Next Article in Journal
Early-Stage Lung Adenocarcinoma MDM2 Genomic Amplification Predicts Clinical Outcome and Response to Targeted Therapy
Next Article in Special Issue
MR Fingerprinting—A Radiogenomic Marker for Diffuse Gliomas
Previous Article in Journal
Exploring Posttraumatic Stress Symptoms and Posttraumatic Growth among Children Living beyond Cancer and Their Parents Using an Actor–Partner Interdependence Model
Previous Article in Special Issue
Frequent Epigenetic Inactivation of DIRAS-1 and DIRAS-2 Contributes to Chemo-Resistance in Gliomas
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

New Approaches with Precision Medicine in Adult Brain Tumors

by
Annette Leibetseder
1,2,
Matthias Preusser
3,4 and
Anna Sophie Berghoff
3,4,*
1
Department of Neurology 1, Kepler University Hospital, Johannes Kepler University Linz, 4020 Linz, Austria
2
Department of Internal Medicine and Neurooncology, Neuromed Campus, Kepler University Hospital, 4020 Linz, Austria
3
Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
4
Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, 1090 Vienna, Austria
*
Author to whom correspondence should be addressed.
Cancers 2022, 14(3), 712; https://doi.org/10.3390/cancers14030712
Submission received: 15 December 2021 / Revised: 13 January 2022 / Accepted: 24 January 2022 / Published: 29 January 2022
(This article belongs to the Special Issue New Approaches with Precision Medicine in Brain Tumors)

Abstract

:

Simple Summary

Primary brain tumors are rare neoplasms with limited effective systemic treatment options. Recent advances in new molecular techniques have brought about novel information about molecular markers and potential targetable molecular alterations in brain tumors. Targeted therapeutic approaches are already established in several extracranial malignancies and its application is increasingly used and studied in the management of primary brain tumors. The aim of this article is to summarize the latest progress in precision medicine approaches in primary brain tumors.

Abstract

Primary central nervous system (CNS) tumors represent a heterogenous group of tumors. The 2021 fifth edition of the WHO Classification of Tumors of the CNS emphasizes the advanced role of molecular diagnostics with routine implementation of molecular biomarkers in addition to histologic features in the classification of CNS tumors. Thus, novel diagnostic methods such as DNA methylome profiling are increasingly used to provide a more precise diagnostic work-up of CNS tumors. In addition to these diagnostic precision medicine advantages, molecular alterations are also addressed therapeutically with targeted therapies. Like in other tumor entities, precision medicine has therefore also arrived in the treatment of CNS malignancies as the application of targeted therapies has shown promising response rates. Nevertheless, large prospective studies are currently missing as most targeted therapies were evaluated in single arm, basket, or platform trials. In this review, we focus on the current evidence of precision medicine in the treatment of primary CNS tumors in adults. We outline the pathogenic background and prevalence of the most frequent targetable genetic alterations and summarize the existing evidence of precision medicine approaches for the treatment of primary CNS tumors.

1. Introduction

Precision medicine summarizes the approach to target tumor specific genetic alterations with specialized targeted treatments. Driver mutations can be targeted by specific inhibitors like tyrosine kinase inhibitors or antibodies. While specific driver mutations can be found characteristically in specific cancer entities, some targetable driver mutations are present across different entities. While targeted precision medicine approaches are well established in several extracranial solid tumors, little prospective evidence exists so far for primary central nervous system (CNS) tumors.
The introduction of clinically relevant precision medicine options in CNS tumors is challenged by several factors. Components of the blood–brain/tumor barrier and the brain/tumor microenvironment potentially complicate the diffusion of large molecules like antibodies to the tumor site. Spatial and temporal heterogeneity of the tumor must be considered, especially in terms of resistance to targeted therapy, as genomic alterations and gene expression patterns differ spatially within the tumor or may change over time [1,2]. Further, most targetable genetic alternations are only infrequently observed in CNS tumors. Therefore, designing clinical trials to investigate the clinical efficacy is challenging.
Nevertheless, in the past decade, several targeted therapies were evaluated in phase II and phase III trials in brain tumors. Prospective studies concentrated on programmed death-1 (PD-1) inhibitors [3,4,5,6], integrin inhibitors [7], anti-angiogenic therapies targeting vascular endothelial growth factor (VEGF) [8,9,10] or VEGF receptors (VEGFR) [11,12,13], targeted treatment against epidermal growth factor receptor (EGFR) [14], and inhibition of cyclin dependent kinases (CDK) [15,16,17].
In the following we give a short overview of performed phase II and III studies and their results investigating the abovementioned targets:
(a)
PD-1 inhibitors:
Two randomized, multicenter phase III trials investigated the relevance of adding Nivolumab to standard of care treatment in the first-line setting of MGMT-unmethylated (Checkmate 498; nivolumab plus radiation versus temozolomide and radiation) and MGMT-methylated (Checkmate 548; nivolumab plus temozolomide and radiation therapy versus placebo plus standard of care) glioblastoma patients [4,5].
An open label randomized phase III clinical study (Checkmate 143) evaluated outcome after PD-1 inhibition with nivolumab compared to bevacizumab in glioblastoma patients at first recurrence [3].
All of these studies did not meet their primary endpoint, showing that PD-1 immune checkpoint inhibition treatment did not improve overall survival (OS) in glioblastoma patients, neither at initial diagnosis nor at recurrence [3,4,5].
Pembrolizumab represents another PD-1 inhibitor which has been investigated in phase I/II trials in primary brain tumors. A multicohort phase I trial in which 26 recurrent glioblastoma patients received treatment with pembrolizumab demonstrated response rates of 8% (95% confidence interval (CI), 1–26%) [18]. A recently published phase II study randomized 80 glioblastoma patients with recurrent disease to pembrolizumab with bevacizumab or pembrolizumab monotherapy. In this study, no impact on progression free survival (PFS) of pembrolizumab as monotherapy or in combination with bevacizumab was observed [6].
(b)
Integrin inhibitors:
Cilengitide showed no outcome benefit in a multicenter randomized, open-label phase III trial as a combination with temozolomide chemoradiotherapy in newly diagnosed glioblastoma [7].
(c)
VEGF and VEGFR inhibitors:
The effectiveness of bevacizumab, a humanized monoclonal antibody for VEGF-A, was extensively studied either as a single agent or in combination with other therapies in newly diagnosed and progressive glioma [8,9,10,19,20,21,22,23,24]. However, phase III studies failed their primary endpoint in showing improvement of OS, but demonstrated PFS benefit [9,10].
Sunitinib malate is a small-molecule tyrosine kinase inhibitor (TKI) targeting VEGFR and platelet-derived growth factor receptor (PDGFR), and shows insufficient activity in phase II trials as a monotherapy or combined with irinotecan in recurrent glioma [11,12,20,25].
Cediranib represents an oral pan–VEGF receptor TKI. Its efficacy was evaluated in a phase II trial [26] and thereafter in a randomized, phase III, placebo-controlled, partially blinded clinical trial in recurrent glioblastoma (cediranib as monotherapy or in combination with lomustine versus lomustine). The study did not meet its primary endpoint of PFS prolongation [13].
(d)
EGFR inhibition:
Many approaches to target EGFR have been developed, including therapy with small molecule TKIs (for example, gefitinib and lapatinib), monoclonal antibodies (cetuximab, nimotuzumab), antibody drug conjugates (depatuxizumab mafodotin) or vaccination with rindopepimut. None of these agents demonstrated outcome benefit in primary brain tumors [14,27,28,29,30,31].
(e)
CDK inhibitors:
The cyclin D-CDK4/6-Rb pathway is dysregulated in many cancer types. Therefore, inhibition of this pathway has emerged as a promising target for cancer treatment [32,33]. As an example, cyclin-dependent kinase 4/6 (CDK4/6) inhibitors including palbociclib, abemaciclib and ribociclib are well established therapies in combination with endocrine therapy in breast cancer [34,35,36,37].
Far less data and no phase III trials exist in adult primary brain tumors. A phase II study from the Spanish group for Research in Neuro-Oncology was conducted to evaluate the efficacy of palbociclib monotherapy in recurrent Retinoblastoma-positive anaplastic oligodendroglioma. In this study with inclusion of 34 patients, no PFS benefit was observed. There were no partial or complete responses, and 13/34 (38%) patients achieved stable disease [17].
Another phase II trial did not show antitumor activity of palbociclib in adult patients with recurrent RB1-positive glioblastoma and was prematurely terminated [15].
Recently, impact on OS of abemaciclib therapy in newly diagnosed glioblastoma compared to a control group was evaluated in a phase II ‘platform trial’ (Individualized Screening Trial of Innovative Glioblastoma Therapy—INSIGhT). Patients in the abemaciclib arm demonstrated no significant improvement on OS, but good drug tolerability and an increase in PFS [16].
Zotiraciclib (TG02), a potent CDK9 inhibitor, is currently investigated in recurrent and in newly diagnosed high-grade glioma (NCT02942264, NCT03224104).
In summary, none of the studies resulted in a clinically meaningful prolongation of the survival time, and in consequence, none of these agents entered clinical practice. Nevertheless, there are several promising targets, which are currently evaluated in preclinical studies. Here, agents targeting within oncogenic pathways like Kirsten rat sarcoma 2 viral oncogene homolog (KRAS), mesenchymal-epithelial transition factor (MET), telomerase reverse transcriptase (TERT) and alpha-thalassemia/mental retardation syndrome X-linked (ATRX), are currently under investigation [38,39,40,41] and might move forward to clinical application in the next years.
In the following review, we mainly concentrate on new and promising clinical targeted therapy approaches in adults. Latest advances of targeted treatment options in the clinical management of pediatric CNS tumors were recently reviewed elsewhere [42,43].
In this review, we summarize the current evidence on targeted therapies with focus on v-RAF Murine Sarcoma Viral Oncogene Homolog B1 (BRAF), isocitrate dehydrogenase 1 (IDH) and neurotrophic tyrosine receptor kinase (NTRK) fusion in a precision medicine approach for adult primary brain tumors.

2. Review

2.1. v-RAF Murine Sarcoma Viral Oncogene Homolog B1 (BRAF) Inhibitors

The v-RAF Murine Sarcoma Viral Oncogene Homolog B1 (BRAF) gene encodes for rapidly accelerating fibrosarcoma (RAF) serine/threonine kinases. In normal cells, BRAF is activated by extracellular growth signals whereupon signals of rat sarcoma protein (RAS) are transduced downstream via the mitogen activated protein kinase signaling pathway (MAPK) [44,45]. BRAF alterations lead to constitutive MAPK signaling pathway activation, bypassing the need of proliferative signals. Thereby, cellular proliferation, survival and dedifferentiation are promoted either through their kinase activity, RAS dependency, or dimerization status [46,47]. Activating mutations of BRAF occur as a point mutation, in-frame deletion, or fusions with other kinases. The BRAF V600E point mutation (c.1799T > A) leads to a substitution from valine to glutamic acid at position 600, and is the most common one in a subset of CNS tumors [48,49] and other cancers [50,51,52].
BRAF is known as a common mutated kinase in various human cancer types [46,50,53] including melanoma [50,54], colorectal cancer [55], thyroid cancer [56], non-small-cell lung cancer (NSCLC) [57,58], hairy cell leukemia [59], and primary CNS tumors [48].
Frequency rates of BRAF V600E mutation in primary CNS tumors are illustrated in Figure 1a. It is frequently present in papillary craniopharyngioma (95%) [60] and in two thirds of WHO grade II or III pleomorphic xanthoastrocytoma (PXA) [48]. Additionally, BRAF V600E mutation is encountered in WHO grade I ganglioglioma (GG), anaplastic GG, and extracerebellar pilocytic astrocytoma (PA I) in up to 18%, 50%, and 9%, respectively [48]. Among glioblastoma (GBM), BRAF V600E mutation can be found in 1–8% of patients [48,49,61], whereas a higher mutation rate is shown in patients below the age of 30 years (20%) [49,61]. The subtype of epithelioid GBM harbors BRAF V600E mutation in approximately 50% of the cases [62,63].
The occurrence of the oncogenic KIAA1549-BRAF fusion is characteristic of cerebellar PA I in pediatrics and less frequent in extra-cerebellar PA I [64,65,66]; however, it has different biological consequences as the BRAFV600E point mutation. The efficacy of the currently available BRAF inhibitors is limited to point mutations including the BRAF V600E. According to preclinical studies and data in various cancers, tumors carrying a BRAF fusion are not sensitive to BRAF inhibitor therapy [67]. Further, resistance to BRAF inhibition was observed in V600E-mutated glioma cell lines with additional epidermal growth factor receptor (EGFR) amplification [68].
Vemurafenib and dabrafenib function as selective oral inhibitors of the BRAF V600E kinase. In patients with cerebral metastatic melanoma, higher response rates were observed by usage of dabrafenib compared to vemurafenib (31% versus 16%, respectively) [69,70]. A reason for it might be better mobility of dabrafenib through the blood brain barrier (BBB) due to its smaller size and different molecular structure [71].
Tumors’ resistance against RAF inhibitor monotherapy frequently occurs due to maintenance of MAPK pathway activation [72] and prompted the recommendation of adding a MEK inhibitor in order to set another blockade. The efficacy of combined treatment with MEK-inhibitor including dabrafenib/trametinib, was approved in melanoma [73] and NSCLC [74]; the combination of vemurafenib/cobimetinib and encorafenib/binimetanib only in melanoma [73,75,76].
Far less clinical evidence exists in primary CNS tumors. Experiences are based on case reports/series in the recurrent setting [77,78,79,80,81] and phase II trials. Findings with corresponding response rates to BRAF monotherapy or combination therapy with MEK inhibitors in brain tumors are shown in Figure 1b.
In an open-label, nonrandomized multicohort, ‘basket’ study (VE-BASKET) efficacy and safety of vemurafenib monotherapy was shown in patients with nonmelanoma tumor including 24 BRAF-V600E mutated gliomas [82]. The glioma subgroup in this study showed an overall response rate of 25% [82]. The response rate of GBM and anaplastic astrocytoma was 9%, but was more encouraging in pleomorphic xanthoastrocytomas with a rate of 42% [82].
Recently published interim results from another ongoing open-label, single-arm, phase 2 basket trial (Rare Oncology Agnostic Research—ROAR study, NCT02034110) evaluating combined dabrafenib/trametinib in adults with recurrent high-grade (n = 45) or low-grade glioma (n = 13) showed response rates of 33% (15/45, CI 95% 20–49) and 69% (9/13, CI 95% 39–91), respectively [83].
Findings from a phase II study of therapy-naïve papillary craniopharyngioma patients treated with oral vemurafenib and cobimetinib demonstrated an objective response in all patients (16/16, 100%). A second arm of this study is currently recruiting patients with progressive papillary craniopharyngiomas after radiotherapy [84].
In adults, a phase II clinical trial examining the efficacy of combination treatment with encorafenib and binimetinib in recurrent BRAF V600E-mutated high-grade glioma (HGG) and PXAs (NCT03973918) is ongoing. In pediatrics, several more phase II clinical trials examining BRAF and/or MEK inhibition are underway (NCT04201457, NCT01748149, NCT04775485, NCT02684058, NCT03363217).
So far, no evidence regarding BRAF inhibition as first-line treatment in primary CNS tumors exists. However, a currently recruiting phase II study (NCT03919071) is evaluating the benefit of usage of dabrafenib with trametinib after local radiotherapy in newly diagnosed BRAF V600-mutant HGG in pediatrics and young adults.

2.2. Isocitrate Dehydrogenase 1 (IDH1) Inhibition

Mutations in the gene encoding isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) were identified across several cancer types including gliomas, chondrosarcoma, and hematological malignancies [85,86,87,88,89,90]. IDH1 or two mutations are known as an early and significant contributor to tumorigenesis by intracellular accumulation of an oncometabolite product called 2-hydroxyglutarate (2HG) [91]. The latter drives downstream metabolic changes and alters epigenetic and genetic profiles, resulting in genome-wide CpG island hypermethylation, increased repressive histone methylation and double-strand DNA breaking [92,93,94,95,96,97].
A point mutation in IDH1 at the codon 132 (IDH1 R132H), resulting in a switch from arginine to histidine, represents the most common IDH mutation in gliomas [86]. It is seen in approximately 80% of WHO grade II/III gliomas [86,98,99] and in 4–12% of GBM [87,90,99], whereas only a minority of gliomas (4–8%) harbor an IDH2 mutation [86,98,100] (Figure 2a). IDH1 or 2 mutations also occur in other malignancies, including chondrosarcoma [85], intrahepatic cholangiocarcinoma [101], and acute myeloid leukemia (AML) [88,102].
IDH inhibitors are established therapy options in AML with overall response rates of 38.8% to enasidinib and 41.6% to ivosidenib (AG-120) [103,104]. The role of IDH inhibitors in solid tumors including glioma is currently under investigation. A phase I study, followed by a randomized, placebo-controlled phase III trial in advanced IDH1-mutated cholangiocarcinoma reported prolonged progression-free survival (PFS) and good tolerability of ivosidenib [105,106].
In IDH1 mutated glioma, a multicenter open-label phase I dose escalation study of ivosidenib showed a favorable safety profile as well. Regarding outcome, nonenhanced tumors in this cohort showed an objective response rate of 2.9% and a prolonged median PFS rate with 13.6 months (95% CI, 9.2–33.2 months), whereas the median PFS of gliomas with enhancing lesions was 1.4 months (95% CI, 1.0–1.9 months) [107]. Stable disease was achieved in 30 of 35 non-enhancing glioma patients (85.7%) in comparison to 14 of 31 enhancing glioma patients (45.2%). These data were supported by the results of a succeeding perioperative trial, which showed considerable reduction of intratumoral 2-HG levels by 90% in non-enhancing recurrent IDH1 mutant low-grade glioma [108]. DS-1001b is another oral selective inhibitor of mutant IDH1 R132X. Its safety, brain distribution, and treatment response has been investigated in recurrent glioma within a phase I trial (NCT03030066) [109]. Final results are not published yet, but preliminary analysis showed a favorable safety profile and clinical responses [109]. BAY 1436032 was developed as a pan-inhibitor of IDH1 protein with different codon 132 mutations. In murine orthotopic xenograft models, a reduction of intratumoral 2-HG levels and prolonged survival was detected [110]. These preclinical data led to the design and initiation of a phase I clinical trial in patients with IDH1-mutated advanced solid cancers (NCT02746081).
The oral drug vorasidenib (AG-881) represents a novel pan-inhibitor of mutant IDH1 and IDH2. Dual inhibition of mIDH1/2 may be of advantage in the case of occurrence of isoform switching from mIDH1 to mIDH2 or conversely, which has been noted as a potential acquired resistance mechanism against isoform-selective inhibitors in AML [111]. Preclinical trials using vorasidenib in orthoptic mouse xenograft models of human IDH1/2 mutated glioma demonstrated improved BBB penetration, significant 2-HG suppression, and inhibition of tumor growth [112,113]. Data of a multicenter, single-arm phase I dose-escalation study of AG-881, which enrolled 52 patients with recurrent or progressive glioma, were recently published [114]. Results of this study highlighted good drug tolerability with the exception of reversible elevated transaminases as dose-limiting toxicity (≥100 mg).
Similar to the findings with ivosidenib [107], antitumor activity in this cohort was restricted to patients with non-enhancing glioma. Objective response rate was 18.2% (95% CI, 5.2–40.3) in non-enhancing tumors and 0% (95% CI, 0–11.6) in enhancing glioma. Median PFS and disease control rate was 36.8 months (95% CI, 11.2–40.8) and 90.8%, respectively, whereas enhanced tumors showed no responses, but stable disease in 17/30 (56.7%) and a median PFS of 3.6 months (95% CI, 1.8–6.5) [114].
Observed disease control rates to IDH-inhibitors in gliomas of the just mentioned phase I trials are demonstrated in Figure 2b.
Based on data of the abovementioned previous studies, a randomized, placebo-controlled phase III trial has been designed with the aim to investigate the efficacy of AG-881 in patients with residual or recurrent non-enhancing IDH1 or 2 mutated grade 2 glioma (INDIGO-trial, NCT04164901).
Another personalized treatment approach is to target IDH1(R132H)-mutated malignancies via IDH1(R132H)-specific peptide vaccines (IDH1-vac) [115,116].
IDH1(R132H) functions as a driver mutation and generates immunogenic neoepitopes which are presented on major histocompatibility complexes (MHC) to stimulate T cell responses. Preclinical studies in MHC-humanized mice provided evidence to control syngeneic IDH1(R132H)-expressing tumors by inducing a mutation-specific T-helper cell response [117,118]. Based on these data, IDH1(R132H)-specific peptide vaccines have found entrance into clinical phase I trials.
A first-in-humans, multicenter, single-arm open-label phase I trial (NOA-16, NCT02454634), which included 33 patients with newly diagnosed WHO grade 3 and 4 IDH1(R132H) mutated astrocytoma, demonstrated safety and immunogenicity of IDH1-vac [115].
By now, two more different IDH1-directed mutation-specific peptide vaccines have been developed (PEPIDH1M, IDH1R132H-DC vaccine) and are currently tested in two ongoing single-arm phase 1 trials (NCT02193347, NCT02771301).
The currently recruiting NOA-21 trial (NCT03893903) aims to assess safety and efficacy of combining IDH1-vac with the programmed death-ligand 1 (PD-L1) inhibitor Avelumab in recurrent glioma. The study is designed as a randomized phase I trial with three treatment arms (Arm 1: IDH1-vac, Arm 2: IDH1-vac + Avelumab, Arm 3: Avelumab).

2.3. Neurotrophic Tyrosine Receptor Kinase (NTRK) Fusion Inhibition

Three neurotrophic tyrosine receptor kinase (NTRK) genes, NTRK1, NTRK2 and NTRK3, encode for the respective transmembrane tyrosine-kinase receptors (TRK-A, TRK-B, TRK-C) [119,120,121]. Physiologically, TRKs play an important role for the regulation of neuronal differentiation and function pathways, especially during the period of embryo development [122,123,124,125]. Chromosomal rearrangements resulting in somatic gene fusions mostly occur between the 3′-end of a NTRK gene and 5’-end of another gene [126]. NTRK fusions may function as oncogenic drivers by inducing ligand-independent chimeric rearrangements in TRKs. This leads to an uncontrolled and constitutive TRK signaling activation and thus to the upregulation of several downstream pathways [120,124,127].
Overall, NTRK fusions are scarce and occur both in adults and pediatrics with an estimated prevalence of less than 1% across a broad range of different tumor types [120,126,128,129,130,131,132]. However, presence of NTRK fusions varies among histologic subtypes. NTRK fusions are detected at high frequencies (>90%) in distinct rare neoplasms such as breast secretory carcinomas, mammary analogue secretory carcinoma of the salivary glands, infantile fibrosarcoma, and congenital mesoblastic nephroma, and are thereby considered as pathognomonic in these tumor entities [120,133,134,135,136,137,138,139].
Regarding CNS tumors, NTRK fusions are present in approximately 0.55 to 2% of glioma and neuroepithelial tumors [129,130,140,141,142]. Prevalence of NTRK fusions in different tumor types are illustrated in Figure 3a. Adult IDH wildtype GBM harbor NTRK gene fusion in 1–2% [140], mostly involving the NTRK2 gene and less frequently the NTRK1 or NTRK3 gene [132,140,143,144,145]. Higher prevalence rates of NTRK fusions are found in pediatrics, especially in pediatric high-grade glioma (HGG), diffuse intrinsic pontine glioma, and non-brainstem HGG patients younger than three-years-old, with 5.3%, 4%, and 40%, respectively [129,146,147,148,149,150] (Figure 3a). Moreover, NTRK rearrangements have been detected, albeit very seldomly, in several other primary CNS tumors, including pilocytic astrocytoma [140,151,152,153], ganglioglioma [153,154,155], diffuse midline glioma [156], pleomorphic xanthoastrocytoma [147], CNS fibroblastic tumor [157], and CNS embryonal tumor [158]. A recently published multi-institutional study by Torre et al. demonstrated a high diversity of clinicopathologic and molecular features of NTRK-fused gliomas with considerable differences by age group and co-occurring genetic alterations [159].
NTRK-fusion positive cancers represent a molecularly defined subset of tumors susceptible to targeted therapy with TKIs, regardless of tumor histology or age. Two small-molecule, orally-administered TKI-labeled medications, larotrectinib and entrectinib, obtained approval from the FDA after showing a favorable tolerability profile and high efficacy in patients with tumors harboring NTRK fusions [160,161,162,163,164,165,166,167]. By now, larotrectinib has been approved by the European Medicines Agency (EMA) in that regard as well.
Larotrectinib acts as a selective pan-TRK inhibitor. Its efficacy and safety is/was basically studied within three clinical trials including a phase I–II trial in pediatrics trial (SCOUT, NCT02637687, still recruiting), a phase II basket trial in adults and adolescents (NAVIGATE, NCT02576431, still recruiting), and an adult phase I trial [166,168]. A pooled analysis of these studies which enrolled a total of 159 patients with advanced or metastatic non-CNS primary NTRK-fusion positive solid tumors demonstrated response rates after treatment with larotrectinib of >75%. Median duration of response (DoR) and median PFS was declared with 35.2 months and 28.2 months, respectively. The tolerability profile in 260 patients was considered as favorable through occurrence of almost mild and transient adverse events (AEs). Drug-related AEs led to treatment discontinuation in 2% and dose reduction in 8% of cases. Outcome data of enrolled patients with primary CNS tumors in these studies are still pending [168].
Similarly, antitumor activity and tolerability of entrectinib, a selective pan-TRK, ROS1 and ALK inhibitor have been evaluated in three clinical trials (completed phase I study ALKA 372-001, completed phase I study STARTK-1, ongoing phase II study STARTK-2 NCT02650401). An integrated analysis of these studies with a total of 54 patients revealed response rates of 59.3% (Figure 3b), a median DoR of 12.9 months and a median PFS of 11.8 months [163]. In this study cohort, entrectinib induced responses in six (50%) of the twelve patients with baseline CNS disease [163].
Case series/reports or subgroup analysis in previous studies revealed intracranial responses to both larotrectinib or entrectinib in brain metastasis [163,165,166,169,170] and primary CNS tumors [153,154,169,171,172,173,174,175].
The results of ongoing studies enrolling patients with primary CNS tumors and NTRK-fusions (for example, NCT02576431, NCT04655404, NCT02637687, NCT03213704, NCT04879121, NCT04142437, NCT03834961, NCT02650401) are awaited to provide more evidence to support the use of TKI as targeted treatment in brain tumors.

3. Conclusions

Targeted therapies have shown promising response rates in selected patients with primary CNS tumors. Overall, the prevalence of the currently targetable mutations in primary brain tumors is low. Here, the main challenge is to identify patients for a potential precision medicine approach as the targetable driver mutations are not regularly assessed in every single patient. New molecular diagnostic tools like methylation analysis might allow, in addition to a precise diagnostic work up, the early identification of targetable mutations.
The clinical evidence for targeted treatment approaches in primary CNS tumors is limited by the, so far, low number of treated patients in a prospective manner. Nevertheless, modern trial design in precision medicine, particularly including ‘basket and platform trials’, focuses on the further development of targeted treatments in patients with primary CNS tumors.
‘Basket trials’ allow inclusion of patients presenting with a specific driver mutation irrespective of the underlying tumor type. In ‘platform trials’, patients are screened for a broad range of driver mutations and assigned to a particular treatment based on the results of the genetic testing.
In the field of precision medicine, three relevant open questions are warranted to be integrated into future studies. First, when is the optimal treatment start of these drugs (at initial diagnosis or at recurrence)? Second, what is the role of combining molecular treatment with radiotherapy? Finally, how do these agents influence patient-related outcome, especially quality of life?

Author Contributions

Conceptualization, A.L., M.P. and A.S.B.; writing—original draft preparation, A.L., M.P. and A.S.B.; writing—review and editing, A.L., M.P. and A.S.B.; visualization, A.L.; supervision, M.P. and A.S.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

M.P. has received honoraria for lectures, consultation or advisory board participation from the following for-profit companies: Bayer, Bristol-Myers Squibb, Novartis, Ger-son Lehrman Group (GLG), CMC Contrast, GlaxoSmithKline, Mundipharma, Roche, BMJ Jour-nals, MedMedia, Astra Zeneca, AbbVie, Lilly, Medahead, Daiichi Sankyo, Sanofi, Merck Sharp & Dome, Tocagen. The following for-profit companies have supported clinical trials and contracted research conducted by MP with payments made to his institution: Böhringer-Ingelheim, Bris-tol-Myers Squibb, Roche, Daiichi Sankyo, Merck Sharp & Dome, Novocure, GlaxoSmithKline, AbbVie. A.S.B has received research support from Daiichi Sankyo (≤10,000 €), Roche (>10,000 €) and hon-oraria for lectures, consultation or advisory board participation from Roche Bristol-Meyers Squibb, Merck, Daiichi Sankyo (all < 5000 €) as well as travel support from Roche, Amgen and AbbVie. A.L. has received honoraria for lectures, consultation from UCB and Novocure and travel support from Roche and Merz. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

  1. Puchalski, R.B.; Shah, N.; Miller, J.; Dalley, R.; Nomura, S.R.; Yoon, J.G.; Smith, K.A.; Lankerovich, M.; Bertagnolli, D.; Bickley, K.; et al. An anatomic transcriptional atlas of human glioblastoma. Science 2018, 360, 660–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Draaisma, K.; Chatzipli, A.; Taphoorn, M.; Kerkhof, M.; Weyerbrock, A.; Sanson, M.; Hoeben, A.; Lukacova, S.; Lombardi, G.; Leenstra, S.; et al. Molecular evolution of IDH wild-type glioblastomas treated with standard of care affects survival and design of precision medicine trials: A report from the EORTC 1542 study. J. Clin. Oncol. 2020, 38, 81–99. [Google Scholar] [CrossRef] [PubMed]
  3. Reardon, D.A.; Brandes, A.A.; Omuro, A.; Mulholland, P.; Lim, M.; Wick, A.; Baehring, J.; Ahluwalia, M.S.; Roth, P.; Bähr, O.; et al. Effect of Nivolumab vs Bevacizumab in Patients with Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
  4. Weller, M.; Lim, M.; Idbaih, A.; Steinbach, J.; Finocchiaro, G.; Raval, R.; Ashby, L.; Ansstas, G.; Baehring, J.; Taylor, J.; et al. CTIM-25. A randomized phase 3 study of nivolumab or placebo combined with radiotherapy plus temozolomide in patients with newly diagnosed glioblastoma with methylated mgmt promoter: Checkmate 548. Neuro Oncol. 2021, 23, vi55–vi56. [Google Scholar] [CrossRef]
  5. Sampson, J.H.; Omuro, A.M.P.; Preusser, M.; Lim, M.; Butowski, N.A.; Cloughesy, T.F.; Strauss, L.C.; Latek, R.R.; Paliwal, P.; Weller, M.; et al. A randomized, phase 3, open-label study of nivolumab versus temozolomide (TMZ) in combination with radiotherapy (RT) in adult patients (pts) with newly diagnosed, O-6-methylguanine DNA methyltransferase (MGMT)-unmethylated glioblastoma (GBM): CheckMate-498. J. Clin. Oncol. 2016, 34, TPS2079. [Google Scholar] [CrossRef]
  6. Nayak, L.; Molinaro, A.M.; Peters, K.; Clarke, J.L.; Jordan, J.T.; de Groot, J.; Nghiemphu, L.; Kaley, T.; Colman, H.; McCluskey, C.; et al. Randomized Phase II and Biomarker Study of Pembrolizumab plus Bevacizumab versus Pembrolizumab Alone for Patients with Recurrent Glioblastoma. Clin. Cancer Res. 2021, 27, 1048–1057. [Google Scholar] [CrossRef]
  7. Stupp, R.; Hegi, M.E.; Gorlia, T.; Erridge, S.C.; Perry, J.; Hong, Y.K.; Aldape, K.D.; Lhermitte, B.; Pietsch, T.; Grujicic, D.; et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): A multicentre, randomised, open-label, phase 3 trial. Lancet. Oncol. 2014, 15, 1100–1108. [Google Scholar] [CrossRef] [Green Version]
  8. van den Bent, M.J.; Klein, M.; Smits, M.; Reijneveld, J.C.; French, P.J.; Clement, P.; de Vos, F.Y.F.; Wick, A.; Mulholland, P.J.; Taphoorn, M.J.B.; et al. Bevacizumab and temozolomide in patients with first recurrence of WHO grade II and III glioma, without 1p/19q co-deletion (TAVAREC): A randomised controlled phase 2 EORTC trial. Lancet Oncol. 2018, 19, 1170–1179. [Google Scholar] [CrossRef] [Green Version]
  9. Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; et al. Lomustine and bevacizumab in progressive glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef]
  10. Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370, 709–722. [Google Scholar] [CrossRef] [Green Version]
  11. Neyns, B.; Sadones, J.; Chaskis, C.; Dujardin, M.; Everaert, H.; Lv, S.; Duerinck, J.; Tynninen, O.; Nupponen, N.; Michotte, A.; et al. Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J. Neurooncol. 2011, 103, 491–501. [Google Scholar] [CrossRef] [PubMed]
  12. Pan, E.; Yu, D.; Yue, B.; Potthast, L.; Chowdhary, S.; Smith, P.; Chamberlain, M. A prospective phase II single-institution trial of sunitinib for recurrent malignant glioma. J. Neurooncol. 2012, 110, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Batchelor, T.T.; Mulholland, P.; Neyns, B.; Nabors, L.B.; Campone, M.; Wick, A.; Mason, W.; Mikkelsen, T.; Phuphanich, S.; Ashby, L.S.; et al. Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J. Clin. Oncol. 2013, 31, 3212–3218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Weller, M.; Butowski, N.; Tran, D.D.; Recht, L.D.; Lim, M.; Hirte, H.; Ashby, L.; Mechtler, L.; Goldlust, S.A.; Iwamoto, F.; et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017, 18, 1373–1385. [Google Scholar] [CrossRef] [Green Version]
  15. Taylor, J.W.; Parikh, M.; Phillips, J.J.; James, C.D.; Molinaro, A.M.; Butowski, N.A.; Clarke, J.L.; Oberheim-Bush, N.A.; Chang, S.M.; Berger, M.S.; et al. Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J. Neurooncol. 2018, 140, 477–483. [Google Scholar] [CrossRef] [PubMed]
  16. Lee, E.Q.; Trippa, L.; Fell, G.; Rahman, R.; Arrillaga-Romany, I.; Touat, M.; Drappatz, J.; Welch, M.R.; Galanis, E.; Ahluwalia, M.S.; et al. Preliminary results of the abemaciclib arm in the Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT): A phase II platform trial using Bayesian adaptive randomization. J. Clin. Oncol. 2021, 39, 2014. [Google Scholar] [CrossRef]
  17. Sepúlveda-Sánchez, J.M.; Gil-Gil, M.; Alonso-García, M.; Vaz Salgado, M.Á.; Vicente, E.; Mesía Barroso, C.; Rodríguez Sánchez, Á.; Durán, G.; De Las Peñas, R.; Muñoz-Langa, J.; et al. Phase II Trial of Palbociclib in Recurrent Retinoblastoma-Positive Anaplastic Oligodendroglioma: A Study from the Spanish Group for Research in Neuro-Oncology (GEINO). Target. Oncol. 2020, 15, 613–622. [Google Scholar] [CrossRef]
  18. Reardon, D.A.; Kim, T.M.; Frenel, J.S.; Simonelli, M.; Lopez, J.; Subramaniam, D.S.; Siu, L.L.; Wang, H.; Krishnan, S.; Stein, K.; et al. Treatment with pembrolizumab in programmed death ligand 1–positive recurrent glioblastoma: Results from the multicohort phase 1 KEYNOTE-028 trial. Cancer 2021, 127, 1620–1629. [Google Scholar] [CrossRef]
  19. Peters, K.B.; Lou, E.; Desjardins, A.; Reardon, D.A.; Lipp, E.S.; Miller, E.; Herndon, J.E.; McSherry, F.; Friedman, H.S.; Vredenburgh, J.J. Phase II Trial of Upfront Bevacizumab, Irinotecan, and Temozolomide for Unresectable Glioblastoma. Oncologist 2015, 20, 727–728. [Google Scholar] [CrossRef] [Green Version]
  20. Chauffer, B.; Feuvret, L.; Bonnetain, F.; Taillandier, L.; Frappaz, D.; Taillia, H.; Schott, R.; Honnorat, J.; Fabbro, M.; Tennevet, I.; et al. Randomized phase II trial of irinotecan and bevacizumab as neo-adjuvant and adjuvant to temozolomide-based chemoradiation compared with temozolomide-chemoradiation for unresectable glioblastoma: Final results of the TEMAVIR study from ANOCEF. Ann. Oncol. 2014, 25, 1442–1447. [Google Scholar] [CrossRef]
  21. Lee, E.Q.; Reardon, D.A.; Schiff, D.; Drappatz, J.; Muzikansky, A.; Grimm, S.A.; Norden, A.D.; Nayak, L.; Beroukhim, R.; Rinne, M.L.; et al. Phase II study of panobinostat in combination with bevacizumab for recurrent glioblastoma and anaplastic glioma. Neuro Oncol. 2015, 17, 862–867. [Google Scholar] [CrossRef] [Green Version]
  22. Field, K.M.; Simes, J.; Nowak, A.K.; Cher, L.; Wheeler, H.; Hovey, E.J.; Brown, C.S.B.; Barnes, E.H.; Sawkins, K.; Livingstone, A.; et al. Randomized phase 2 study of carboplatin and bevacizumab in recurrent glioblastoma. Neuro Oncol. 2015, 17, 1504–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Diaz, R.J.; Ali, S.; Qadir, M.G.; De La Fuente, M.I.; Ivan, M.E.; Komotar, R.J. The role of bevacizumab in the treatment of glioblastoma. J. Neurooncol. 2017, 133, 455–467. [Google Scholar] [CrossRef] [PubMed]
  24. Taal, W.; Oosterkamp, H.M.; Walenkamp, A.M.E.; Dubbink, H.J.; Beerepoot, L.V.; Hanse, M.C.J.; Buter, J.; Honkoop, A.H.; Boerman, D.; de Vos, F.Y.F.; et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): A randomised controlled phase 2 trial. Lancet Oncol. 2014, 15, 943–953. [Google Scholar] [CrossRef]
  25. Reardon, D.A.; Vredenburgh, J.J.; Coan, A.; Desjardins, A.; Peters, K.B.; Gururangan, S.; Sathornsumetee, S.; Rich, J.N.; Herndon, J.E.; Friedman, H.S. Phase i study of sunitinib and irinotecan for patients with recurrent malignant glioma. J. Neurooncol. 2011, 105, 621–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  26. Batchelor, T.T.; Duda, D.G.; Di Tomaso, E.; Ancukiewicz, M.; Plotkin, S.R.; Gerstner, E.; Eichler, A.F.; Drappatz, J.; Hochberg, F.H.; Benner, T.; et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol. 2010, 28, 2817–2823. [Google Scholar] [CrossRef]
  27. Reardon, D.A.; Groves, M.D.; Wen, P.Y.; Nabors, L.; Mikkelsen, T.; Rosenfeld, S.; Raizer, J.; Barriuso, J.; McLendon, R.E.; Suttle, A.B.; et al. A phase I/II trial of pazopanib in combination with lapatinib in adult patients with relapsed malignant glioma. Clin. Cancer Res. 2013, 19, 900–908. [Google Scholar] [CrossRef] [Green Version]
  28. Uhm, J.H.; Ballman, K.V.; Wu, W.; Giannini, C.; Krauss, J.C.; Buckner, J.C.; James, C.D.; Scheithauer, B.W.; Behrens, R.J.; Flynn, P.J.; et al. Phase II evaluation of gefitinib in patients with newly diagnosed grade 4 astrocytoma: Mayo/north central cancer treatment group study n0074. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 347–353. [Google Scholar] [CrossRef] [Green Version]
  29. Westphal, M.; Heese, O.; Steinbach, J.P.; Schnell, O.; Schackert, G.; Mehdorn, M.; Schulz, D.; Simon, M.; Schlegel, U.; Senft, C.; et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur. J. Cancer 2015, 51, 522–532. [Google Scholar] [CrossRef]
  30. Lee, A.; Arasaratnam, M.; Chan, D.L.H.; Khasraw, M.; Howell, V.M.; Wheeler, H. Anti-epidermal growth factor receptor therapy for glioblastoma in adults. Cochrane Database Syst. Rev. 2020, 12, CD013238. [Google Scholar] [CrossRef]
  31. Van Den Bent, M.; Eoli, M.; Sepulveda, J.M.; Smits, M.; Walenkamp, A.; Frenel, J.S.; Franceschi, E.; Clement, P.M.; Chinot, O.; De Vos, F.; et al. INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro Oncol. 2020, 22, 684–693. [Google Scholar] [CrossRef] [PubMed]
  32. Hamilton, E.; Infante, J.R. Targeting CDK4/6 in patients with cancer. Cancer Treat. Rev. 2016, 45, 129–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. O’Leary, B.; Finn, R.S.; Turner, N.C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 2016, 13, 417–430. [Google Scholar] [CrossRef] [PubMed]
  34. Im, S.-A.; Lu, Y.-S.; Bardia, A.; Harbeck, N.; Colleoni, M.; Franke, F.; Chow, L.; Sohn, J.; Lee, K.-S.; Campos-Gomez, S.; et al. Overall Survival with Ribociclib plus Endocrine Therapy in Breast Cancer. N. Engl. J. Med. 2019, 381, 307–316. [Google Scholar] [CrossRef]
  35. Slamon, D.J.; Neven, P.; Chia, S.; Fasching, P.A.; De Laurentiis, M.; Im, S.-A.; Petrakova, K.; Bianchi, G.V.; Esteva, F.J.; Martín, M.; et al. Overall Survival with Ribociclib plus Fulvestrant in Advanced Breast Cancer. N. Engl. J. Med. 2020, 382, 514–524. [Google Scholar] [CrossRef]
  36. Sledge, G.W.; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; et al. The Effect of Abemaciclib Plus Fulvestrant on Overall Survival in Hormone Receptor-Positive, ERBB2-Negative Breast Cancer That Progressed on Endocrine Therapy—MONARCH 2: A Randomized Clinical Trial. JAMA Oncol. 2020, 6, 116–124. [Google Scholar] [CrossRef]
  37. Cristofanilli, M.; Turner, N.C.; Bondarenko, I.; Ro, J.; Im, S.A.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; Verma, S.; et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): Final analysis of the multicentre, double-blind, phas. Lancet Oncol. 2016, 17, 425–439. [Google Scholar] [CrossRef] [Green Version]
  38. Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS mutation: From undruggable to druggable in cancer. Signal Transduct. Target. Ther. 2021, 6, 386. [Google Scholar] [CrossRef]
  39. Comoglio, P.M.; Trusolino, L.; Boccaccio, C. Known and novel roles of the MET oncogene in cancer: A coherent approach to targeted therapy. Nat. Rev. Cancer 2018, 18, 341–358. [Google Scholar] [CrossRef]
  40. Gabler, L.; Lötsch, D.; Kirchhofer, D.; Van Schoonhoven, S.; Schmidt, H.M.; Mayr, L.; Pirker, C.; Neumayer, K.; Dinhof, C.; Kastler, L.; et al. TERT expression is susceptible to BRAF and ETS-factor inhibition in BRAF V600E /TERT promoter double-mutated glioma. Acta Neuropathol. Commun. 2019, 7, 128. [Google Scholar] [CrossRef]
  41. Liang, J.; Zhao, H.; Diplas, B.H.; Liu, S.; Liu, J.; Wang, D.; Lu, Y.; Zhu, Q.; Wu, J.; Wang, W.; et al. Genome-wide CRISPR-Cas9 screen reveals selective vulnerability of ATRX-mutant cancers to WEE1 inhibition. Cancer Res. 2020, 80, 510–523. [Google Scholar] [CrossRef] [Green Version]
  42. Mueller, T.; Stucklin, A.S.G.; Postlmayr, A.; Metzger, S.; Gerber, N.; Kline, C.; Grotzer, M.; Nazarian, J.; Mueller, S. Advances in Targeted Therapies for Pediatric Brain Tumors. Curr. Treat. Options Neurol. 2020, 22, 43. [Google Scholar] [CrossRef]
  43. Bornhorst, M.; Hwang, E.I. Molecularly Targeted Agents in the Therapy of Pediatric Brain Tumors. Pediatr. Drugs 2020, 22, 45–54. [Google Scholar] [CrossRef] [PubMed]
  44. Malumbres, M.; Barbacid, M. RAS oncogenes: The first 30 years. Nat. Rev. Cancer 2003, 3, 459–465. [Google Scholar] [CrossRef]
  45. Chambard, J.C.; Lefloch, R.; Pouysségur, J.; Lenormand, P. ERK implication in cell cycle regulation. Biochim. Biophys. Acta—Mol. Cell Res. 2007, 1773, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
  46. Leicht, D.T.; Balan, V.; Kaplun, A.; Singh-Gupta, V.; Kaplun, L.; Dobson, M.; Tzivion, G. Raf kinases: Function, regulation and role in human cancer. Biochim. Biophys. Acta—Mol. Cell Res. 2007, 1773, 1196–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  47. Wan, P.T.C.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Project, C.G.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004, 116, 855–867. [Google Scholar] [CrossRef] [Green Version]
  48. Schindler, G.; Capper, D.; Meyer, J.; Janzarik, W.; Omran, H.; Herold-Mende, C.; Schmieder, K.; Wesseling, P.; Mawrin, C.; Hasselblatt, M.; et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011, 121, 397–405. [Google Scholar] [CrossRef] [PubMed]
  49. Behling, F.; Barrantes-Freer, A.; Skardelly, M.; Nieser, M.; Christians, A.; Stockhammer, F.; Rohde, V.; Tatagiba, M.; Hartmann, C.; Stadelmann, C.; et al. Frequency of BRAF V600E mutations in 969 central nervous system neoplasms. Diagn. Pathol. 2016, 11, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  50. Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef] [PubMed]
  51. Michaloglou, C.; Vredeveld, L.C.W.; Mooi, W.J.; Peeper, D.S. BRAFE600 in benign and malignant human tumours. Oncogene 2008, 27, 877–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Tannapfel, A.; Sommerer, F.; Benicke, M.; Katalinic, A.; Uhlmann, D.; Witzigmann, H.; Hauss, J.; Wittekind, C. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 2003, 52, 706–712. [Google Scholar] [CrossRef] [PubMed]
  53. Blum, A.; Wang, P.; Zenklusen, J.C. SnapShot: TCGA-Analyzed Tumors. Cell 2018, 173, 530. [Google Scholar] [CrossRef] [PubMed]
  54. Curtin, J.A.; Fridlyand, J.; Kageshita, T.; Patel, H.N.; Busam, K.J.; Kutzner, H.; Cho, K.-H.; Aiba, S.; Bröcker, E.-B.; LeBoit, P.E.; et al. Distinct Sets of Genetic Alterations in Melanoma. N. Engl. J. Med. 2005, 353, 2135–2147. [Google Scholar] [CrossRef] [PubMed]
  55. Jones, J.C.; Renfro, L.A.; Al-Shamsi, H.O.; Schrock, A.B.; Rankin, A.; Zhang, B.Y.; Kasi, P.M.; Voss, J.S.; Leal, A.D.; Sun, J.; et al. Non-V600BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J. Clin. Oncol. 2017, 35, 2624–2630. [Google Scholar] [CrossRef]
  56. Namba, H.; Nakashima, M.; Hayashi, T.; Hayashida, N.; Maeda, S.; Rogounovitch, T.I.; Ohtsuru, A.; Saenko, V.A.; Kanematsu, T.; Yamashita, S. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab. 2003, 88, 4393–4397. [Google Scholar] [CrossRef] [Green Version]
  57. Cardarella, S.; Ogino, A.; Nishino, M.; Butaney, M.; Shen, J.; Lydon, C.; Yeap, B.Y.; Sholl, L.M.; Johnson, B.E.; Jänne, P.A. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin. Cancer Res. 2013, 19, 4532–4540. [Google Scholar] [CrossRef] [Green Version]
  58. Paik, P.K.; Arcila, M.E.; Fara, M.; Sima, C.S.; Miller, V.A.; Kris, M.G.; Ladanyi, M.; Riely, G.J. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J. Clin. Oncol. 2011, 29, 2046–2051. [Google Scholar] [CrossRef] [Green Version]
  59. Tiacci, E.; Trifonov, V.; Schiavoni, G.; Holmes, A.; Kern, W.; Martelli, M.P.; Pucciarini, A.; Bigerna, B.; Pacini, R.; Wells, V.A.; et al. BRAF Mutations in Hairy-Cell Leukemia. N. Engl. J. Med. 2011, 364, 2305–2315. [Google Scholar] [CrossRef] [Green Version]
  60. Brastianos, P.K.; Taylor-Weiner, A.; Manley, P.E.; Jones, R.T.; Dias-Santagata, D.; Thorner, A.R.; Lawrence, M.S.; Rodriguez, F.J.; Bernardo, L.A.; Schubert, L.; et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat. Genet. 2014, 46, 161–165. [Google Scholar] [CrossRef]
  61. Dahiya, S.; Emnett, R.J.; Haydon, D.H.; Leonard, J.R.; Phillips, J.J.; Perry, A.; Gutmann, D.H. BRAF-V600E mutation in pediatric and adult glioblastoma. Neuro Oncol. 2014, 16, 318–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  62. Kleinschmidt-Demasters, B.K.; Aisner, D.L.; Birks, D.K.; Foreman, N.K. Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am. J. Surg. Pathol. 2013, 37, 685–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Khanna, G.; Pathak, P.; Suri, V.; Sharma, M.C.; Chaturvedi, S.; Ahuja, A.; Bhardwaj, M.; Garg, A.; Sarkar, C.; Sharma, R. Immunohistochemical and molecular genetic study on epithelioid glioblastoma: Series of seven cases with review of literature. Pathol. Res. Pract. 2018, 214, 679–685. [Google Scholar] [CrossRef] [PubMed]
  64. Jones, D.T.W.; Kocialkowski, S.; Liu, L.; Pearson, D.M.; Bäcklund, L.M.; Ichimura, K.; Collins, V.P. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008, 68, 8673–8677. [Google Scholar] [CrossRef] [Green Version]
  65. Jacob, K.; Albrecht, S.; Sollier, C.; Faury, D.; Sader, E.; Montpetit, A.; Serre, D.; Hauser, P.; Garami, M.; Bognar, L.; et al. Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. Br. J. Cancer 2009, 101, 722–733. [Google Scholar] [CrossRef]
  66. Korshunov, A.; Meyer, J.; Capper, D.; Christians, A.; Remke, M.; Witt, H.; Pfister, S.; von Deimling, A.; Hartmann, C. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol. 2009, 118, 401–405. [Google Scholar] [CrossRef]
  67. Banerjee, A.; Jakacki, R.I.; Onar-Thomas, A.; Wu, S.; Nicolaides, T.; Young Poussaint, T.; Fangusaro, J.; Phillips, J.; Perry, A.; Turner, D.; et al. A phase i trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: A Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol. 2017, 19, 1135–1144. [Google Scholar] [CrossRef] [Green Version]
  68. Yao, T.W.; Zhang, J.; Prados, M.; Weiss, W.A.; David James, C.; Nicolaides, T. Acquired resistance to BRAF inhibition in BRAFV600E mutant gliomas. Oncotarget 2017, 8, 583–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  69. Long, G.V.; Trefzer, U.; Davies, M.A.; Kefford, R.F.; Ascierto, P.A.; Chapman, P.B.; Puzanov, I.; Hauschild, A.; Robert, C.; Algazi, A.; et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): A multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 1087–1095. [Google Scholar] [CrossRef]
  70. McArthur, G.A.; Maio, M.; Arance, A.; Nathan, P.; Blank, C.; Avril, M.F.; Garbe, C.; Hauschild, A.; Schadendorf, D.; Hamid, O.; et al. Vemurafenib in metastatic melanoma patients with brain metastases: An open-label, single-arm, phase 2, multicentre study. Ann. Oncol. 2017, 28, 634–641. [Google Scholar] [CrossRef]
  71. Mittapalli, R.K.; Vaidhyanathan, S.; Dudek, A.Z.; Elmquist, W.F. Mechanisms limiting distribution of the threonine-protein kinase B-RaF V600E inhibitor dabrafenib to the brain: Implications for the treatment of melanoma brain metastases. J. Pharmacol. Exp. Ther. 2013, 344, 655–664. [Google Scholar] [CrossRef] [Green Version]
  72. Solit, D.B.; Rosen, N. Resistance to BRAF Inhibition in Melanomas. N. Engl. J. Med. 2011, 364, 772–774. [Google Scholar] [CrossRef]
  73. Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. N. Engl. J. Med. 2014, 371, 1877–1888. [Google Scholar] [CrossRef] [Green Version]
  74. Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, Å.; Giannone, V.; D’Amelio, A.M.; Zhang, P.; Mookerjee, B.; et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: An open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1307–1316. [Google Scholar] [CrossRef]
  75. Larkin, J.; Ascierto, P.A.; Dréno, B.; Atkinson, V.; Liszkay, G.; Maio, M.; Mandalà, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; et al. Combined Vemurafenib and Cobimetinib in BRAF -Mutated Melanoma. N. Engl. J. Med. 2014, 371, 1867–1876. [Google Scholar] [CrossRef] [Green Version]
  76. Dummer, R.; Ascierto, P.A.; Gogas, H.J.; Arance, A.; Mandala, M.; Liszkay, G.; Garbe, C.; Schadendorf, D.; Krajsova, I.; Gutzmer, R.; et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018, 19, 603–615. [Google Scholar] [CrossRef] [Green Version]
  77. Chamberlain, M.C. Salvage therapy with BRAF inhibitors for recurrent pleomorphic xanthoastrocytoma: A retrospective case series. J. Neurooncol. 2013, 114, 237–240. [Google Scholar] [CrossRef]
  78. Usubalieva, A.; Pierson, C.R.; Kavran, C.A.; Huntoon, K.; Kryvenko, O.N.; Mayer, T.G.; Zhao, W.; Rock, J.; Ammirati, M.; Puduvalli, V.K.; et al. Primary meningeal pleomorphic xanthoastrocytoma with anaplastic features: A report of 2 cases, one with BRAFV600E mutation and clinical response to the BRAF inhibitor dabrafenib. J. Neuropathol. Exp. Neurol. 2015, 74, 960–969. [Google Scholar] [CrossRef] [Green Version]
  79. Drobysheva, A.; Klesse, L.J.; Bowers, D.C.; Rajaram, V.; Rakheja, D.; Timmons, C.F.; Wang, J.; Koral, K.; Gargan, L.; Ramos, E.; et al. Targeted MAPK pathway inhibitors in patients with disseminated pilocytic astrocytomas. JNCCN J. Natl. Compr. Cancer Netw. 2017, 15, 978–982. [Google Scholar] [CrossRef]
  80. Johanns, T.M.; Ferguson, C.J.; Grierson, P.M.; Dahiya, S.; Ansstas, G. Rapid clinical and radiographic response with combined dabrafenib and trametinib in adults with BRAF-mutated high-grade glioma. JNCCN J. Natl. Compr. Cancer Netw. 2018, 16, 4–10. [Google Scholar] [CrossRef] [Green Version]
  81. Marks, A.M.; Bindra, R.S.; DiLuna, M.L.; Huttner, A.; Jairam, V.; Kahle, K.T.; Kieran, M.W. Response to the BRAF/MEK inhibitors dabrafenib/trametinib in an adolescent with a BRAF V600E mutated anaplastic ganglioglioma intolerant to vemurafenib. Pediatr. Blood Cancer 2018, 65, e26969. [Google Scholar] [CrossRef]
  82. Kaley, T.; Touat, M.; Subbiah, V.; Hollebecque, A.; Rodon, J.; Lockhart, A.C.; Keedy, V.; Bielle, F.; Hofheinz, R.D.; Joly, F.; et al. BRAF inhibition in BRAFV600-mutant gliomas: Results from the VE-BASKET study. J. Clin. Oncol. 2018, 36, 3477–3484. [Google Scholar] [CrossRef]
  83. Wen, P.Y.; Stein, A.; Van Den Bent, M.; De Greve, J.; Wick, A.; De Vos, F.Y.F.L.; Von Bubnoff, N.; Van Linde, M.E.; Lai, A.; Prager, G.W.; et al. Dabrafenib plus trametinib in patients with BRAFV600E-mutant low-grade and high-grade glioma (ROAR): A multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2021, 23, 53–64. [Google Scholar] [CrossRef]
  84. Brastianos, P.K.; Twohy, E.; Geyer, S.M.; Gerstner, E.R.; Kaufmann, T.J.; Ruff, M.; Bota, D.A.; Reardon, D.A.; Cohen, A.L.; De La Fuente, M.I.; et al. Alliance A071601: Phase II trial of BRAF/MEK inhibition in newly diagnosed papillary craniopharyngiomas. J. Clin. Oncol. 2021, 39, 2000. [Google Scholar] [CrossRef]
  85. Amary, M.F.; Bacsi, K.; Maggiani, F.; Damato, S.; Halai, D.; Berisha, F.; Pollock, R.; O’Donnell, P.; Grigoriadis, A.; Diss, T.; et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J. Pathol. 2011, 224, 334–343. [Google Scholar] [CrossRef]
  86. Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; et al. IDH1 and IDH2 Mutations in Gliomas. N. Engl. J. Med. 2009, 360, 765–773. [Google Scholar] [CrossRef]
  87. Brennan, C.W.; Verhaak, R.G.W.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The Somatic Genomic Landscape of Glioblastoma. Cell 2014, 157, 753. [Google Scholar] [CrossRef] [Green Version]
  88. Mardis, E.R.; Ding, L.; Dooling, D.J.; Larson, D.E.; McLellan, M.D.; Chen, K.; Koboldt, D.C.; Fulton, R.S.; Delehaunty, K.D.; McGrath, S.D.; et al. Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome. N. Engl. J. Med. 2009, 361, 1058–1066. [Google Scholar] [CrossRef] [Green Version]
  89. Kosmider, O.; Gelsi-Boyer, V.; Slama, L.; Dreyfus, F.; Beyne-Rauzy, O.; Quesnel, B.; Hunault-Berger, M.; Slama, B.; Vey, N.; Lacombe, C.; et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia 2010, 24, 1094–1096. [Google Scholar] [CrossRef] [Green Version]
  90. Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.M.; Gallia, G.L.; et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008, 321, 1807–1812. [Google Scholar] [CrossRef] [Green Version]
  91. Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462, 739–744. [Google Scholar] [CrossRef] [Green Version]
  92. Turcan, S.; Makarov, V.; Taranda, J.; Wang, Y.; Fabius, A.W.M.; Wu, W.; Zheng, Y.; El-Amine, N.; Haddock, S.; Nanjangud, G.; et al. Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nat. Genet. 2018, 50, 62–72. [Google Scholar] [CrossRef]
  93. Turcan, S.; Rohle, D.; Goenka, A.; Walsh, L.A.; Fang, F.; Yilmaz, E.; Campos, C.; Fabius, A.W.M.; Lu, C.; Ward, P.S.; et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012, 483, 479–483. [Google Scholar] [CrossRef]
  94. Lu, C.; Ward, P.S.; Kapoor, G.S.; Rohle, D.; Turcan, S.; Abdel-Wahab, O.; Edwards, C.R.; Khanin, R.; Figueroa, M.E.; Melnick, A.; et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012, 483, 474–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  95. Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S.H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M.T.; et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011, 19, 17–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Chowdhury, R.; Yeoh, K.K.; Tian, Y.M.; Hillringhaus, L.; Bagg, E.A.; Rose, N.R.; Leung, I.K.H.; Li, X.S.; Woon, E.C.Y.; Yang, M.; et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 2011, 12, 463–469. [Google Scholar] [CrossRef] [Green Version]
  97. Clark, O.; Yen, K.; Mellinghoff, I.K. Molecular pathways: Isocitrate dehydrogenase mutations in cancer. Clin. Cancer Res. 2016, 22, 1837–1842. [Google Scholar] [CrossRef] [Green Version]
  98. Hartmann, C.; Meyer, J.; Balss, J.; Capper, D.; Mueller, W.; Christians, A.; Felsberg, J.; Wolter, M.; Mawrin, C.; Wick, W.; et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: A study of 1,010 diffuse gliomas. Acta Neuropathol. 2009, 118, 469–474. [Google Scholar] [CrossRef] [Green Version]
  99. Balss, J.; Meyer, J.; Mueller, W.; Korshunov, A.; Hartmann, C.; von Deimling, A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008, 116, 597–602. [Google Scholar] [CrossRef]
  100. Waitkus, M.S.; Diplas, B.H.; Yan, H. Isocitrate dehydrogenase mutations in gliomas. Neuro Oncol. 2016, 18, 16–26. [Google Scholar] [CrossRef] [Green Version]
  101. Voss, J.S.; Holtegaard, L.M.; Kerr, S.E.; Fritcher, E.G.B.; Roberts, L.R.; Gores, G.J.; Zhang, J.; Highsmith, W.E.; Halling, K.C.; Kipp, B.R. Molecular profiling of cholangiocarcinoma shows potential for targeted therapy treatment decisions. Hum. Pathol. 2013, 44, 1216–1222. [Google Scholar] [CrossRef]
  102. Paschka, P.; Schlenk, R.F.; Gaidzik, V.I.; Habdank, M.; Krönke, J.; Bullinger, L.; Späth, D.; Kayser, S.; Zucknick, M.; Götze, K.; et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 2010, 28, 3636–3643. [Google Scholar] [CrossRef]
  103. DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable Remissions with Ivosidenib in IDH1 -Mutated Relapsed or Refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
  104. Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; Deangelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef] [PubMed]
  105. Lowery, M.A.; Burris, H.A.; Janku, F.; Shroff, R.T.; Cleary, J.M.; Azad, N.S.; Goyal, L.; Maher, E.A.; Gore, L.; Hollebecque, A.; et al. Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: A phase 1 study. Lancet Gastroenterol. Hepatol. 2019, 4, 711–720. [Google Scholar] [CrossRef]
  106. Zhu, A.X.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.T.; Borad, M.J.; Bridgewater, J.A.; et al. Final results from ClarIDHy, a global, phase III, randomized, double-blind study of ivosidenib (IVO) versus placebo (PBO) in patients (pts) with previously treated cholangiocarcinoma (CCA) and an isocitrate dehydrogenase 1 (IDH1) mutation. J. Clin. Oncol. 2021, 39, 266. [Google Scholar] [CrossRef]
  107. Mellinghoff, I.K.; Ellingson, B.M.; Touat, M.; Maher, E.; De La Fuente, M.I.; Holdhoff, M.; Cote, G.M.; Burris, H.; Janku, F.; Young, R.J.; et al. Ivosidenib in isocitrate dehydrogenase 1-mutated advanced glioma. J. Clin. Oncol. 2020, 38, 3398–3406. [Google Scholar] [CrossRef]
  108. Mellinghoff, I.K.; Cloughesy, T.F.; Wen, P.Y.; Taylor, J.W.; Maher, E.A.; Arrillaga, I.; Peters, K.B.; Choi, C.; Ellingson, B.M.; Lin, A.P.; et al. A phase I, open label, perioperative study of AG-120 and AG-881 in recurrent IDH1 mutant, low-grade glioma: Results from cohort 1. J. Clin. Oncol. 2019, 37, 2003. [Google Scholar] [CrossRef]
  109. Natsume, A.; Wakabayashi, T.; Miyakita, Y.; Narita, Y.; Mineharu, Y.; Arakawa, Y.; Yamasaki, F.; Sugiyama, K.; Hata, N.; Muragaki, Y.; et al. Phase I study of a brain penetrant mutant IDH1 inhibitor DS-1001b in patients with recurrent or progressive IDH1 mutant gliomas. J. Clin. Oncol. 2019, 37, 2004. [Google Scholar] [CrossRef]
  110. Pusch, S.; Krausert, S.; Fischer, V.; Balss, J.; Ott, M.; Schrimpf, D.; Capper, D.; Sahm, F.; Eisel, J.; Beck, A.C.; et al. Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo. Acta Neuropathol. 2017, 133, 629–644. [Google Scholar] [CrossRef]
  111. Harding, J.J.; Lowery, M.A.; Shih, A.H.; Schvartzman, J.M.; Hou, S.; Famulare, C.; Patel, M.; Roshal, M.; Do, R.K.; Zehir, A.; et al. Isoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibition. Cancer Discov. 2018, 8, 1540–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  112. Nicolay, B.; Narayanaswamy, R.; Amatangelo, M.D.; Aguado, E.; Nagaraja, R.; Murtie, J.; Liu, G.; Ishii, Y. EXTH-34. Combined use of the pan-idh mutant inhibitor AG-881 with radiation therapy shows added benefit in an orthotopic IDH1 mutant glioma model in vivo. Neuro Oncol. 2017, 19, vi79. [Google Scholar] [CrossRef]
  113. Konteatis, Z.; Artin, E.; Nicolay, B.; Straley, K.; Padyana, A.K.; Jin, L.; Chen, Y.; Narayaraswamy, R.; Tong, S.; Wang, F.; et al. Vorasidenib (AG-881): A First-in-Class, Brain-Penetrant Dual Inhibitor of Mutant IDH1 and 2 for Treatment of Glioma. ACS Med. Chem. Lett. 2020, 11, 101–107. [Google Scholar] [CrossRef] [PubMed]
  114. Mellinghoff, I.K.; Penas-Prado, M.; Peters, K.B.; Burris, H.A.; Maher, E.A.; Janku, F.; Cote, G.M.; de la Fuente, M.I.; Clarke, J.L.; Ellingson, B.M.; et al. Vorasidenib, a Dual Inhibitor of Mutant IDH1/2, in Recurrent or Progressive Glioma; Results of a First-in-Human Phase I Trial. Clin. Cancer Res. 2021, 27, 4491–4499. [Google Scholar] [CrossRef]
  115. Platten, M.; Bunse, L.; Wick, A.; Bunse, T.; Le Cornet, L.; Harting, I.; Sahm, F.; Sanghvi, K.; Tan, C.L.; Poschke, I.; et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 2021, 592, 463–468. [Google Scholar] [CrossRef]
  116. Platten, M.; Bunse, L.; Wick, W. Emerging targets for anticancer vaccination: IDH. ESMO Open 2021, 6, 100214. [Google Scholar] [CrossRef]
  117. Pellegatta, S.; Valletta, L.; Corbetta, C.; Patanè, M.; Zucca, I.; Riccardi Sirtori, F.; Bruzzone, M.G.; Fogliatto, G.; Isacchi, A.; Pollo, B.; et al. Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol. Commun. 2015, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  118. Schumacher, T.; Bunse, L.; Pusch, S.; Sahm, F.; Wiestler, B.; Quandt, J.; Menn, O.; Osswald, M.; Oezen, I.; Ott, M.; et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014, 512, 324–327. [Google Scholar] [CrossRef]
  119. Chao, M.V. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci. 2003, 4, 299–309. [Google Scholar] [CrossRef]
  120. Vaishnavi, A.; Le, A.T.; Doebele, R.C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015, 5, 25–34. [Google Scholar] [CrossRef] [Green Version]
  121. Valent, A.; Danglot, G.; Bernheim, A. Mapping of the tyrosine kinase receptors trkA (NTRK1), trkB (NTRK2) and trkC (NTRK3) to human chromosomes 1q22, 9q22 and 15q25 by fluorescence in situ hybridization. Eur. J. Hum. Genet. 1997, 5, 102–104. [Google Scholar] [CrossRef] [PubMed]
  122. Klein, R.; Jing, S.; Nanduri, V.; O’Rourke, E.; Barbacid, M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 1991, 65, 189–197. [Google Scholar] [CrossRef]
  123. Kaplan, D.R.; Martin-Zanca, D.; Parada, L.F. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 1991, 350, 158–160. [Google Scholar] [CrossRef] [PubMed]
  124. Nakagawara, A. Trk receptor tyrosine kinases: A bridge between cancer and neural development. Cancer Lett. 2001, 169, 107–114. [Google Scholar] [CrossRef]
  125. Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  126. Stransky, N.; Cerami, E.; Schalm, S.; Kim, J.L.; Lengauer, C. The landscape of kinase fusions in cancer. Nat. Commun. 2014, 5, 4846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  127. Rubin, J.B.; Segal, R.A. Growth, survival and migration: The Trk to cancer. Cancer Treat. Res. 2003, 115, 1–18. [Google Scholar]
  128. Kheder, E.S.; Hong, D.S. Emerging targeted therapy for tumors with NTRK fusion proteins. Clin. Cancer Res. 2018, 24, 5807–5814. [Google Scholar] [CrossRef] [Green Version]
  129. Okamura, R.; Boichard, A.; Kato, S.; Sicklick, J.K.; Bazhenova, L.; Kurzrock, R. Analysis of NTRK Alterations in Pan-Cancer Adult and Pediatric Malignancies: Implications for NTRK-Targeted Therapeutics. JCO Precis. Oncol. 2018, 2018, PO.18.00183. [Google Scholar] [CrossRef]
  130. Rosen, E.Y.; Goldman, D.A.; Hechtman, J.F.; Benayed, R.; Schram, A.M.; Cocco, E.; Shifman, S.; Gong, Y.; Kundra, R.; Solomon, J.P.; et al. Trk fusions are enriched in cancers with uncommon histologies and the absence of canonical driver mutations. Clin. Cancer Res. 2020, 26, 1624–1632. [Google Scholar] [CrossRef] [Green Version]
  131. Créancier, L.; Vandenberghe, I.; Gomes, B.; Dejean, C.; Blanchet, J.C.; Meilleroux, J.; Guimbaud, R.; Selves, J.; Kruczynski, A. Chromosomal rearrangements involving the NTRK1 gene in colorectal carcinoma. Cancer Lett. 2015, 365, 107–111. [Google Scholar] [CrossRef] [PubMed]
  132. Cook, P.J.; Thomas, R.; Kannan, R.; De Leon, E.S.; Drilon, A.; Rosenblum, M.K.; Scaltriti, M.; Benezra, R.; Ventura, A. Somatic chromosomal engineering identifies BCAN-NTRK1 as a potent glioma driver and therapeutic target. Nat. Commun. 2017, 8, 15987. [Google Scholar] [CrossRef] [PubMed]
  133. Tognon, C.; Knezevich, S.R.; Huntsman, D.; Roskelley, C.D.; Melnyk, N.; Mathers, J.A.; Becker, L.; Carneiro, F.; MacPherson, N.; Horsman, D.; et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002, 2, 367–376. [Google Scholar] [CrossRef] [Green Version]
  134. Xu, B.; Haroon Al Rasheed, M.R.; Antonescu, C.R.; Alex, D.; Frosina, D.; Ghossein, R.; Jungbluth, A.A.; Katabi, N. Pan-Trk immunohistochemistry is a sensitive and specific ancillary tool for diagnosing secretory carcinoma of the salivary gland and detecting ETV6–NTRK3 fusion. Histopathology 2020, 76, 375–382. [Google Scholar] [CrossRef] [PubMed]
  135. Hung, Y.P.; Fletcher, C.D.M.; Hornick, J.L. Evaluation of pan-TRK immunohistochemistry in infantile fibrosarcoma, lipofibromatosis-like neural tumour and histological mimics. Histopathology 2018, 73, 634–644. [Google Scholar] [CrossRef] [PubMed]
  136. Harrison, B.T.; Fowler, E.; Krings, G.; Chen, Y.Y.; Bean, G.R.; Vincent-Salomon, A.; Fuhrmann, L.; Barnick, S.E.; Chen, B.; Hosfield, E.M.; et al. Pan-TRK Immunohistochemistry: A Useful Diagnostic Adjunct for Secretory Carcinoma of the Breast. Am. J. Surg. Pathol. 2019, 43, 1693–1700. [Google Scholar] [CrossRef]
  137. Knezevich, S.R.; McFadden, D.E.; Tao, W.; Lim, J.F.; Sorensen, P.H.B. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat. Genet. 1998, 18, 184–187. [Google Scholar] [CrossRef]
  138. Knezevich, S.R.; Garnett, M.J.; Pysher, T.J.; Beckwith, J.B.; Grundy, P.E.; Sorensen, P.H.B. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 1998, 58, 5046–5048. [Google Scholar]
  139. Rubin, B.P.; Chen, C.J.; Morgan, T.W.; Xiao, S.; Grier, H.E.; Kozakewich, H.P.; Perez-Atayde, A.R.; Fletcher, J.A. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: Cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am. J. Pathol. 1998, 153, 1451–1458. [Google Scholar] [CrossRef]
  140. Ferguson, S.D.; Zhou, S.; Huse, J.T.; de Groot, J.F.; Xiu, J.; Subramaniam, D.S.; Mehta, S.; Gatalica, Z.; Swensen, J.; Sanai, N.; et al. Targetable gene fusions associate with the IDH wild-type astrocytic lineage in adult gliomas. J. Neuropathol. Exp. Neurol. 2018, 77, 437–442. [Google Scholar] [CrossRef] [Green Version]
  141. Gatalica, Z.; Xiu, J.; Swensen, J.; Vranic, S. Molecular characterization of cancers with NTRK gene fusions. Mod. Pathol. 2019, 32, 147–153. [Google Scholar] [CrossRef] [PubMed]
  142. Solomon, J.P.; Linkov, I.; Rosado, A.; Mullaney, K.; Rosen, E.Y.; Frosina, D.; Jungbluth, A.A.; Zehir, A.; Benayed, R.; Drilon, A.; et al. NTRK fusion detection across multiple assays and 33,997 cases: Diagnostic implications and pitfalls. Mod. Pathol. 2020, 33, 38–46. [Google Scholar] [CrossRef] [PubMed]
  143. Frattini, V.; Trifonov, V.; Chan, J.M.; Castano, A.; Lia, M.; Abate, F.; Keir, S.T.; Ji, A.X.; Zoppoli, P.; Niola, F.; et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet. 2013, 45, 1141–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  144. Kim, J.; Lee, Y.; Cho, H.J.; Lee, Y.E.; An, J.; Cho, G.H.; Ko, Y.H.; Joo, K.M.; Nam, D.H. NTRK1 fusion in glioblastoma multiforme. PLoS ONE 2014, 9, e91940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  145. Shah, N.; Lankerovich, M.; Lee, H.; Yoon, J.G.; Schroeder, B.; Foltz, G. Exploration of the gene fusion landscape of glioblastoma using transcriptome sequencing and copy number data. BMC Genom. 2013, 14, 818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  146. Wu, G.; Diaz, A.K.; Paugh, B.S.; Rankin, S.L.; Ju, B.; Li, Y.; Zhu, X.; Qu, C.; Chen, X.; Zhang, J.; et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet. 2014, 46, 444–450. [Google Scholar] [CrossRef] [PubMed]
  147. Zhang, J.; Wu, G.; Miller, C.P.; Tatevossian, R.G.; Dalton, J.D.; Tang, B.; Orisme, W.; Punchihewa, C.; Parker, M.; Qaddoumi, I.; et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat. Genet. 2013, 45, 602–612. [Google Scholar] [CrossRef] [PubMed]
  148. Guerreiro Stucklin, A.S.; Ryall, S.; Fukuoka, K.; Zapotocky, M.; Lassaletta, A.; Li, C.; Bridge, T.; Kim, B.; Arnoldo, A.; Kowalski, P.E.; et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat. Commun. 2019, 10, 4343. [Google Scholar] [CrossRef] [Green Version]
  149. Albert, C.M.; Davis, J.L.; Federman, N.; Casanova, M.; Laetsch, T.W. TRk fusion cancers in children: A clinical review and recommendations for screening. J. Clin. Oncol. 2019, 37, 513–524. [Google Scholar] [CrossRef]
  150. Chamdine, O.; Gajjar, A. Molecular characteristics of pediatric high-grade gliomas. CNS Oncol. 2014, 3, 433–443. [Google Scholar] [CrossRef]
  151. Jones, D.T.W.; Hutter, B.; Jäger, N.; Korshunov, A.; Kool, M.; Warnatz, H.J.; Zichner, T.; Lambert, S.R.; Ryzhova, M.; Quang, D.A.K.; et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat. Genet. 2013, 45, 927–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  152. Pattwell, S.S.; Konnick, E.Q.; Liu, Y.J.; Yoda, R.A.; Sekhar, L.N.; Cimino, P.J. Neurotrophic Receptor Tyrosine Kinase 2 (NTRK2) Alterations in Low-Grade Gliomas: Report of a Novel Gene Fusion Partner in a Pilocytic Astrocytoma and Review of the Literature. Case Rep. Pathol. 2020, 2020, 5903863–5903867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  153. Clarke, M.; Mackay, A.; Ismer, B.; Pickles, J.C.; Tatevossian, R.G.; Newman, S.; Bale, T.A.; Stoler, I.; Izquierdo, E.; Temelso, S.; et al. Infant high-grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discov. 2020, 10, 942–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  154. Alvarez-Breckenridge, C.; Miller, J.J.; Nayyar, N.; Gill, C.M.; Kaneb, A.; D’Andrea, M.; Le, L.P.; Lee, J.; Cheng, J.; Zheng, Z.; et al. Clinical and radiographic response following targeting of BCAN-NTRK1 fusion in glioneuronal tumor. npj Precis. Oncol. 2017, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  155. Prabhakaran, N.; Guzman, M.A.; Navalkele, P.; Chow-Maneval, E.; Batanian, J.R. Novel TLE4-NTRK2 fusion in a ganglioglioma identified by array-CGH and confirmed by NGS: Potential for a gene targeted therapy. Neuropathology 2018, 38, 380–386. [Google Scholar] [CrossRef] [PubMed]
  156. Dahl, N.A.; Donson, A.M.; Sanford, B.; Wang, D.; Walker, F.M.; Gilani, A.; Foreman, N.K.; Tinkle, C.L.; Baker, S.J.; Hoffman, L.M.; et al. NTRK Fusions Can Co-Occur With H3K27M Mutations and May Define Druggable Subclones Within Diffuse Midline Gliomas. J. Neuropathol. Exp. Neurol. 2021, 80, 345–353. [Google Scholar] [CrossRef] [PubMed]
  157. Torre, M.; Jessop, N.; Hornick, J.L.; Alexandrescu, S. Expanding the spectrum of pediatric NTRK-rearranged fibroblastic tumors to the central nervous system: A case report with RBPMS-NTRK3 fusion. Neuropathology 2018, 38, 624–630. [Google Scholar] [CrossRef] [PubMed]
  158. Drilon, A. TRK inhibitors in TRK fusion-positive cancers. Ann. Oncol. 2019, 30, viii23–viii30. [Google Scholar] [CrossRef] [Green Version]
  159. Torre, M.; Vasudevaraja, V.; Serrano, J.; Delorenzo, M.; Malinowski, S.; Blandin, A.F.; Pages, M.; Ligon, A.H.; Dong, F.; Meredith, D.M.; et al. Molecular and clinicopathologic features of gliomas harboring NTRK fusions. Acta Neuropathol. Commun. 2020, 8, 107. [Google Scholar] [CrossRef]
  160. FDA Approves Larotrectinib for Solid Tumors with NTRK Gene Fusions. Available online: https://www.fda.gov/drugs/fda-approves-larotrectinib-solid-tumors-ntrk-gene-fusions (accessed on 10 December 2021).
  161. Marcus, L.; Donoghue, M.; Aungst, S.; Myers, C.E.; Helms, W.S.; Shen, G.; Zhao, H.; Stephens, O.; Keegan, P.; Pazdur, R. FDA Approval Summary: Entrectinib for the Treatment of NTRK gene Fusion Solid Tumors. Clin. Cancer Res. 2021, 27, 928–932. [Google Scholar] [CrossRef]
  162. Ardini, E.; Menichincheri, M.; Banfi, P.; Bosotti, R.; De Ponti, C.; Pulci, R.; Ballinari, D.; Ciomei, M.; Texido, G.; Degrassi, A.; et al. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol. Cancer Ther. 2016, 15, 628–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  163. Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
  164. Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef] [PubMed]
  165. Farago, A.F.; Le, L.P.; Zheng, Z.; Muzikansky, A.; Drilon, A.; Patel, M.; Bauer, T.M.; Liu, S.V.; Ou, S.H.I.; Jackman, D.; et al. Durable Clinical Response to Entrectinib in NTRK1-Rearranged Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2015, 10, 1670–1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  166. Hong, D.S.; Bauer, T.M.; Lee, J.J.; Dowlati, A.; Brose, M.S.; Farago, A.F.; Taylor, M.; Shaw, A.T.; Montez, S.; Meric-Bernstam, F.; et al. Larotrectinib in adult patients with solid tumours: A multi-centre, open-label, phase i dose-escalation study. Ann. Oncol. 2019, 30, 325–331. [Google Scholar] [CrossRef] [PubMed]
  167. Laetsch, T.W.; DuBois, S.G.; Mascarenhas, L.; Turpin, B.; Federman, N.; Albert, C.M.; Nagasubramanian, R.; Davis, J.L.; Rudzinski, E.; Feraco, A.M.; et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: Phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018, 19, 705–714. [Google Scholar] [CrossRef]
  168. Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
  169. Drilon, A.; Siena, S.; Ou, S.H.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Wheler, J.J.; Liu, S.V.; et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017, 7, 400–409. [Google Scholar] [CrossRef] [Green Version]
  170. Pan, C.-C.; Liu, J.; Tang, J.; Chen, X.; Chen, F.; Wu, Y.-L.; Geng, Y.-B.; Xu, C.; Zhang, X.; Wu, Z.; et al. A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features. Radiother. Oncol. 2019, 130, 172–179. [Google Scholar] [CrossRef] [Green Version]
  171. Rosen, E.Y.; Schram, A.M.; Young, R.J.; Schreyer, M.W.; Hechtman, J.F.; Shu, C.A.; Ku, N.C.; Hyman, D.M.; Drilon, A. Larotrectinib Demonstrates CNS Efficacy in TRK Fusion-Positive Solid Tumors. JCO Precis. Oncol. 2019, 3, 1–5. [Google Scholar] [CrossRef]
  172. Drilon, A.E.; DuBois, S.G.; Farago, A.F.; Geoerger, B.; Grilley-Olson, J.E.; Hong, D.S.; Sohal, D.; van Tilburg, C.M.; Ziegler, D.S.; Ku, N.; et al. Activity of larotrectinib in TRK fusion cancer patients with brain metastases or primary central nervous system tumors. J. Clin. Oncol. 2019, 37, 2006. [Google Scholar] [CrossRef]
  173. VonBergen, J.; Armstrong, B.; Schmitt, M. LGG-05. MOLECULAR GUIDED THERAPY FOR A PEDIATRIC LOW GRADE GLIOMA: A CASE REPORT. Neuro Oncol. 2020, 22, iii367. [Google Scholar] [CrossRef]
  174. Walter, A.W.; Kandula, V.V.R.; Shah, N. Larotrectinib imaging response in low-grade glioma. Pediatr. Blood Cancer 2020, 67, e28002. [Google Scholar] [CrossRef] [PubMed]
  175. Ziegler, D.S.; Wong, M.; Mayoh, C.; Kumar, A.; Tsoli, M.; Mould, E.; Tyrrell, V.; Khuong-Quang, D.A.; Pinese, M.; Gayevskiy, V.; et al. Brief Report: Potent clinical and radiological response to larotrectinib in TRK fusion-driven high-grade glioma. Br. J. Cancer 2018, 119, 693–696. [Google Scholar] [CrossRef] [Green Version]
Figure 1. (a) Prevalence of v-RAF Murine Sarcoma Viral Oncogene Homolog B1 (BRAF) V600E mutation in papillary craniopharyngioma, pleomorphic xanthoastrocytoma, ganglioglioma, glioblastoma, pilocytic astrocytoma and adult astrocytoma World Health Organization (WHO) 2/3; (b) Response rates of vemurafenib monotherapy (VE-BASKET study), combined therapy with dabrafenib/trametinib in low- and high-grade glioma (NCT02034110) and vemurafenib/cobimetinib in papillary craniopharyngioma (NCT03224767).
Figure 1. (a) Prevalence of v-RAF Murine Sarcoma Viral Oncogene Homolog B1 (BRAF) V600E mutation in papillary craniopharyngioma, pleomorphic xanthoastrocytoma, ganglioglioma, glioblastoma, pilocytic astrocytoma and adult astrocytoma World Health Organization (WHO) 2/3; (b) Response rates of vemurafenib monotherapy (VE-BASKET study), combined therapy with dabrafenib/trametinib in low- and high-grade glioma (NCT02034110) and vemurafenib/cobimetinib in papillary craniopharyngioma (NCT03224767).
Cancers 14 00712 g001
Figure 2. (a) Prevalence of Isocitrate Dehydrogenase (IDH) mutation in gliomas; (b) disease control rate of IDH-inhibitors in contrast-enhancing and non-contrast enhancing IDH-mutated glioma.
Figure 2. (a) Prevalence of Isocitrate Dehydrogenase (IDH) mutation in gliomas; (b) disease control rate of IDH-inhibitors in contrast-enhancing and non-contrast enhancing IDH-mutated glioma.
Cancers 14 00712 g002
Figure 3. (a) Prevalence of Neurotrophic Tyrosine Receptor Kinase (NTRK) fusions in adult and paediatric gliomas; (b) response rates of entrectinib monotherapy (ALKA 372-001, STARTK-1; STARTK-2, NCT02650401).
Figure 3. (a) Prevalence of Neurotrophic Tyrosine Receptor Kinase (NTRK) fusions in adult and paediatric gliomas; (b) response rates of entrectinib monotherapy (ALKA 372-001, STARTK-1; STARTK-2, NCT02650401).
Cancers 14 00712 g003
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Leibetseder, A.; Preusser, M.; Berghoff, A.S. New Approaches with Precision Medicine in Adult Brain Tumors. Cancers 2022, 14, 712. https://doi.org/10.3390/cancers14030712

AMA Style

Leibetseder A, Preusser M, Berghoff AS. New Approaches with Precision Medicine in Adult Brain Tumors. Cancers. 2022; 14(3):712. https://doi.org/10.3390/cancers14030712

Chicago/Turabian Style

Leibetseder, Annette, Matthias Preusser, and Anna Sophie Berghoff. 2022. "New Approaches with Precision Medicine in Adult Brain Tumors" Cancers 14, no. 3: 712. https://doi.org/10.3390/cancers14030712

APA Style

Leibetseder, A., Preusser, M., & Berghoff, A. S. (2022). New Approaches with Precision Medicine in Adult Brain Tumors. Cancers, 14(3), 712. https://doi.org/10.3390/cancers14030712

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop