A Decision Support Tool to Optimize Selection of Head and Neck Cancer Patients for Proton Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. NTCP Models and ΔNTCP Thresholds
2.2. IMPT and VMAT OAR Dmean Prediction
2.3. The Proposed Decision Support Tool
Diagnostic Measures of the Decision Support Tool
- -
- The quality of the plans can be improved when more experience is gained, as there is always a learning curve when a new treatment modality is implemented in a clinic (in this case IMPT) [24,25,26]. To account for that learning curve, patients were sorted based on their treatment initiation date and the population was divided into two subgroups. First, the initial 70 patients treated and second, the remaining 71 patients, who were treated more recently. Then, the diagnostic measures of the tool within these two subgroups were determined.
- -
- The Dmean of the OARs and the frequency of being selected for PT differ based on the primary tumor location, which may also impact the performance of the tool among patients with different tumor locations. In order to examine this, patients were divided into three different groups based on the primary tumor location, i.e., ‘pharynx’, ‘larynx’ and ‘others’. Subsequently, the diagnostic measures of the tool were determined within these three subgroups.
2.4. Statistical Analysis
3. Results
3.1. Patient and Selection for Proton Therapy
3.2. VMAT and IMPT OAR Dmean Prediction Results
Selected PTV Expansion Margins for Dmean Predictions
3.3. VMAT and IMPT NTCP Prediction Results
3.4. Diagnostic Measures of the Decision Support Tool
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Endpoint (6 Months after Radiotherapy) | |||
---|---|---|---|---|
Xerostomia | Dysphagia | |||
Grade ≥ 2 | Grade ≥ 3 | Grade ≥ 2 | Grade ≥ 3 | |
Constant (B0) | −2.2951 | −3.7286 | −4.0536 | −7.6174 |
√Dmean Parotid ipsilateral + √Dmean Parotid contralateral | 0.0996 | 0.0855 | ||
Dmean submandibular bilateral | 0.0182 | 0.0156 | ||
Dmean Oral cavity | 0.0300 | 0.0259 | ||
Dmean PCM superior | 0.0236 | 0.0203 | ||
Dmean PCM medius | 0.0095 | 0.0303 | ||
Dmean PCM inferior | 0.0133 | 0.0341 | ||
Baseline xerostomia: None (EORTC QLQ-H&N35—Q41: score 1) | 0.0000 | 0.0000 | ||
Baseline xerostomia: A littler (EORTC QLQ-H&N35—Q41: score 2) | 0.4950 | 0.4249 | ||
Baseline xerostomia: Quite (EORTC QLQ-H&N35—Q41: score 3–4) | 1.2070 | 1.0361 | ||
Baseline grade 0–1 dysphagia (normal foods) | 0.0000 | 0.0000 | ||
Baseline grade 2 dysphagia (soft foods) | 0.9382 | 0.5738 | ||
Baseline grade 3–4 dysphagia (liquid foods or TFD) | 1.2900 | 1.4718 | ||
Tumor location (Oral Cavity) | 0.0000 | 0.0000 | ||
Tumor location (Pharynx) | −0.6281 | 0.0387 | ||
Tumor location (Larynx) | −0.7711 | −0.5303 |
First Half n (%) | Second Half n (%) | Total n (%) | p Value | ||
---|---|---|---|---|---|
Tumor Location | Oropharynx | 28 (37) | 33 (43) | 61 (40) | 0.131 |
Larynx | 21 (28) | 9 (12) | 30 (20) | ||
Hypopharynx | 7 (9) | 12 (16) | 19 (13) | ||
Nasopharynx | 8 (11) | 8 (11) | 16 (11) | ||
Oral cavity | 6 (8) | 11 (14) | 17 (11) | ||
Other | 5 (7) | 3 (4) | 8 (5) | ||
Baseline Xerostomia | None | 35 (47) | 44 (58) | 79 (52) | 0.141 |
A little | 28 (37) | 27 (36) | 55 (36) | ||
Quite | 12 (16) | 5 (7) | 17 (11) | ||
Baseline Dysphagia | None | 52 (69) | 54 (71) | 106 (70) | 0.795 |
Grade 2 | 22 (29) | 20 (26) | 42 (28) | ||
Grade 3–5 | 1 (1) | 2 (3) | 3 (2) | ||
Proton Indication | No | 25 (33) | 20 (26) | 45 (30) | 0.346 |
Yes | 50 (67) | 56 (74) | 106 (70) | ||
Total | 75 (100) | 76 (100) | 151 (100) |
Nasopharynx | Oral Cavity | Oropharynx | Hypopharynx | Larynx | Other | Total | |
---|---|---|---|---|---|---|---|
Dysphagia grade ≥2 | 44% | 59% | 44% | 37% | 7% | 25% | 36% |
ΣΔNTCP of grade ≥2 | 50% | 12% | 38% | 32% | 17% | 0% | 29% |
Dysphagia grade ≥3 | 19% | 18% | 18% | 63% | 3% | 0% | 20% |
Xerostomia grade ≥2 | 19% | 0% | 3% | 0% | 33% | 0% | 10% |
Xerostomia grade ≥3 | 6% | 0% | 0% | 0% | 7% | 0% | 2% |
ΣΔNTCP of grade ≥3 | 6% | 0% | 0% | 0% | 0% | 0% | 1% |
Total | 94% | 76% | 75% | 74% | 53% | 25% | 70% |
B | Std. Error | p Value | ||
---|---|---|---|---|
Coefficients for VMAT OAR Dmean Prediction | ||||
Oral Cavity | Constant (B0) | 11.923 | 0.748 | <0.001 |
% of Oral Cavity volume overlapping with PTV70 + 15mm | 0.447 | 0.016 | <0.001 | |
% of Oral Cavity volume overlapping with PTV54 + 15 mm but outside PTV70 + 15 mm | 0.338 | 0.062 | <0.001 | |
PCM_Superior | Constant (B0) | 9.826 | 0.887 | <0.001 |
% of PCM_Sup volume overlapping with PTV70 + 10 mm | 0.558 | 0.011 | <0.001 | |
% of PCM_Sup volume overlapping with PTV54 + 10 mm but outside PTV70 + 10 mm | 0.382 | 0.017 | <0.001 | |
PCM_Medius | Constant (B0) | 4.723 | 1.196 | <0.001 |
% of PCM_Med volume overlapping with PTV70 + 10 mm | 0.596 | 0.013 | <0.001 | |
% of PCM_Med volume overlapping with PTV54 + 10 mm but outside PTV70 + 10 mm | 0.405 | 0.019 | <0.001 | |
PCM_Inferior | Constant (B0) | 4.681 | 1.180 | <0.001 |
% of PCM_Inf volume overlapping with PTV70 + 10 mm | 0.607 | 0.013 | <0.001 | |
% of PCM_Inf volume overlapping with PTV54 + 10 mm but outside PTV70 + 10 mm | 0.380 | 0.023 | <0.001 | |
Parotid Left | Constant (B0) | 6.737 | 0.538 | <0.001 |
% of Parotid_left volume overlapping with PTV70 + 7 mm | 0.558 | 0.016 | <0.001 | |
% of Parotid_left volume overlapping with PTV54 + 7 mm but outside PTV70 + 7 mm | 0.497 | 0.029 | <0.001 | |
Parotid Right | Constant (B0) | 7.205 | 0.597 | <0.001 |
% of Parotid_right volume overlapping with PTV70 + 7 mm | 0.598 | 0.016 | <0.001 | |
% of Parotid_right volume overlapping with PTV54 + 7 mm but outside PTV70 + 7 mm | 0.466 | 0.031 | <0.001 | |
Submandibular Left | Constant (B0) | 5.499 | 1.292 | <0.001 |
% of Submand_left volume overlapping with PTV70 + 10 mm | 0.568 | 0.014 | <0.001 | |
% of Submand_left volume overlapping with PTV54 + 10 mm but outside PTV70 + 10 mm | 0.471 | 0.019 | <0.001 | |
Submandibular Right | Constant (B0) | 6.801 | 1.415 | <0.001 |
% of Submand_right volume overlapping with PTV70 + 10 mm | 0.566 | 0.016 | <0.001 | |
% of Submand_right volume overlapping with PTV54 + 10 mm but outside PTV70 + 10 mm | 0.437 | 0.021 | <0.001 | |
Coefficients for IMPT OAR Dmean Prediction | ||||
Oral Cavity | Constant (B0) | 1.481 | 0.290 | <0.001 |
% of Oral Cavity volume overlapping with PTV70 + 7 mm | 0.641 | 0.016 | <0.001 | |
% of Oral Cavity volume overlapping with PTV54 + 7 mm but outside PTV70 + 7 mm | 0.558 | 0.043 | <0.001 | |
PCM_Superior | Constant (B0) | 6.442 | 0.606 | <0.001 |
% of PCM_Sup volume overlapping with PTV70 + 5 mm | 0.643 | 0.009 | <0.001 | |
% of PCM_Sup volume overlapping with PTV54 + 5 mm but outside PTV70 + 5 mm | 0.468 | 0.015 | <0.001 | |
PCM_Medius | Constant (B0) | 9.890 | 0.863 | <0.001 |
% of PCM_Med volume overlapping with PTV70 + 5 mm | 0.597 | 0.012 | <0.001 | |
% of PCM_Med volume overlapping with PTV54 + 5 mm but outside PTV70 + 5 mm | 0.393 | 0.019 | <0.001 | |
PCM_Inferior | Constant (B0) | 3.952 | 0.992 | <0.001 |
% of PCM_Inf volume overlapping with PTV70 + 7 mm | 0.641 | 0.011 | <0.001 | |
% of PCM_Inf volume overlapping with PTV54 + 7 mm but outside PTV70 + 7 mm | 0.373 | 0.026 | <0.001 | |
Parotid Left | Constant (B0) | 1.121 | 0.467 | 0.018 |
% of Parotid_left volume overlapping with PTV70 + 7 mm | 0.606 | 0.012 | <0.001 | |
% of Parotid_left volume overlapping with PTV54 + 7 mm but outside PTV70 + 7 mm | 0.513 | 0.024 | <0.001 | |
Parotid Right | Constant (B0) | 3.063 | 0.433 | <0.001 |
% of Parotid_right volume overlapping with PTV70 + 5 mm | 0.639 | 0.013 | <0.001 | |
% of Parotid_right volume overlapping with PTV54 + 5 mm but outside PTV70 + 5 mm | 0.602 | 0.030 | <0.001 | |
Submandibular Left | Constant (B0) | 10.117 | 0.923 | <0.001 |
% of Submand_left volume overlapping with PTV70 + 5 mm | 0.571 | 0.012 | <0.001 | |
% of Submand_left volume overlapping with PTV54 + 5 mm but outside PTV70 + 5 mm | 0.450 | 0.017 | <0.001 | |
Submandibular Right | Constant (B0) | 8.808 | 0.794 | <0.001 |
% of Submand_right volume overlapping with PTV70 + 5 mm | 0.585 | 0.010 | <0.001 | |
% of Submand_right volume overlapping with PTV54 + 5 mm but outside PTV70 + 5 mm | 0.465 | 0.016 | <0.001 |
References
- Kim, J.K.; Leeman, J.E.; Riaz, N.; McBride, S.; Tsai, C.J.; Lee, N.Y. Proton Therapy for Head and Neck Cancer. Curr. Treat. Options Oncol. 2018, 19, 28. [Google Scholar] [CrossRef]
- Li, X.; Lee, A.; Cohen, M.A.; Sherman, E.J.; Lee, N.Y. Past, present and future of proton therapy for head and neck cancer. Oral Oncol. 2020, 110, 104879. [Google Scholar] [CrossRef]
- Frank, S.J.; Blanchard, P.; Lee, J.J.; Sturgis, E.M.; Kies, M.S.; Machtay, M.; Vikram, B.; Garden, A.S.; Rosenthal, D.I.; Gunn, G.B.; et al. Comparing Intensity-Modulated Proton Therapy with Intensity-Modulated Photon Therapy for Oropharyngeal Cancer: The Journey From Clinical Trial Concept to Activation. Semin. Radiat. Oncol. 2018, 28, 108–113. [Google Scholar] [CrossRef]
- NAPT Annual Survey Results—2019 Data. Available online: https://members.proton-therapy.org/page/AnnualSurvey (accessed on 27 September 2021).
- Tambas, M.; van der Laan, H.; Steenbakkers, R.; Doyen, J.; Timmermann, B.; Orlandi, E.; Hoyer, M.; Haustermans, K.; Georg, P.; Burnet, N.; et al. PH-0328 Current practice for selection of adult patients for proton therapy across Europe. Radiother. Oncol. 2021, 161, S240–S241. [Google Scholar] [CrossRef]
- Ang, K.; Trotti, A.; Brown, B.W.; Garden, A.; Foote, R.L.; Morrison, W.H.; Geara, F.B.; Klotch, D.W.; Goepfert, H.; Peters, L.J. Randomized trial addressing risk features and time factors of surgery plus radiotherapy in advanced head-and-neck cancer. Int. J. Radiat. Oncol. 2001, 51, 571–578. [Google Scholar] [CrossRef]
- Murphy, C.T.; Galloway, T.J.; Handorf, E.A.; Egleston, B.; Wang, L.S.; Mehra, R.; Flieder, D.B.; Ridge, J.A. Survival Impact of Increasing Time to Treatment Initiation for Patients with Head and Neck Cancer in the United States. J. Clin. Oncol. 2016, 34, 169–178. [Google Scholar] [CrossRef]
- Graboyes, E.M.; Kompelli, A.R.; Neskey, D.M.; Brennan, E.; Nguyen, S.; Sterba, K.R.; Warren, G.W.; Hughes-Halbert, C.; Nussenbaum, B.; Day, T.A. Association of Treatment Delays with Survival for Patients With Head and Neck Cancer: A Systematic Review. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 166–177. [Google Scholar] [CrossRef]
- Langendijk, J.A.; Lambin, P.; De Ruysscher, D.; Widder, J.; Bos, M.; Verheij, M. Selection of patients for radiotherapy with protons aiming at reduction of side effects: The model-based approach. Radiother. Oncol. 2013, 107, 267–273. [Google Scholar] [CrossRef] [Green Version]
- van de Water, T.A.; Bijl, H.P.; Schilstra, C.; Pijls-Johannesma, M.; Langendijk, J.A. The potential benefit of radiotherapy with protons in head and neck cancer with respect to normal tissue sparing: A systematic review of literature. Oncologist 2011, 16, 366–377. [Google Scholar] [CrossRef] [Green Version]
- Langendijk, J.A.; Boersma, L.J.; Rasch, C.R.; van Vulpen, M.; Reitsma, J.B.; van der Schaaf, A.; Schuit, E. Clinical Trial Strategies to Compare Protons With Photons. Semin. Radiat. Oncol. 2018, 28, 79–87. [Google Scholar] [CrossRef]
- Landelijk Platform Protonentherapie (LPPT). Landelijk Indicatieprotocol Protonentherapie Hoofdhals. 2017. Available online: http://www.nvro.nl/publicaties/rapporten.html (accessed on 22 September 2021).
- Langendijk, J.A.; Hoebers, F.J.P.; de Jong, M.A.; Doornaert, P.; Terhaard, C.H.J.; Steenbakkers, R.J.H.M.; Hamming-Vrieze, O.; van de Kamer, J.B.; Verbakel, W.F.A.R.; Keskin-Cambay, F.; et al. National Protocol for Model-Based Selection for Proton Therapy in Head and Neck Cancer. Int. J. Part. Ther. 2021, 8, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.J.; Hu, C.; Ladra, M.; Narang, A.K.; Pollack, C.E.; Terezakis, S.A. Socioeconomic factors affect the selection of proton radiation therapy for children. Cancer 2017, 123, 4048–4056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClelland, S., 3rd; Mitin, T.; Jaboin, J.J.; Ciporen, J.N. Impact of Travel Distance on Radiation Treatment Modality for Central Nervous System Disease. J. Neurosci. Rural. Pract. 2019, 10, 606–607. [Google Scholar] [PubMed]
- Liu, S.M.; Brooks, E.D.; Rubin, M.L.; MD Anderson Cancer Center Radiation Oncology Fellows Consortium; Grosshans, D.R.; Frank, S.J.; McAleer, M.F.; McGovern, S.L.; Paulino, A.C.; Woodhouse, K.D. Referral Patterns and Treatment Delays in Medulloblastoma: A Large Academic Proton Center Experience. Int. J. Part. Ther. 2021, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Tarnasky, A.M.; Olivere, L.A.; Ledbetter, L.; Tracy, E.T. Examining the Effect of Travel Distance to Pediatric Cancer Centers and Rurality on Survival and Treatment Experiences: A Systematic Review. J. Pediatr. Hematol. 2021, 43, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, C.L.; Steenbakkers, R.J.; Bourhis, J.; Budach, W.; Grau, C.; Grégoire, V.; van Herk, M.; Lee, A.; Maingon, P.; Nutting, C.; et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother. Oncol. 2015, 117, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Grégoire, V.; Evans, M.; Le, Q.-T.; Bourhis, J.; Budach, V.; Chen, A.; Eisbruch, A.; Feng, M.; Giralt, J.; Gupta, T.; et al. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines. Radiother. Oncol. 2018, 126, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.W.; Ng, W.T.; Pan, J.J.; Poh, S.S.; Ahn, Y.C.; AlHussain, H.; Corry, J.; Grau, C.; Grégoire, V.; Harrington, K.J.; et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother. Oncol. 2018, 126, 25–36. [Google Scholar] [CrossRef]
- Grégoire, V.; Ang, K.; Budach, W.; Grau, C.; Hamoir, M.; Langendijk, J.A.; Lee, A.; Le, Q.T.; Maingon, P.; Nutting, C.; et al. Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother. Oncol. 2014, 110, 172–181. [Google Scholar] [CrossRef]
- Tambas, M.; Steenbakkers, R.J.; van der Laan, H.P.; Wolters, A.M.; Kierkels, R.G.; Scandurra, D.; Korevaar, E.W.; Oldehinkel, E.; van Zon-Meijer, T.W.; Both, S.; et al. First experience with model-based selection of head and neck cancer patients for proton therapy. Radiother. Oncol. 2020, 151, 206–213. [Google Scholar] [CrossRef]
- Landelijk Indicatie Protocol Protonentherapie (versie 2.2) (LIPPv2.2) HOOFD-HALSTUMOREN. 2019. Available online: https://www.nvro.nl/images/documenten/rapporten/2019-08-15__Landelijk_Indicatieprotocol_Protonentherapie_Hoofdhals_v2.2.pdf (accessed on 22 September 2021).
- Singhal, M.; Vincent, A.; Simoneaux, V.; Johnstone, P.A.; Buchsbaum, J.C. Overcoming the Learning Curve in Supine Pediatric Proton Craniospinal Irradiation. J. Am. Coll. Radiol. 2012, 9, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.; Kerkmeijer, L.; de Ruysscher, D.; Brunenberg, E.; Boersma, L.; Verheij, M. Implementation of MR-linac and proton therapy in two radiotherapy departments in The Netherlands: Recommendations based on lessons learned. Radiother. Oncol. 2021, 167, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M. Randomized controlled trials in health technology assessment: Overkill or overdue? Radiother. Oncol. 2008, 86, 142–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tambas, M.; van der Laan, H.P.; Rutgers, W.; van den Hoek, J.G.M.; Oldehinkel, E.; Meijer, T.W.H.; van der Schaaf, A.; Scandurra, D.; Free, J.; Both, S.; et al. Development of advanced preselection tools to reduce redundant plan comparisons in model-based selection of head and neck cancer patients for proton therapy. Radiother. Oncol. 2021, 160, 61–68. [Google Scholar] [CrossRef]
- Hall, D.C.; Trofimov, A.V.; Winey, B.A.; Liebsch, N.J.; Paganetti, H. Predicting Patient-specific Dosimetric Benefits of Proton Therapy for Skull-base Tumors Using a Geometric Knowledge-based Method. Int. J. Radiat. Oncol. 2017, 97, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- Purdie, T.; Dinniwell, R.E.; Letourneau, D.; Hill, C.; Sharpe, M.B. Automated Planning of Tangential Breast Intensity-Modulated Radiotherapy Using Heuristic Optimization. Int. J. Radiat. Oncol. 2011, 81, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.L.; Brame, R.S.; Low, D.A.; Mutic, S. Experience-Based Quality Control of Clinical Intensity-Modulated Radiotherapy Planning. Int. J. Radiat. Oncol. 2011, 81, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Appenzoller, L.M.; Michalski, J.M.; Thorstad, W.L.; Mutic, S.; Moore, K.L. Predicting dose-volume histograms for organs-at-risk in IMRT planning. Med. Phys. 2012, 39, 7446–7461. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Y.; Li, T.; Thongphiew, D.; Yin, F.F.; Wu, Q.J. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med. Phys. 2011, 38, 719–726. [Google Scholar] [CrossRef]
- Shiraishi, S.; Moore, K.L. Knowledge-based prediction of three-dimensional dose distributions for external beam radio-therapy. Med. Phys. 2016, 43, 378. [Google Scholar] [CrossRef]
- Yuan, L.; Ge, Y.; Lee, W.R.; Yin, F.F.; Kirkpatrick, J.; Wu, Q.J. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans. Med. Phys. 2012, 39, 6868–6878. [Google Scholar] [CrossRef] [PubMed]
- Delaney, A.R.; Dahele, M.; Tol, J.P.; Kuijper, I.T.; Slotman, B.J.; Verbakel, W.F. Using a knowledge-based planning solution to select patients for proton therapy. Radiother. Oncol. 2017, 124, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Delaney, A.R.; Verbakel, W.F.; Lindberg, J.; Koponen, T.K.; Slotman, B.J.; Dahele, M. Evaluation of an Automated Proton Planning Solution. Cureus 2018, 10, e3696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouwenberg, J.; Penninkhof, J.; Habraken, S.; Zindler, J.; Hoogeman, M.; Heijmen, B. Model based patient pre-selection for intensity-modulated proton therapy (IMPT) using automated treatment planning and machine learning. Radiother. Oncol. 2021, 158, 224–229. [Google Scholar] [CrossRef]
- Wang, Y.; Breedveld, S.; Heijmen, B.; Petit, S.F. Evaluation of plan quality assurance models for prostate cancer patients based on fully automatically generated Pareto-optimal treatment plans. Phys. Med. Biol. 2016, 61, 4268–4282. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tambas, M.; van der Laan, H.P.; van der Schaaf, A.; Steenbakkers, R.J.H.M.; Langendijk, J.A. A Decision Support Tool to Optimize Selection of Head and Neck Cancer Patients for Proton Therapy. Cancers 2022, 14, 681. https://doi.org/10.3390/cancers14030681
Tambas M, van der Laan HP, van der Schaaf A, Steenbakkers RJHM, Langendijk JA. A Decision Support Tool to Optimize Selection of Head and Neck Cancer Patients for Proton Therapy. Cancers. 2022; 14(3):681. https://doi.org/10.3390/cancers14030681
Chicago/Turabian StyleTambas, Makbule, Hans Paul van der Laan, Arjen van der Schaaf, Roel J. H. M. Steenbakkers, and Johannes Albertus Langendijk. 2022. "A Decision Support Tool to Optimize Selection of Head and Neck Cancer Patients for Proton Therapy" Cancers 14, no. 3: 681. https://doi.org/10.3390/cancers14030681
APA StyleTambas, M., van der Laan, H. P., van der Schaaf, A., Steenbakkers, R. J. H. M., & Langendijk, J. A. (2022). A Decision Support Tool to Optimize Selection of Head and Neck Cancer Patients for Proton Therapy. Cancers, 14(3), 681. https://doi.org/10.3390/cancers14030681