A Propensity Score Matched Analysis of Superparamagnetic Iron Oxide versus Radioisotope Sentinel Node Biopsy in Breast Cancer Patients after Neoadjuvant Chemotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Neoadjuvant Chemotherapy
2.3. Sentinel Lymph Node Biopsy
2.4. Statistical Analysis
3. Results
3.1. Characteristics and Comparison of the Study Groups
3.1.1. RI
3.1.2. SPIO
3.2. Comparison of SLNs Detection Efficacy Depending on the Method Implemented (RI vs. SPIO)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banys-Paluchowski, M.; Gasparri, M.L.; de Boniface, J.; Gentilini, O.; Stickeler, E.; Hartmann, S.; Thill, M.; Rubio, I.T.; Di Micco, R.; Bonci, E.A.; et al. Surgical management of the axilla in clinically node-positive breast cancer patients converting to clinical node negativity through neoadjuvant chemotherapy: Current status, knowledge gaps, and rationale for the EUBREAST-03 AXSANA study. Cancers 2021, 13, 1565. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Burstein, H.J.; Winer, E.P.; Gnant, M.; Dubsky, P.; Loibl, S.; Colleoni, M.; Regan, M.M.; Piccart-Gebhart, M.; Senn, H.J.; et al. De-escalating and escalating treatments for early-stage breast cancer: The St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann. Oncol. 2017, 28, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Cirocchi, R.; Amabile, M.I.; De Luca, A.; Frusone, F.; Tripodi, D.; Gentile, P.; Tabola, R.; Pironi, D.; Forte, F.; Monti, M.; et al. New classifications of axillary lymph nodes and their anatomical-clinical correlations in breast surgery. World J. Surg. Oncol. 2021, 19, 93. [Google Scholar] [CrossRef] [PubMed]
- King, T.A.; Morrow, M. Surgical issues in patients with breast cancer receiving neoadjuvant chemotherapy. Nat. Rev. Clin. Oncol. 2015, 12, 335–343. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Tripodi, D.; Frusone, F.; Leonardi, B.; Cerbelli, B.; Botticelli, A.; Vergine, M.; D’Andrea, V.; Pironi, D.; Sorrenti, S.; et al. Retrospective evaluation of the effectiveness of a synthetic glue and a fibrin-based sealant for the prevention of seroma following axillary dissection in breast cancer patients. Front. Oncol. 2020, 10, 1061. [Google Scholar] [CrossRef]
- Classe, J.-M.; Bordes, V.; Campion, L.; Mignotte, H.; Dravet, F.; Leveque, J.; Sagan, C.; Dupre, P.F.; Body, G.; Giard, S. Sentinel lymph node biopsy after neoadjuvant chemotherapy for advanced breast cancer: Results of ganglion sentinelle et chimiothérapie neoadjuvante, a French prospective multicentric study. J. Clin. Oncol. 2009, 27, 726–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuehn, T.; Bauerfeind, I.; Fehm, T.; Fleige, B.; Hausschild, M.; Helms, G.; Lebeau, A.; Liedtke, C.; von Minckwitz, G.; Nekljudova, V.; et al. Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): A prospective, multicentre cohort study. Lancet Oncol. 2013, 14, 609–618. [Google Scholar] [CrossRef]
- Ahmed, M.; Purushotham, A.D.; Douek, M. Novel techniques for sentinel lymph node biopsy in breast cancer: A systematic review. Lancet Oncol. 2014, 15, e351–e362. [Google Scholar] [CrossRef]
- Kedrzycki, M.S.; Leiloglou, M.; Ashrafian, H.; Jiwa, N.; Thiruchelvam, P.T.R.; Elson, D.S.; Leff, D.R. Meta-analysis comparing fluorescence imaging with radioisotope and blue dye-guided sentinel node identification for breast cancer surgery. Ann. Surg. Oncol. 2021, 28, 3738–3748. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Han, J.H.; Park, S.J.; Lee, E.-G.; Kwak, J.; Kim, S.H.; Lee, M.H.; Lee, E.S.; Kang, H.-S.; Lee, K.S.; et al. The sentinel lymph node biopsy using indocyanine green fluorescence plus radioisotope method compared with the radioisotope-only method for breast cancer patients after neoadjuvant chemotherapy: A prospective, randomized, open-label, single-center phase 2 trial. Ann. Surg. Oncol. 2019, 26, 2409–2416. [Google Scholar] [CrossRef]
- Warnberg, F.; Stigberg, E.; Obondo, C.; Olofsson, H.; Abdsaleh, S.; Warnberg, M.; Karakatsanis, A. Long-term outcome after retro-areolar versus peri-tumoral injection of superparamagnetic iron oxide nanoparticles (SPIO) for sentinel lymph node detection in breast cancer surgery. Ann. Surg. Oncol. 2019, 26, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Thill, M.; Kurylcio, A.; Welter, R.; van Haasteren, V.; Grosse, B.; Berclaz, G.; Polkowski, W.; Hauser, N. The Central-European SentiMag study: Sentinel lymph node biopsy with superparamagnetic iron oxide (SPIO) vs. radioisotope. Breast 2014, 23, 175–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burlizzi, S.; Giacobbe, F.; Ranieri, E.; Stasolla, S.; Villanucci, A.; D’Amuri, A.; Niccoli, A. Supermagnetic iron oxide tracer in association with radioisotope, for sentinel node biopsy in patients with complete axillary response, after neoadjuvant chemoterapy: A single center, prospective study. J. Surg. Res. 2021, 4, 465–472. [Google Scholar]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.-S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef] [PubMed]
- Corso, G.; Scalzi, A.M.D.; Vicini, E.; Morigi, C.; Veronesi, P.; Galimberti, V. Sentinel lymph node biopsy management after neoadjuvant treatment for breast cancer care. Future Oncol. 2018, 14, 1423–1426. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, M.D.; Mittendorf, E.A.; Teshome, M.; Thompson, A.M.; Bold, R.J.; Gittleman, M.A.; Beitsch, P.D.; Blair, S.L.; Kivilaid, K.; Harmer, Q.J.; et al. SentimagIC: A non-inferiority trial comparing superparamagnetic iron oxide versus technetium-99m and blue dye in the detection of axillary sentinel nodes in patients with early-stage breast cancer. Ann. Surg. Oncol. 2019, 26, 3510–3516. [Google Scholar] [CrossRef]
- Kurylcio, A.; Pelc, Z.; Skorzewska, M.; Rawicz-Pruszynski, K.; Mlak, R.; Geca, K.; Sedlak, K.; Kurylcio, P.; Malecka-Massalska, T.; Polkowski, W. Superparamagnetic iron oxide for identifying sentinel lymph node in breast cancer after neoadjuvant chemotherapy: Feasibility study. J. Clin. Med. 2021, 10, 3149. [Google Scholar] [CrossRef]
- Balic, M.; Thomssen, C.; Wurstlein, R.; Gnant, M.; Harbeck, N. St. Gallen/Vienna 2019: A brief summary of the consensus discussion on the optimal primary breast cancer treatment. Breast Care 2019, 14, 103–110. [Google Scholar] [CrossRef]
- Straver, M.E.; Meijnen, P.; van Tienhoven, G.; van de Velde, C.J.; Mansel, R.E.; Bogaerts, J.; Duez, N.; Cataliotti, L.; Klinkenbijl, J.H.; Westenberg, H.A.; et al. Sentinel node identification rate and nodal involvement in the EORTC 10981-22023 AMAROS trial. Ann. Surg. Oncol. 2010, 17, 1854–1861. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E.; ESMO Guidelines Commettee. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [Green Version]
- Gradishar, W.J.; Anderson, B.O.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K.H.; Blair, S.L.; Burstein, H.J.; Dang, C.; Elias, A.D.; et al. Breast cancer, version 3.2020, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 452–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, S.Q.; Zhang, G.J.; Jansen, L.; de Vries, J.; Schroder, C.P.; de Vries, E.G.E.; van Dam, G.M. Evolution in sentinel lymph node biopsy in breast cancer. Crit. Rev. Oncol. Hematol. 2018, 123, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.W.; Tan, S.M.; Zheng, Q.; Shi, L. Network meta-analysis of novel and conventional sentinel lymph node biopsy techniques in breast cancer. BJS Open 2019, 3, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taruno, K.; Kurita, T.; Kuwahata, A.; Yanagihara, K.; Enokido, K.; Katayose, Y.; Nakamura, S.; Takei, H.; Sekino, M.; Kusakabe, M. Multicenter clinical trial on sentinel lymph node biopsy using superparamagnetic iron oxide nanoparticles and a novel handheld magnetic probe. J. Surg. Oncol. 2019, 120, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Houpeau, J.L.; Chauvet, M.P.; Guillemin, F.; Bendavid-Athias, C.; Charitansky, H.; Kramar, A.; Giard, S. Sentinel lymph node identification using superparamagnetic iron oxide particles versus radioisotope: The French Sentimag feasibility trial. J. Surg. Oncol. 2016, 113, 501–507. [Google Scholar] [CrossRef]
- Douek, M.; Klaase, J.; Monypenny, I.; Kothari, A.; Zechmeister, K.; Brown, D.; Wyld, L.; Drew, P.; Garmo, H.; Agbaje, O.; et al. Sentinel node biopsy using a magnetic tracer versus standard technique: The SentiMAG Multicentre Trial. Ann. Surg. Oncol. 2014, 21, 1237–1245. [Google Scholar] [CrossRef]
- Ghilli, M.; Carretta, E.; Di Filippo, F.; Battaglia, C.; Fustaino, L.; Galanou, I.; Di Filippo, S.; Rucci, P.; Fantini, M.P.; Roncella, M. The superparamagnetic iron oxide tracer: A valid alternative in sentinel node biopsy for breast cancer treatment. Eur. J. Cancer Care 2017, 26, e12385. [Google Scholar] [CrossRef]
- Giménez-Climent, J.; Marín-Hernández, C.; Fuster-Diana, C.A.; Torró-Richart, J.A.; Navarro-Cecilia, J. Sentinel lymph node biopsy in breast cancer after neoadjuvant therapy using a magnetic tracer versus standard technique: A multicentre comparative non-inferiority study (IMAGINE-II). Int. J. Surg. Open 2021, 35, 100404. [Google Scholar] [CrossRef]
- Boughey, J.C.; Suman, V.J.; Mittendorf, E.A.; Ahrendt, G.M.; Wilke, L.G.; Taback, B.; Leitch, A.M.; Kuerer, H.M.; Bowling, M.; Flippo-Morton, T.S.; et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: The ACOSOG Z1071 (Alliance) clinical trial. JAMA 2013, 310, 1455–1461. [Google Scholar] [CrossRef] [Green Version]
- Jassem, J.; Krzakowski, M. Breast cancer. Oncol. Clin. Pract. 2018, 14, 171–215. [Google Scholar] [CrossRef]
- Mamounas, E.P.; Brown, A.; Anderson, S.; Smith, R.; Julian, T.; Miller, B.; Bear, H.D.; Caldwell, C.B.; Walker, A.P.; Mikkelson, W.M.; et al. Sentinel node biopsy after neoadjuvant chemotherapy in breast cancer: Results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J. Clin. Oncol. 2005, 23, 2694–2702. [Google Scholar] [CrossRef] [PubMed]
- Rubio, I.T.; Diaz-Botero, S.; Esgueva, A.; Rodriguez, R.; Cortadellas, T.; Cordoba, O.; Espinosa-Bravo, M. The superparamagnetic iron oxide is equivalent to the Tc99 radiotracer method for identifying the sentinel lymph node in breast cancer. Eur. J. Surg. Oncol. 2015, 41, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, G.; Di Leone, A.; Sanchez, A.M.; D’Archi, S.; Terribile, D.; Magno, S.; Scardina, L.; Masetti, R. Update on sentinel lymph node biopsy after neoadjuvant chemotherapy in breast cancer patient. Ann. Ital. Chir. 2020, 91, 465–468. [Google Scholar] [PubMed]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02249208 (accessed on 10 January 2022).
- Aksoy, S.O.; Sevinc, A.; Ünal, M.; Balci, P.; Görkem, İ.B.; Durak, M.G.; Ozer, O.; Bekiş, R.; Emir, B. Management of the axilla with sentinel lymph node biopsy after neoadjuvant chemotherapy for breast cancer: A single-center study. Medicine 2020, 99, e23538. [Google Scholar] [CrossRef] [PubMed]
- Erdahl, L.M.; Boughey, J.C. Use of sentinel lymph node biopsy to select patients for local-regional therapy after neoadjuvant chemotherapy. Curr. Breast Cancer Rep. 2014, 6, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jatoi, I.; Benson, J.R.; Toi, M. De-escalation of axillary surgery in early breast cancer. Lancet Oncol. 2016, 17, e430–e441. [Google Scholar] [CrossRef]
- Kurita, T.; Taruno, K.; Nakamura, S.; Takei, H.; Enokido, K.; Kuwayama, T.; Kanada, Y.; Akashi-Tanaka, S.; Matsuyanagi, M.; Hankyo, M.; et al. Magnetically guided localization using a Guiding-Marker System® and a handheld magnetic probe for nonpalpable breast lesions: A multicenter feasibility study in Japan. Cancers 2021, 13, 2923. [Google Scholar] [CrossRef] [PubMed]
- Makita, M.; Manabe, E.; Kurita, T.; Takei, H.; Nakamura, S.; Kuwahata, A.; Sekino, M.; Kusakabe, M.; Ohashi, Y. Moving a neodymium magnet promotes the migration of a magnetic tracer and increases the monitoring counts on the skin surface of sentinel lymph nodes in breast cancer. BMC Med. Imaging 2020, 20, 58. [Google Scholar] [CrossRef] [PubMed]
- Peek, M.C.L.; Saeki, K.; Ohashi, K.; Chikaki, S.; Baker, R.; Nakagawa, T.; Kusakabe, M.; Douek, M.; Sekino, M. Optimization of SPIO injection for sentinel lymph node dissection in a rat model. Cancers 2021, 13, 5031. [Google Scholar] [CrossRef]
Variable | RI | SPIO | p |
---|---|---|---|
(n = 62) | (n = 62) | ||
Age (years) | |||
Median (interquartile range) | 52 (44–61) | 53.5 (43–62) | 0.7910 |
Weight (kg) | |||
Median (interquartile range) | 70 (62–75) | 68 (58–77) | 0.7413 |
BMI | |||
Median (interquartile range) | 25.72 (23.31–29.33) | 25.97 (21.60–28.63) | 0.6601 |
BMI | 0.3933 | ||
Underweight | 2 (3.2%) | 1 (1.6%) | |
Healthy body weight | 25 (40.3%) | 23 (37.1%) | |
Overweight | 21 (33.9%) | 27 (43.5%) | |
Obese (Grade I) | 10 (16.1%) | 8 (12.9%) | |
Obese (Grade II) | - | 2 (3.2%) | |
Obese (Grade III) | 4 (6.5%) | 1 (1.6%) | |
Tumor highest diameter (mm) | 19.5 (15–30) | 25 (15–30) | 0.4044 |
ypT | 0.9760 | ||
0 | 36 (58.1%) | 35 (56.5%) | |
1 | 14 (22.6%) | 15 (24.2%) | |
2 | 12 (19.4%) | 12 (19.4%) | |
ypN | 0.7415 | ||
Negative | 57 (91.9%) | 57 (91.9%) | |
Positive | 5 (8.1%) | 5 (8.1%) | |
ypTN | 1.0000 | ||
T0N0 | 36 (58.1%) | 36 (58.1%) | |
T1N0 | 11 (17.7%) | 11 (17.7%) | |
T1N1 | 3 (4.8%) | 3 (4.8%) | |
T2N0 | 10 (16.1%) | 10 (16.1%) | |
T2N1 | 2 (3.2%) | 2 (3.2%) | |
Biological subtypes of cancer | 1.0000 | ||
A | 2 (3.2%) | 2 (3.2%) | |
B1 | 21 (33.9%) | 21 (33.9%) | |
B2 | 14 (22.6%) | 14 (22.6%) | |
HER2+ | 7 (11.3%) | 7 (11.3%) | |
TN | 18 (29%) | 18 (29%) | |
NAC | 62 (100%) | 62 (100%) | 1.0000 |
Response to NAC | 0.2625 | ||
No response (small, medium) | 19 (30.6%) | 26 (41.9%) | |
Response (high, complete) | 43 (69.4%) | 36 (58.1%) | |
Type of surgery | 0.1419 | ||
BCS | 32 (51.6) | 30 (48.4%) | |
MRM | 3 (4.8%) | 1 (1.6%) | |
MS | 23 (37.1%) | 19 (30.6%) | |
NSM+IBR | 4 (6.5%) | 12 (19.4%) | |
Site | 1.0000 | ||
Left | 34 (54.8%) | 33 (53.2%) | |
Right | 28 (45.2%) | 29 (46.8%) | |
Margin | 0.1273 | ||
R0 | 62 (100%) | 58 (93.5%) | |
R1 | - | 4 (6.5%) | |
Lymphadenectomy | 1.0000 | ||
No | 56 (90.3%) | 57 (91.9%) | |
Yes | 6 (9.7%) | 5 (8.1%) | |
ycSNB (retrieved) | <0.0001 * | ||
Median (interquartile range) | 2 (2–2) | 3 (2–4) | |
ypSNB (evaluated) | 0.0005 * | ||
Median (interquartile range) | 3 (2–3) | 4 (3–5) | |
ypSN | 0.7415 | ||
Negative | 57 (91.9%) | 57 (91.9%) | |
Positive | 5 (8.1%) | 5 (8.1%) |
Variable | RI | SPIO | OR [95%CI] |
---|---|---|---|
(n = 62) | (n = 62) | p | |
SLN retrieval | |||
<3 retrieved SLNs | 55 (88.7%) | 18 (29%) | 19.21 [7.36–50.10] |
≥3 retrieved SLNs | 7 (11.3%) | 44 (71%) | <0.0001 * |
SLN evaluation | |||
<3 evaluated SLNs | 30 (48.4%) | 14 (22.6%) | 3.21 [1.48–6.98] |
≥3 evaluated SLNs | 32 (51.6%) | 48 (77.4%) | 0.0032 * |
Efficacy of positive SLNs detection | |||
Negative | 57 (91.9%) | 57 (91.9%) | 1.00 [0.30–3.28] |
Positive | 5 (8.1%) | 5 (8.1%) | 1.0000 |
IR of SLNs retrieval | |||
Undetected SLNs | - | - | 0.33 [0.01–8.21] |
Detected SLNs | 62 (100%) | 62 (100%) | 0.4974 |
IR of SLNs evaluation | |||
Undetected SLNs | - | - | 0.19 [0.01–4.42] |
Detected SLNs | 62 (100%) | 62 (100%) | 0.2924 |
Variable | RI (n = 62) | p a | SPIO (n = 62) | p a | ||
---|---|---|---|---|---|---|
or | or | |||||
SLNs Retrieval Efficacy | OR (95%CI) | SLNs Retrieval Efficacy | OR (95%CI) | |||
<3 Retrieved SLNs | ≥3 Retrieved SLNs | p b | p b | ≥3 Retrieved SLNs | p b | |
Age (years) | ||||||
Median (interquartile range) | 53 (44–62) | 50 (44–58) | 0.4763 | 52 (43–62) | 55 (43–62) | 0.6194 |
Weight (kg) | ||||||
Median (interquartile range) | 69 (60–75) | 70 (67–85) | 0.4227 | 77 (63–85) | 66 (57–74) | 0.0280 * |
BMI | ||||||
Median (interquartile range) | 25.51 (23.09–28.20) | 29.33 (25.19–31.93) | 0.1391 | 28.26 (23.23–30.84) | 25.55 (20.98–27.51) | 0.0323 * |
BMI | 25 (92.6%) | 2 (7.4%) | 5 (20.8%) | 19 (79.2%) | ||
Underweight or Healthy body weight | 2.08 [0.40–9.20] | 0.51 [0.15–1.67] | ||||
Overweight or Obese (classes 1–3) | 30 (85.7%) | 5 (14.3%) | 0.4039 | 13 (34.2%) | 25 (65.8%) | 0.2626 |
Tumor highest diameter (mm) | 20.5 (15–30) | 18.5 (12–27.5) | 1 | 25 (20–35) | 20 (13.5–28.7) | 0.0889 |
ypT | ||||||
0 | 33 (91.7%) | 3 (8.3%) | 2.00 [0.41–9.82] | 10 (28.6%) | 25 (71.4%) | 0.95 (0.31–2.87) |
1 or 2 | 22 (84.6%) | 4 (15.4%) | 0.3932 | 8 (29.6%) | 19 (70.4%) | 0.9275 |
ypN | ||||||
Negative | 52 (91.2%) | 5 (8.8%) | 6.93 [0.93–51.79] | 18 (31.6%) | 39 (68.4%) | 5.15 [0.27–98.7] |
Positive | 3 (60%) | 2 (40%) | 0.0591 ^ | - | 5 (100%) | 0.2756 |
Biological subtype of cancer | 1.09 (0.32–3.68) | |||||
A, B1, B2, HER2+ | 39 (88.6%) | 5 (11.4%) | 0.97 (0.17–5.55) | 13 (29.5%) | 31 (70.5%) | 0.8893 |
TN | 16 (88.9%) | 2 (11.1%) | 0.9772 | 5 (27.8%) | 13 (72.2%) | |
Biological subtype of cancer | 2.68 (0.30–24.05) | |||||
A, B1, B2, TN | 49 (89.1%) | 6 (10.9%) | 1.36 (0.14–13.31) | 17 (30.9%) | 38 (69,1%) | 0.3775 |
HER2+ | 6 (85.7%) | 1 (14.3%) | 0.791 | 1 (14.3%) | 6 (85.7%) | |
Response to NAC | ||||||
No response | 16 (84.2%) | 3 (15.8%) | 1.83 (0.37–9.11) | 8 (30.8%) | 18 (69.2%) | 1.16 (0.38–3.50) |
Response | 39 (90.7%) | 4 (9.3%) | 0.4616 | 10 (27.8%) | 26 (72.2%) | 0.798 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelc, Z.; Skórzewska, M.; Kurylcio, M.; Nowikiewicz, T.; Mlak, R.; Sędłak, K.; Gęca, K.; Rawicz-Pruszyński, K.; Zegarski, W.; Polkowski, W.P.; et al. A Propensity Score Matched Analysis of Superparamagnetic Iron Oxide versus Radioisotope Sentinel Node Biopsy in Breast Cancer Patients after Neoadjuvant Chemotherapy. Cancers 2022, 14, 676. https://doi.org/10.3390/cancers14030676
Pelc Z, Skórzewska M, Kurylcio M, Nowikiewicz T, Mlak R, Sędłak K, Gęca K, Rawicz-Pruszyński K, Zegarski W, Polkowski WP, et al. A Propensity Score Matched Analysis of Superparamagnetic Iron Oxide versus Radioisotope Sentinel Node Biopsy in Breast Cancer Patients after Neoadjuvant Chemotherapy. Cancers. 2022; 14(3):676. https://doi.org/10.3390/cancers14030676
Chicago/Turabian StylePelc, Zuzanna, Magdalena Skórzewska, Maria Kurylcio, Tomasz Nowikiewicz, Radosław Mlak, Katarzyna Sędłak, Katarzyna Gęca, Karol Rawicz-Pruszyński, Wojciech Zegarski, Wojciech P. Polkowski, and et al. 2022. "A Propensity Score Matched Analysis of Superparamagnetic Iron Oxide versus Radioisotope Sentinel Node Biopsy in Breast Cancer Patients after Neoadjuvant Chemotherapy" Cancers 14, no. 3: 676. https://doi.org/10.3390/cancers14030676
APA StylePelc, Z., Skórzewska, M., Kurylcio, M., Nowikiewicz, T., Mlak, R., Sędłak, K., Gęca, K., Rawicz-Pruszyński, K., Zegarski, W., Polkowski, W. P., & Kurylcio, A. (2022). A Propensity Score Matched Analysis of Superparamagnetic Iron Oxide versus Radioisotope Sentinel Node Biopsy in Breast Cancer Patients after Neoadjuvant Chemotherapy. Cancers, 14(3), 676. https://doi.org/10.3390/cancers14030676