External Validation of the FSAC Model Using On-Therapy Changes in Noninvasive Fibrosis Markers in Patients with Chronic Hepatitis B: A Multicenter Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Follow-Up
2.2. Non-Invasive Assessment of Fibrotic Burden and Calculation of HCC Risk Scores from Prediction Models
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics and HCC Development
3.2. On-Therapy Changes in NFMs
3.3. Predictive Factors of HCC Development
3.4. Predictive Performance of HCC Risk Prediction Models
3.5. HCC Risk Stratification According to FSAC Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, L.Y.; Wong, G.L. Unmet need in chronic hepatitis B management. Clin. Mol. Hepatol. 2019, 25, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Plank, L.D.; Suk, K.T.; Park, Y.E.; Lee, J.; Choi, J.H.; Heo, N.Y.; Park, J.; Kim, T.O.; Moon, Y.S.; et al. Trends in the prevalence of chronic liver disease in the Korean adult population, 1998–2017. Clin. Mol. Hepatol. 2020, 26, 209–215. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef] [Green Version]
- Yim, H.J.; Kim, J.H.; Park, J.Y.; Yoon, E.L.; Park, H.; Kwon, J.H.; Sinn, D.H.; Lee, S.H.; Lee, J.H.; Lee, H.W. Comparison of clinical practice guidelines for the management of chronic hepatitis B: When to start, when to change, and when to stop. Clin. Mol. Hepatol. 2020, 26, 411–429. [Google Scholar] [CrossRef]
- Terrault, N.A.; Bzowej, N.H.; Chang, K.M.; Hwang, J.P.; Jonas, M.M.; Murad, M.H. AASLD guidelines for treatment of chronic hepatitis B. Hepatology 2016, 63, 261–283. [Google Scholar] [CrossRef]
- Woo, H.Y.; Park, J.Y.; Bae, S.H.; Kim, C.W.; Jang, J.Y.; Tak, W.Y.; Kim, D.J.; Kim, I.H.; Heo, J.; Ahn, S.H. Entecavir+tenofovir vs. lamivudine/telbivudine+adefovir in chronic hepatitis B patients with prior suboptimal response. Clin. Mol. Hepatol. 2020, 26, 352–363. [Google Scholar] [CrossRef]
- Lee, S.; Choi, E.J.; Cho, E.J.; Lee, Y.B.; Lee, J.H.; Yu, S.J.; Yoon, J.H.; Kim, Y.J. Inhibition of PI3K/Akt signaling suppresses epithelial-to-mesenchymal transition in hepatocellular carcinoma through the Snail/GSK-3/beta-catenin pathway. Clin. Mol. Hepatol. 2020, 26, 529–539. [Google Scholar] [CrossRef]
- Chao, X.; Qian, H.; Wang, S.; Fulte, S.; Ding, W.X. Autophagy and liver cancer. Clin. Mol. Hepatol. 2020, 26, 606–617. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Yang, Y. Hepatic Hippo signaling inhibits development of hepatocellular carcinoma. Clin. Mol. Hepatol. 2020, 26, 742–750. [Google Scholar] [CrossRef]
- Lee, S.B.; Jeong, J.; Park, J.H.; Jung, S.W.; Jeong, I.D.; Bang, S.J.; Shin, J.W.; Park, B.R.; Park, E.J.; Park, N.H. Low-level viremia and cirrhotic complications in patients with chronic hepatitis B according to adherence to entecavir. Clin. Mol. Hepatol. 2020, 26, 364–375. [Google Scholar] [CrossRef]
- Kim, J.; Kang, W.; Sinn, D.H.; Gwak, G.Y.; Paik, Y.H.; Choi, M.S.; Lee, J.H.; Koh, K.C.; Paik, S.W. Substantial risk of recurrence even after 5 recurrence-free years in early-stage hepatocellular carcinoma patients. Clin. Mol. Hepatol. 2020, 26, 516–528. [Google Scholar] [CrossRef]
- Yoon, S.M.; Kim, S.Y.; Lim, Y.S.; Kim, K.M.; Shim, J.H.; Lee, D.; An, J.; Jung, J.; Kim, J.H.; Lee, H.C. Stereotactic body radiation therapy for small (≤5 cm) hepatocellular carcinoma not amenable to curative treatment: Results of a single-arm, phase II clinical trial. Clin. Mol. Hepatol. 2020, 26, 506–515. [Google Scholar] [CrossRef]
- Papatheodoridis, G.; Dalekos, G.; Sypsa, V.; Yurdaydin, C.; Buti, M.; Goulis, J.; Calleja, J.L.; Chi, H.; Manolakopoulos, S.; Mangia, G.; et al. PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasians with chronic hepatitis B on 5-year antiviral therapy. J. Hepatol. 2016, 64, 800–806. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.S.; Chang, D.R.; Kim, H.; Kim, M.J. Comparison of LI-RADS 2018 and KLCA-NCC 2018 for noninvasive diagnosis of hepatocellular carcinoma using magnetic resonance imaging. Clin. Mol. Hepatol. 2020, 26, 340–351. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Yip, T.C.; Ho, H.J.; Wong, V.W.; Huang, Y.T.; El-Serag, H.B.; Lee, T.Y.; Wu, M.S.; Lin, J.T.; Wong, G.L.; et al. Development of a scoring system to predict hepatocellular carcinoma in Asians on antivirals for chronic hepatitis B. J. Hepatol. 2018, 69, 278–285. [Google Scholar] [CrossRef]
- Papatheodoridis, G.V.; Sypsa, V.; Dalekos, G.N.; Yurdaydin, C.; Van Boemmel, F.; Buti, M.; Calleja, J.L.; Chi, H.; Goulis, J.; Manolakopoulos, S.; et al. Hepatocellular carcinoma prediction beyond year 5 of oral therapy in a large cohort of Caucasian patients with chronic hepatitis B. J. Hepatol. 2020, 72, 1088–1096. [Google Scholar] [CrossRef]
- Chon, H.Y.; Lee, J.S.; Lee, H.W.; Chun, H.S.; Kim, B.K.; Tak, W.Y.; Park, J.Y.; Kweon, Y.O.; Kim, D.Y.; Ahn, S.H.; et al. Predictive Performance of CAGE-B and SAGE-B Models in Asian Treatment-Naive Patients Who Started Entecavir for Chronic Hepatitis B. Clin. Gastroenterol. Hepatol. 2021. [Google Scholar] [CrossRef]
- Lee, H.W.; Lee, H.W.; Lee, J.S.; Roh, Y.H.; Lee, H.; Kim, S.U.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Kim, B.K. The Prognostic Role of On-Treatment Liver Stiffness for Hepatocellular Carcinoma Development in Patients with Chronic Hepatitis B. J. Hepatocell. Carcinoma 2021, 8, 467–476. [Google Scholar] [CrossRef]
- Chon, H.Y.; Seo, Y.S.; Lee, J.I.; Kim, B.S.; Jang, B.K.; Kim, S.G.; Suk, K.T.; Kim, I.H.; Lee, J.W.; Chon, Y.E.; et al. Dynamics of liver stiffness-based risk prediction model during antiviral therapy in patients with chronic hepatitis B. Eur. J. Gastroenterol. Hepatol. 2021, 33, 885–893. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Sun, X.; Yu, H.; Liu, Y. Dynamic Changes of the Aspartate Aminotransferase-to-Platelet Ratio and Transient Elastography in Predicting a Histologic Response in Patients With Chronic Hepatitis B After Entecavir Treatment. J. Ultrasound Med. 2019, 38, 1441–1448. [Google Scholar] [CrossRef]
- Nam, H.; Lee, S.W.; Kwon, J.H.; Lee, H.L.; Yoo, S.H.; Kim, H.Y.; Song, D.S.; Sung, P.S.; Chang, U.I.; Kim, C.W.; et al. Prediction of Hepatocellular Carcinoma by On-Therapy Response of Noninvasive Fibrosis Markers in Chronic Hepatitis B. Am. J. Gastroenterol. 2021, 116, 1657–1666. [Google Scholar] [CrossRef] [PubMed]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.K.; Kim, D.Y.; Park, J.Y.; Ahn, S.H.; Chon, C.Y.; Kim, J.K.; Paik, Y.H.; Lee, K.S.; Park, Y.N.; Han, K.H. Validation of FIB-4 and comparison with other simple noninvasive indices for predicting liver fibrosis and cirrhosis in hepatitis B virus-infected patients. Liver Int. 2010, 30, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Wai, C.T.; Greenson, J.K.; Fontana, R.J.; Kalbfleisch, J.D.; Marrero, J.A.; Conjeevaram, H.S.; Lok, A.S. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38, 518–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korean Association for the Study of the Liver. KASL clinical practice guidelines for liver cirrhosis: Varices, hepatic encephalopathy, and related complications. Clin. Mol. Hepatol. 2020, 26, 83–127. [Google Scholar] [CrossRef]
- Korean Association for the Study of the Liver. KASL clinical practice guidelines: Management of chronic hepatitis B. Clin. Mol. Hepatol. 2016, 22, 18–75. [Google Scholar] [CrossRef] [Green Version]
- Esfeh, J.M.; Hajifathalian, K.; Ansari-Gilani, K. Sensitivity of ultrasound in detecting hepatocellular carcinoma in obese patients compared to explant pathology as the gold standard. Clin. Mol. Hepatol. 2020, 26, 54–59. [Google Scholar] [CrossRef]
- Maruyama, H.; Kato, N. Advances in ultrasound diagnosis in chronic liver diseases. Clin. Mol. Hepatol. 2019, 25, 160–167. [Google Scholar] [CrossRef]
- Shin, H.; Jung, Y.W.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Han, K.H.; Kim, Y.Y.; Choi, J.Y.; Kim, S.U. Risk assessment of hepatocellular carcinoma development for indeterminate hepatic nodules in patients with chronic hepatitis B. Clin. Mol. Hepatol. 2019, 25, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.D. Detect or not to detect very early stage hepatocellular carcinoma? The western perspective. Clin. Mol. Hepatol. 2019, 25, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.Y.; Park, M.S.; Aljoqiman, K.S.; Choi, J.Y.; Kim, M.J. Gadoxetic acid-enhanced magnetic resonance imaging: Hepatocellular carcinoma and mimickers. Clin. Mol. Hepatol. 2019, 25, 223–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.W.; Yoo, E.J.; Kim, B.K.; Kim, S.U.; Park, J.Y.; Kim do, Y.; Ahn, S.H.; Han, K.H. Prediction of development of liver-related events by transient elastography in hepatitis B patients with complete virological response on antiviral therapy. Am. J. Gastroenterol. 2014, 109, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, Y.D.; Lee, M.; Jun, B.G.; Kim, T.S.; Suk, K.T.; Kang, S.H.; Kim, M.Y.; Cheon, G.J.; Kim, D.J.; et al. Modified PAGE-B score predicts the risk of hepatocellular carcinoma in Asians with chronic hepatitis B on antiviral therapy. J. Hepatol. 2018, 69, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.L.; Chan, H.L.; Wong, C.K.; Leung, C.; Chan, C.Y.; Ho, P.P.; Chung, V.C.; Chan, Z.C.; Tse, Y.K.; Chim, A.M.; et al. Liver stiffness-based optimization of hepatocellular carcinoma risk score in patients with chronic hepatitis B. J. Hepatol. 2014, 60, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Qi, Y.F.; Lan, G.Y.; Wu, Q.; Ma, B.; Zhang, X.Y.; Ji, R.Y.; Ma, Y.J.; Hong, Y. Three-dimensional MR Elastography Depicts Liver Inflammation, Fibrosis, and Portal Hypertension in Chronic Hepatitis B or C. Radiology 2021, 301, 154–162. [Google Scholar] [CrossRef]
Variables | Total (n = 3026) |
---|---|
Age (year) | 50 (42, 57) |
Male | 1855 (61.3) |
Cirrhosis | 1391 (46.0) |
Diabetes mellitus | 547 (18.1) |
Hypertension | 520 (24.5) |
Positive for HBeAg | 1045 (34.5) |
Total bilirubin (mg/dL) | 0.80 (0.60, 1.10) |
Serum albumin (g/dL) | 4.2 (3.8, 4.4) |
Platelet count (×109/L) | 162 (120, 209) |
Prothrombin time (INR) | 1.04 (0.98, 1.12) |
AST (IU/L) | 50 (32, 92) |
ALT (IU/L) | 54 (30, 115) |
Liver stiffness (kPa) | 8.30 (5.40, 14.30) |
FIB-4 | 2.24 (1.30, 3.75) |
APRI | 0.87 (0.48, 1.71) |
PAGE-B | 14 (10, 18) |
Modified PAGE-B | 11 (9, 13) |
Modified REACH-B | 8 (6, 11) |
LSM-HCC | 13 (6, 19) |
CAMD | 11 (7, 14) |
FSAC | 6 (2, 9) |
Variables | No HCC (n = 2723) | HCC (n = 303) | p Value |
---|---|---|---|
Age (year) | 49 (41, 56) | 55 (51, 60) | <0.001 |
Male | 1633 (60.0) | 222 (73.3) | <0.001 |
Cirrhosis | 1150 (42.2) | 241 (79.5) | <0.001 |
Diabetes mellitus | 453 (16.6) | 94 (31.0) | <0.001 |
Hypertension | 415 (22.1) | 105 (42.5) | <0.001 |
Positive for HBeAg | 973 (35.7) | 72 (23.8) | <0.001 |
Total bilirubin (mg/dL) | 0.80 (0.60, 1.10) | 0.90 (0.65, 1.30) | 0.053 |
Serum albumin (g/dL) | 4.2 (3.9, 4.4) | 4.0 (3.5, 4.3) | <0.001 |
Platelet count (×109/L) | 167 (127, 213) | 122 (90, 159) | <0.001 |
Prothrombin time (INR) | 1.03 (0.97, 1.10) | 1.07 (1.00, 1.16) | <0.001 |
AST (IU/L) | 50 (32, 93) | 50 (36, 86) | 0.490 |
ALT (IU/L) | 55 (30, 119) | 48 (30, 87) | 0.005 |
Liver stiffness (kPa) | 7.70 (5.30, 13.10) | 14.30 (9.30, 22.15) | <0.001 |
FIB-4 | 2.11 (1.25, 3.56) | 3.38 (2.19, 5.76) | <0.001 |
APRI | 0.84 (0.46, 1.68) | 1.09 (0.66, 2.06) | <0.001 |
PAGE-B | 13 (10, 16) | 18 (15, 19) | <0.001 |
Modified PAGE-B | 11 (8, 13) | 13 (12, 15) | <0.001 |
Modified REACH-B | 8 (6, 10) | 11 (9, 12) | <0.001 |
LSM-HCC | 13 (6, 19) | 23 (16, 25) | <0.001 |
CAMD | 10 (7, 14) | 16 (13, 17) | <0.001 |
FSAC | 5 (2, 9) | 10 (8, 11) | <0.001 |
Scoring Systems | Harrell’s c-Index (95% CI) | 3-Year TDAUC (95% CI) | 5-Year TDAUC (95% CI) | 8-Year TDAUC (95% CI) | iAUC (95% CI) | AIC |
---|---|---|---|---|---|---|
FSAC | 0.770 (0.745, 0.794) | 0.769 (0.745, 0.791) | 0.768 (0.745, 0.79) | 0.768 (0.743, 0.789) | 0.769 (0.744, 0.791) | 4156.74 |
PAGE-B | 0.725 (0.699, 0.750) | 0.724 (0.701, 0.748) | 0.719 (0.697, 0.743) | 0.714 (0.690, 0.737) | 0.718 (0.693, 0.741) | 4257.03 |
Modified PAGE-B | 0.738 (0.712, 0.764) | 0.730 (0.708, 0.753) | 0.727 (0.705, 0.749) | 0.719 (0.698, 0.740) | 0.722 (0.701, 0.744) | 4237.64 |
Modified REACH-B | 0.737 (0.710, 0.763) | 0.726 (0.701, 0.749) | 0.726 (0.701, 0.749) | 0.715 (0.691, 0.738) | 0.724 (0.699, 0.748) | 4244.98 |
LSM-HCC | 0.734 (0.706, 0.762) | 0.732 (0.705, 0.757) | 0.733 (0.706, 0.757) | 0.727 (0.700, 0.751) | 0.731 (0.705, 0.755) | 4237.24 |
CAMD | 0.742 (0.715, 0.768) | 0.744 (0.720, 0.765) | 0.742 (0.718, 0.764) | 0.739 (0.714, 0.763) | 0.743 (0.717, 0.768) | 4216.23 |
Comparisons | Differences of Each Parameter for Predictive Performance | ||||
---|---|---|---|---|---|
Harrell’s c-Index (95% CI) | 3-Year TDAUC (95% CI) | 5-Year TDAUC (95% CI) | 8-Year TDAUC (95% CI) | iAUC (95% CI) | |
PAGE-B vs. FSAC | 0.05 (0.02, 0.07) | 0.05 (0.03, 0.07) | 0.05 (0.03, 0.07) | 0.05 (0.03, 0.08) | 0.05 (0.03, 0.07) |
Modified PAGE-B vs. FSAC | 0.03 (0.01, 0.05) | 0.04 (0.02, 0.06) | 0.04 (0.02, 0.06) | 0.05 (0.03, 0.07) | 0.05 (0.03, 0.07) |
Modified REACH-B vs. FSAC | 0.03 (0.01, 0.06) | 0.04 (0.02, 0.06) | 0.04 (0.02, 0.06) | 0.05 (0.03, 0.08) | 0.04 (0.02, 0.07) |
LSM-HCC vs. FSAC | 0.04 (0.01, 0.06) | 0.04 (0.01, 0.06) | 0.04 (0.01, 0.06) | 0.04 (0.02, 0.06) | 0.04 (0.01, 0.06) |
CAMD vs. FSAC | 0.03 (0.01, 0.05) | 0.02 (0.01, 0.04) | 0.03 (0.01, 0.04) | 0.03 (0.01, 0.04) | 0.03 (0.01, 0.04) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.S.; Lee, H.W.; Lim, T.S.; Min, I.K.; Lee, H.W.; Kim, S.U.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Kim, B.K. External Validation of the FSAC Model Using On-Therapy Changes in Noninvasive Fibrosis Markers in Patients with Chronic Hepatitis B: A Multicenter Study. Cancers 2022, 14, 711. https://doi.org/10.3390/cancers14030711
Lee JS, Lee HW, Lim TS, Min IK, Lee HW, Kim SU, Park JY, Kim DY, Ahn SH, Kim BK. External Validation of the FSAC Model Using On-Therapy Changes in Noninvasive Fibrosis Markers in Patients with Chronic Hepatitis B: A Multicenter Study. Cancers. 2022; 14(3):711. https://doi.org/10.3390/cancers14030711
Chicago/Turabian StyleLee, Jae Seung, Hyun Woong Lee, Tae Seop Lim, In Kyung Min, Hye Won Lee, Seung Up Kim, Jun Yong Park, Do Young Kim, Sang Hoon Ahn, and Beom Kyung Kim. 2022. "External Validation of the FSAC Model Using On-Therapy Changes in Noninvasive Fibrosis Markers in Patients with Chronic Hepatitis B: A Multicenter Study" Cancers 14, no. 3: 711. https://doi.org/10.3390/cancers14030711
APA StyleLee, J. S., Lee, H. W., Lim, T. S., Min, I. K., Lee, H. W., Kim, S. U., Park, J. Y., Kim, D. Y., Ahn, S. H., & Kim, B. K. (2022). External Validation of the FSAC Model Using On-Therapy Changes in Noninvasive Fibrosis Markers in Patients with Chronic Hepatitis B: A Multicenter Study. Cancers, 14(3), 711. https://doi.org/10.3390/cancers14030711