; Gagné, V.; Xu, C.J.; Spinella, J.F.; Colombini, A.; Parasole, R.; Buldini, B.; Basso, G.; et al. Genetic risk factors for VIPN in childhood acute lymphoblastic leukemia patients identified using whole-exome sequencing. Pharmacogenomics 2018, 19, 1181–1193. [Google Scholar] [CrossRef]
- Li, L.; Sajdyk, T.; Smith, E.M.L.; Chang, C.W.; Li, C.; Ho, R.H.; Hutchinson, R.; Wells, E.; Skiles, J.L.; Winick, N.; et al. Genetic variants associated with vincristine-induced peripheral neuropathy in two populations of children with acute lymphoblastic leukemia. Clin. Pharm. 2019, 105, 1421–1428. [Google Scholar] [CrossRef]
- Dean, M.; Rzhetsky, A.; Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001, 11, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- Hodges, L.M.; Markova, S.M.; Chinn, L.W.; Gow, J.M.; Kroetz, D.L.; Klein, T.E.; Altman, R.B. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharm. Genom. 2011, 21, 152–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; König, J.; Buchholz, J.K.; Spring, H.; Leier, I.; Keppler, D. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol. Pharmacol. 1999, 55, 929–937. [Google Scholar] [PubMed]
- Folmer, Y.; Schneider, M.; Blum, H.E.; Hafkemeyer, P. Reversal of drug resistance of hepatocellular carcinoma cells by adenoviral delivery of anti-ABCC2 antisense constructs. Cancer Gene Ther. 2007, 14, 875–884. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, M.; Tang, Q.-L.; Liu, M.; Lang, N.; Bi, F. Establishment and biological characteristics of oxaliplatin-resistant human colon cancer cell lines. Chin. J. Cancer 2010, 29, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Below, J.; Das, M.J. Vincristine. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2021. [Google Scholar]
- Lancaster, O.M.; Baum, B. Shaping up to divide: Coordinating actin and microtubule cytoskeletal remodelling during mitosis. Semin. Cell Dev. Biol. 2014, 34, 109–115. [Google Scholar] [CrossRef]
- Kunda, P.; Baum, B. The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol. 2009, 19, 174–179. [Google Scholar] [CrossRef]
- Wang, Y.; Stear, J.H.; Swain, A.; Xu, X.; Bryce, N.S.; Carnell, M.; Alieva, I.B.; Dugina, V.B.; Cripe, T.P.; Stehn, J.; et al. Drug targeting the actin cytoskeleton potentiates the cytotoxicity of low dose vincristine by abrogating actin-mediated repair of spindle defects. Mol. Cancer Res. 2020, 18, 1074–1087. [Google Scholar] [CrossRef] [Green Version]
- Meraldi, P. Centrosomes in spindle organization and chromosome segregation: A mechanistic view. Chromosome Res. 2016, 24, 19–34. [Google Scholar] [CrossRef]
- Oshimori, N.; Li, X.; Ohsugi, M.; Yamamoto, T. Cep72 regulates the localization of key centrosomal proteins and proper bipolar spindle formation. EMBO J. 2009, 28, 2066–2076. [Google Scholar] [CrossRef] [Green Version]
- Zečkanović, A.; Jazbec, J.; Kavčič, M. Centrosomal protein72 rs924607 and vincristine-induced neuropathy in pediatric acute lymphocytic leukemia: Meta-analysis. Future Sci. OA 2020, 6, FSO582. [Google Scholar] [CrossRef]
- Total Therapy XVII for Newly Diagnosed Patients with Acute Lymphoblastic Leukemia and Lymphoma. ClinicalTrials.gov Identifier: NCT03117751. Available online: https://clinicaltrials.gov/ct2/show/NCT03117751 (accessed on 30 September 2021).
- Garsa, A.A.; McLeod, H.L.; Marsh, S. CYP3A4 and CYP3A5genotyping by Pyrosequencing. BMC Med Genet. 2005, 6, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamba, J.K.; Lin, Y.S.; Schuetz, E.G.; Thummel, K.E. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev. 2002, 54, 1271–1294. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Feng, Z.; Yi, X. A general introduction to adjustment for multiple comparisons. J. Thorac. Dis 2017, 9, 1725–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menyhart, O.; Weltz, B.; Győrffy, B. MultipleTesting.com: A tool for life science researchers for multiple hypothesis testing correction. PLoS ONE 2021, 16, e0245824. [Google Scholar] [CrossRef]
- Relling, M.V.; Klein, T.E. CPIC: Clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin. Pharmacol. Ther. 2011, 89, 464–467. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uittenboogaard, A.; Neutel, C.L.G.; Ket, J.C.F.; Njuguna, F.; Huitema, A.D.R.; Kaspers, G.J.L.; van de Velde, M.E. Pharmacogenomics of Vincristine-Induced Peripheral Neuropathy in Children with Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 612. https://doi.org/10.3390/cancers14030612
Uittenboogaard A, Neutel CLG, Ket JCF, Njuguna F, Huitema ADR, Kaspers GJL, van de Velde ME. Pharmacogenomics of Vincristine-Induced Peripheral Neuropathy in Children with Cancer: A Systematic Review and Meta-Analysis. Cancers. 2022; 14(3):612. https://doi.org/10.3390/cancers14030612
Chicago/Turabian StyleUittenboogaard, Aniek, Céline L. G. Neutel, Johannes C. F. Ket, Festus Njuguna, Alwin D. R. Huitema, Gertjan J. L. Kaspers, and Mirjam E. van de Velde. 2022. "Pharmacogenomics of Vincristine-Induced Peripheral Neuropathy in Children with Cancer: A Systematic Review and Meta-Analysis" Cancers 14, no. 3: 612. https://doi.org/10.3390/cancers14030612
APA StyleUittenboogaard, A., Neutel, C. L. G., Ket, J. C. F., Njuguna, F., Huitema, A. D. R., Kaspers, G. J. L., & van de Velde, M. E. (2022). Pharmacogenomics of Vincristine-Induced Peripheral Neuropathy in Children with Cancer: A Systematic Review and Meta-Analysis. Cancers, 14(3), 612. https://doi.org/10.3390/cancers14030612