Oral Immune-Related Adverse Events Caused by Immune Checkpoint Inhibitors: Salivary Gland Dysfunction and Mucosal Diseases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Mechanisms by Which ICIs Exert Antitumor Activity and Induce irAEs
2.1. Involvement of CTLA-4 and PD-1/PD-L1 in Cellular and Humoral Tumor Immunity
2.2. Anti-CTLA-4, anti-PD-1, anti-PD-L1 Antibodies as Antitumor Agents and Autoimmune Disease Inducers
3. ICI-Induced irAEs in Advanced HNSCC Patients
4. Induction of Sicca syndrome by ICIs
5. Induction of Oral Mucosal Lesions by ICIs
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, H.T.; Lee, S.H.; Heo, Y.S. Molecular Interactions of Antibody Drugs Targeting PD-1, PD-L1, and CTLA-4 in Immuno-Oncology. Molecules 2019, 24, 1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, J.P.; Gil, Z. Current concepts in management of oral cancer—surgery. Oral Oncol. 2009, 45, 394–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machiels, J.P.; Lambrecht, M.; Hanin, F.X.; Duprez, T.; Gregoire, V.; Schmitz, S.; Hamoir, M. Advances in the management of squamous cell carcinoma of the head and neck. F1000Prime Rep. 2014, 6, 44. [Google Scholar] [CrossRef]
- Jakobi, A.; Lühr, A.; Stützer, K.; Bandurska-Luque, A.; Löck, S.; Krause, M.; Baumann, M.; Perrin, R.; Richter, C. Increase in Tumor Control and Normal Tissue Complication Probabilities in Advanced Head-and-Neck Cancer for Dose-Escalated Intensity-Modulated Photon and Proton Therapy. Front. Oncol. 2015, 5, 256. [Google Scholar] [CrossRef] [Green Version]
- Yura, Y.; Tada, S.; Fujita, Y.; Hamada, M. Current treatment, particle radiotherapy, and boron neutron capture therapy for advanced oral cancer in patients. Oral Sci. Int. 2019, 16, 49–68. [Google Scholar] [CrossRef]
- Chinn, S.B.; Myers, J.N. Oral Cavity Carcinoma: Current, Controversies, and Future Directions. J. Clin. Oncol. 2015, 33, 3269–3276. [Google Scholar] [CrossRef] [Green Version]
- Bernier, J.; Domenge, C.; Ozsahin, M.; Matuszewska, K.; Lefèbvre, J.L.; Greiner, R.H.; Giralt, J.; Maingon, P.; Rolland, F.; Bolla, M.; et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N. Engl. J. Med. 2004, 350, 1945–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.S.; Pajak, T.F.; Forastiere, A.A.; Jacobs, J.; Campbell, B.H.; Saxman, S.B.; Kish, J.A.; Kim, H.E.; Cmelak, A.J.; Rotman, M.; et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2004, 350, 1937–1944. [Google Scholar] [CrossRef] [Green Version]
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Cohen, R.B.; Jones, C.U.; Sur, R.K.; Raben, D.; Baselga, J.; Spencer, S.A.; Zhu, J.; et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010, 11, 21–28. [Google Scholar] [CrossRef]
- Vermorken, J.B.; Mesia, R.; Rivera, F.; Remenar, E.; Kawecki, A.; Rottey, S.; Erfan, J.; Zabolotnyy, D.; Kienzer, H.R.; Cupissol, D.; et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 2008, 359, 1116–1127. [Google Scholar] [CrossRef] [Green Version]
- Ang, K.K.; Zhang, Q.; Rosenthal, D.I.; Nguyen-Tan, P.F.; Sherman, E.J.; Weber, R.S.; Galvin, J.M.; Bonner, J.A.; Harris, J.; El-Naggar, A.K.; et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J. Clin. Oncol. 2014, 32, 2940–2950. [Google Scholar] [CrossRef] [PubMed]
- Curtis, K.K.; Ross, H.J.; Garrett, A.L.; Jizba, T.A.; Patel, A.B.; Patel, S.H.; Wong, W.W.; Halyard, M.Y.; Ko, S.J.; Kosiorek, H.E.; et al. Outcomes of patients with loco-regionally recurrent or new primary squamous cell carcinomas of the head and neck treated with curative intent reirradiation at Mayo Clinic. Radiat. Oncol. 2016, 11, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, H.T.; Djamgoz, M.B.A. Immuno-Oncology: Emerging Targets and Combination Therapies. Front. Oncol. 2018, 8, 315. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Weber, J.S.; D’Angelo, S.P.; Minor, D.; Hodi, F.S.; Gutzmer, R.; Neyns, B.; Hoeller, C.; Khushalani, N.I.; Miller, W.H., Jr.; Lao, C.D.; et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015, 16, 375–384. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef] [Green Version]
- Seiwert, T.Y.; Burtness, B.; Mehra, R.; Weiss, J.; Berger, R.; Eder, J.P.; Heath, K.; McClanahan, T.; Lunceford, J.; Gause, C.; et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): An open-label, multicentre, phase 1b trial. Lancet Oncol. 2016, 17, 956–965. [Google Scholar] [CrossRef]
- Bauml, J.; Seiwert, T.Y.; Pfister, D.G.; Worden, F.; Liu, S.V.; Gilbert, J.; Saba, N.F.; Weiss, J.; Wirth, L.; Sukari, A.; et al. Pembrolizumab for Platinum- and Cetuximab-Refractory Head and Neck Cancer: Results From a Single-Arm, Phase II Study. J. Clin. Oncol. 2017, 35, 1542–1549. [Google Scholar] [CrossRef]
- Saba, N.F.; Blumenschein, G., Jr.; Guigay, J.; Licitra, L.; Fayette, J.; Harrington, K.J.; Kiyota, N.; Gillison, M.L.; Ferris, R.L.; Jayaprakash, V.; et al. Nivolumab versus investigator’s choice in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: Efficacy and safety in CheckMate 141 by age. Oral Oncol. 2019, 96, 7–14. [Google Scholar] [CrossRef]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Matsuo, M.; Yasumatsu, R.; Masuda, M.; Toh, S.; Wakasaki, T.; Hashimoto, K.; Taura, M.; Uchi, R.; Nakagawa, T. Relationship between immune-related adverse events and the long-term outcomes in recurrent/metastatic head and neck squamous cell carcinoma treated with nivolumab. Oral Oncol. 2020, 101, 104525. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.G.; Spencer, S.; Adelstein, D.; Adkins, D.; Anzai, Y.; Brizel, D.M.; Bruce, J.Y.; Busse, P.M.; Caudell, J.J.; Cmelak, A.J.; et al. Head and Neck Cancers, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 873–898. [Google Scholar] [CrossRef] [PubMed]
- Weinmann, S.C.; Pisetsky, D.S. Mechanisms of immune-related adverse events during the treatment of cancer with immune checkpoint inhibitors. Rheumatology 2019, 58, vii59–vii67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef] [PubMed]
- Saccucci, M.; Di Carlo, G.; Bossù, M.; Giovarruscio, F.; Salucci, A.; Polimeni, A. Autoimmune Diseases and Their Manifestations on Oral Cavity: Diagnosis and Clinical Management. J. Immunol. Res. 2018, 2018, 6061825. [Google Scholar] [CrossRef] [PubMed]
- Gualtierotti, R.; Marzano, A.V.; Spadari, F.; Cugno, M. Main Oral Manifestations in Immune-Mediated and Inflammatory Rheumatic Diseases. J. Clin. Med. 2018, 8, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyck, L.; Mills, K.H.G. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J. Immunol. 2017, 47, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Fazilleau, N.; Mark, L.; McHeyzer-Williams, L.J.; McHeyzer-Williams, M.G. Follicular helper T cells: Lineage and location. Immunity 2009, 30, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Craft, J.E. Follicular helper T cells in immunity and systemic autoimmunity. Nat. Rev. Rheumatol. 2012, 8, 337–347. [Google Scholar] [CrossRef] [PubMed]
- van der Merwe, P.A.; Bodian, D.L.; Daenke, S.; Linsley, P.; Davis, S.J. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J. Exp. Med. 1997, 185, 393–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 2010, 236, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zou, L.; Liu, Y.C. T follicular helper cells, T follicular regulatory cells and autoimmunity. Int. Immunol. 2016, 28, 173–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sage, P.T.; Schildberg, F.A.; Sobel, R.A.; Kuchroo, V.K.; Freeman, G.J.; Sharpe, A.H. Dendritic Cell PD-L1 Limits Autoimmunity and Follicular T Cell Differentiation and Function. J. Immunol. 2018, 200, 2592–2602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xia, L.; Yang, Y.; Liu, S.; Ji, P.; Wang, S.; Chen, Y.; Liu, Z.; Zhang, Y.; Lu, S.; et al. PD-1 blockade augments humoral immunity through ICOS-mediated CD4(+) T cell instruction. Int. Immunopharmacol. 2019, 66, 127–138. [Google Scholar] [CrossRef]
- Linterman, M.A.; Hill, D.L. Can follicular helper T cells be targeted to improve vaccine efficacy? F1000Research 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Stebegg, M.; Kumar, S.D.; Silva-Cayetano, A.; Fonseca, V.R.; Linterman, M.A.; Graca, L. Regulation of the Germinal Center Response. Front. Immunol. 2018, 9, 2469. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Tong, J.; Wang, S. Are Follicular Regulatory T Cells Involved in Autoimmune Diseases? Front. Immunol. 2017, 8, 1790. [Google Scholar] [CrossRef] [Green Version]
- Sage, P.T.; Sharpe, A.H. T follicular regulatory cells in the regulation of B cell responses. Trends Immunol. 2015, 36, 410–418. [Google Scholar] [CrossRef] [Green Version]
- Byrne, K.T.; Turk, M.J. New perspectives on the role of vitiligo in immune responses to melanoma. Oncotarget 2011, 2, 684–694. [Google Scholar] [CrossRef] [Green Version]
- Hara, I.; Takechi, Y.; Houghton, A.N. Implicating a role for immune recognition of self in tumor rejection: Passive immunization against the brown locus protein. J. Exp. Med. 1995, 182, 1609–1614. [Google Scholar] [CrossRef] [PubMed]
- Ram, M.; Shoenfeld, Y. Harnessing autoimmunity (vitiligo) to treat melanoma: A myth or reality? Ann. N. Y. Acad. Sci. 2007, 1110, 410–425. [Google Scholar] [CrossRef] [PubMed]
- Burke, K.P.; Grebinoski, S.; Sharpe, A.H.; Vignali, D.A.A. Understanding adverse events of immunotherapy: A mechanistic perspective. J. Exp. Med. 2021, 218. [Google Scholar] [CrossRef] [PubMed]
- Iwama, S.; De Remigis, A.; Callahan, M.K.; Slovin, S.F.; Wolchok, J.D.; Caturegli, P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 2014, 6, 230ra245. [Google Scholar] [CrossRef]
- Abdel-Wahab, N.; Shah, M.; Suarez-Almazor, M.E. Adverse Events Associated with Immune Checkpoint Blockade in Patients with Cancer: A Systematic Review of Case Reports. PLoS ONE 2016, 11, e0160221. [Google Scholar] [CrossRef]
- Siu, L.L.; Even, C.; Mesía, R.; Remenar, E.; Daste, A.; Delord, J.P.; Krauss, J.; Saba, N.F.; Nabell, L.; Ready, N.E.; et al. Safety and Efficacy of Durvalumab With or Without Tremelimumab in Patients With PD-L1-Low/Negative Recurrent or Metastatic HNSCC: The Phase 2 CONDOR Randomized Clinical Trial. JAMA Oncol. 2019, 5, 195–203. [Google Scholar] [CrossRef]
- Parry, R.V.; Harris, S.J.; Ward, S.G. Fine tuning T lymphocytes: A role for the lipid phosphatase SHIP-1. Biochim. Biophys. Acta 2010, 1804, 592–597. [Google Scholar] [CrossRef]
- von Euw, E.; Chodon, T.; Attar, N.; Jalil, J.; Koya, R.C.; Comin-Anduix, B.; Ribas, A. CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J. Transl. Med. 2009, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Granier, C.; De Guillebon, E.; Blanc, C.; Roussel, H.; Badoual, C.; Colin, E.; Saldmann, A.; Gey, A.; Oudard, S.; Tartour, E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open 2017, 2, e000213. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Bhattacharya, P.; Prabhakar, B.S. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J. Autoimmun. 2018, 95, 77–99. [Google Scholar] [CrossRef]
- Selby, M.J.; Engelhardt, J.J.; Quigley, M.; Henning, K.A.; Chen, T.; Srinivasan, M.; Korman, A.J. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 2013, 1, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Fiegle, E.; Doleschel, D.; Koletnik, S.; Rix, A.; Weiskirchen, R.; Borkham-Kamphorst, E.; Kiessling, F.; Lederle, W. Dual CTLA-4 and PD-L1 Blockade Inhibits Tumor Growth and Liver Metastasis in a Highly Aggressive Orthotopic Mouse Model of Colon Cancer. Neoplasia 2019, 21, 932–944. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Mishima, K.; Ohmura, H.; Hanamura, F.; Ito, M.; Nakano, M.; Tsuchihashi, K.; Ota, S.I.; Wada, N.; Uchi, H.; et al. Activation of central/effector memory T cells and T-helper 1 polarization in malignant melanoma patients treated with anti-programmed death-1 antibody. Cancer Sci. 2018, 109, 3032–3042. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Okamoto, M.; Sasaki, J.; Kuroda, C.; Ishida, H.; Ueda, K.; Ideta, H.; Kamanaka, T.; Sobajima, A.; Takizawa, T.; et al. Anti-PD-1 antibody decreases tumour-infiltrating regulatory T cells. BMC Cancer 2020, 20, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.J.; Park, J.S.; Jeong, Y.H.; Son, J.; Ban, Y.H.; Lee, B.H.; Chen, L.; Chang, J.; Chung, D.H.; Choi, I.; et al. PD-1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8+ T cell immune response via the interaction with PD-L1 expressed on CD8+ T cells. J. Immunol. 2015, 194, 5801–5811. [Google Scholar] [CrossRef] [Green Version]
- Toor, S.M.; Syed Khaja, A.S.; Alkurd, I.; Elkord, E. In-vitro effect of pembrolizumab on different T regulatory cell subsets. Clin. Exp. Immunol. 2018, 191, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Kamada, T.; Togashi, Y.; Tay, C.; Ha, D.; Sasaki, A.; Nakamura, Y.; Sato, E.; Fukuoka, S.; Tada, Y.; Tanaka, A.; et al. PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 9999–10008. [Google Scholar] [CrossRef] [Green Version]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Willsmore, Z.N.; Harris, R.J.; Crescioli, S.; Hussein, K.; Kakkassery, H.; Thapa, D.; Cheung, A.; Chauhan, J.; Bax, H.J.; Chenoweth, A.; et al. B Cells in Patients With Melanoma: Implications for Treatment With Checkpoint Inhibitor Antibodies. Front. Immunol. 2020, 11, 622442. [Google Scholar] [CrossRef]
- Osorio, J.C.; Ni, A.; Chaft, J.E.; Pollina, R.; Kasler, M.K.; Stephens, D.; Rodriguez, C.; Cambridge, L.; Rizvi, H.; Wolchok, J.D.; et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann. Oncol. 2017, 28, 583–589. [Google Scholar] [CrossRef]
- Hughes, J.; Vudattu, N.; Sznol, M.; Gettinger, S.; Kluger, H.; Lupsa, B.; Herold, K.C. Precipitation of autoimmune diabetes with anti-PD-1 immunotherapy. Diabetes Care 2015, 38, e55–e57. [Google Scholar] [CrossRef] [PubMed]
- Stamatouli, A.M.; Quandt, Z.; Perdigoto, A.L.; Clark, P.L.; Kluger, H.; Weiss, S.A.; Gettinger, S.; Sznol, M.; Young, A.; Rushakoff, R.; et al. Collateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors. Diabetes 2018, 67, 1471–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zumelzu, C.; Alexandre, M.; Le Roux, C.; Weber, P.; Guyot, A.; Levy, A.; Aucouturier, F.; Mignot-Grootenboer, S.; Caux, F.; Maubec, E.; et al. Mucous Membrane Pemphigoid, Bullous Pemphigoid, and Anti-programmed Death-1/ Programmed Death-Ligand 1: A Case Report of an Elderly Woman With Mucous Membrane Pemphigoid Developing After Pembrolizumab Therapy for Metastatic Melanoma and Review of the Literature. Front. Med. 2018, 5, 268. [Google Scholar] [CrossRef] [Green Version]
- Hasan Ali, O.; Bomze, D.; Ring, S.S.; Berner, F.; Fässler, M.; Diem, S.; Abdou, M.T.; Hammers, C.; Emtenani, S.; Braun, A.; et al. BP180-specific IgG is associated with skin adverse events, therapy response, and overall survival in non-small cell lung cancer patients treated with checkpoint inhibitors. J. Am. Acad. Dermatol. 2020, 82, 854–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, R.; Bar, N.; Ferreira, M.; Newman, A.M.; Zhang, L.; Bailur, J.K.; Bacchiocchi, A.; Kluger, H.; Wei, W.; Halaban, R.; et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Invest. 2018, 128, 715–720. [Google Scholar] [CrossRef]
- Fife, B.T.; Pauken, K.E.; Eagar, T.N.; Obu, T.; Wu, J.; Tang, Q.; Azuma, M.; Krummel, M.F.; Bluestone, J.A. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol 2009, 10, 1185–1192. [Google Scholar] [CrossRef]
- Good-Jacobson, K.L.; Szumilas, C.G.; Chen, L.; Sharpe, A.H.; Tomayko, M.M.; Shlomchik, M.J. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat. Immunol. 2010, 11, 535–542. [Google Scholar] [CrossRef]
- June, C.H.; Warshauer, J.T.; Bluestone, J.A. Is autoimmunity the Achilles’ heel of cancer immunotherapy? Nat. Med. 2017, 23, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Passat, T.; Touchefeu, Y.; Gervois, N.; Jarry, A.; Bossard, C.; Bennouna, J. Physiopathological mechanisms of immune-related adverse events induced by anti-CTLA-4, anti-PD-1 and anti-PD-L1 antibodies in cancer treatment. Bull. Cancer 2018, 105, 1033–1041. [Google Scholar] [CrossRef]
- de Moel, E.C.; Rozeman, E.A.; Kapiteijn, E.H.; Verdegaal, E.M.E.; Grummels, A.; Bakker, J.A.; Huizinga, T.W.J.; Haanen, J.B.; Toes, R.E.M.; van der Woude, D. Autoantibody Development under Treatment with Immune-Checkpoint Inhibitors. Cancer Immunol. Res. 2019, 7, 6–11. [Google Scholar] [CrossRef]
- Menzies, A.M.; Johnson, D.B.; Ramanujam, S.; Atkinson, V.G.; Wong, A.N.M.; Park, J.J.; McQuade, J.L.; Shoushtari, A.N.; Tsai, K.K.; Eroglu, Z.; et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. 2017, 28, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Eppihimer, M.J.; Gunn, J.; Freeman, G.J.; Greenfield, E.A.; Chernova, T.; Erickson, J.; Leonard, J.P. Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation 2002, 9, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Keir, M.E.; Liang, S.C.; Guleria, I.; Latchman, Y.E.; Qipo, A.; Albacker, L.A.; Koulmanda, M.; Freeman, G.J.; Sayegh, M.H.; Sharpe, A.H. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 2006, 203, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, A.H.; Wherry, E.J.; Ahmed, R.; Freeman, G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 2007, 8, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, I.; Yasoda, A.; Matsumoto, S.; Sakamori, Y.; Kim, Y.H.; Nomura, M.; Otsuka, A.; Yamasaki, T.; Saito, R.; Kitamura, M.; et al. Incidence, features, and prognosis of immune-related adverse events involving the thyroid gland induced by nivolumab. PLoS ONE 2019, 14, e0216954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubin, K.; Callahan, M.K.; Ren, B.; Khanin, R.; Viale, A.; Ling, L.; No, D.; Gobourne, A.; Littmann, E.; Huttenhower, C.; et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 2016, 7, 10391. [Google Scholar] [CrossRef] [Green Version]
- Naqash, A.R.; Kihn-Alarcón, A.J.; Stavraka, C.; Kerrigan, K.; Maleki Vareki, S.; Pinato, D.J.; Puri, S. The role of gut microbiome in modulating response to immune checkpoint inhibitor therapy in cancer. Ann. Transl Med. 2021, 9, 1034. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, N.; Luo, Q.; Jiang, L.; He, B.; Yuan, X.; Shen, L. Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells. Front. Immunol. 2019, 10, 1235. [Google Scholar] [CrossRef]
- Pitt, J.M.; Vétizou, M.; Gomperts Boneca, I.; Lepage, P.; Chamaillard, M.; Zitvogel, L. Enhancing the clinical coverage and anticancer efficacy of immune checkpoint blockade through manipulation of the gut microbiota. Oncoimmunology 2017, 6, e1132137. [Google Scholar] [CrossRef] [Green Version]
- Kitamoto, S.; Nagao-Kitamoto, H.; Hein, R.; Schmidt, T.M.; Kamada, N. The Bacterial Connection between the Oral Cavity and the Gut Diseases. J. Dent. Res. 2020, 99, 1021–1029. [Google Scholar] [CrossRef]
- Concha-Benavente, F.; Srivastava, R.M.; Trivedi, S.; Lei, Y.; Chandran, U.; Seethala, R.R.; Freeman, G.J.; Ferris, R.L. Identification of the Cell-Intrinsic and -Extrinsic Pathways Downstream of EGFR and IFNγ That Induce PD-L1 Expression in Head and Neck Cancer. Cancer Res. 2016, 76, 1031–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyota, N.; Hasegawa, Y.; Takahashi, S.; Yokota, T.; Yen, C.J.; Iwae, S.; Shimizu, Y.; Hong, R.L.; Goto, M.; Kang, J.H.; et al. A randomized, open-label, Phase III clinical trial of nivolumab vs. therapy of investigator’s choice in recurrent squamous cell carcinoma of the head and neck: A subanalysis of Asian patients versus the global population in checkmate 141. Oral Oncol. 2017, 73, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Mehra, R.; Seiwert, T.Y.; Gupta, S.; Weiss, J.; Gluck, I.; Eder, J.P.; Burtness, B.; Tahara, M.; Keam, B.; Kang, H.; et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: Pooled analyses after long-term follow-up in KEYNOTE-012. Br. J. Cancer 2018, 119, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, I.; Sato, H.; Kondo, T.; Koyama, N.; Fushimi, C.; Okada, T.; Miura, K.; Matsuki, T.; Yamashita, T.; Omura, G.; et al. Efficacy and safety of nivolumab in 100 patients with recurrent or metastatic head and neck cancer - a retrospective multicentre study. Acta Otolaryngol. 2019, 139, 918–925. [Google Scholar] [CrossRef]
- Vokes, E.E.; Ready, N.; Felip, E.; Horn, L.; Burgio, M.A.; Antonia, S.J.; Arén Frontera, O.; Gettinger, S.; Holgado, E.; Spigel, D.; et al. Nivolumab versus docetaxel in previously treated advanced non-small-cell lung cancer (CheckMate 017 and CheckMate 057): 3-year update and outcomes in patients with liver metastases. Ann. Oncol. 2018, 29, 959–965. [Google Scholar] [CrossRef]
- Zandberg, D.P.; Algazi, A.P.; Jimeno, A.; Good, J.S.; Fayette, J.; Bouganim, N.; Ready, N.E.; Clement, P.M.; Even, C.; Jang, R.W.; et al. Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: Results from a single-arm, phase II study in patients with ≥25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy. Eur. J. Cancer 2019, 107, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Brito-Zerón, P.; Baldini, C.; Bootsma, H.; Bowman, S.J.; Jonsson, R.; Mariette, X.; Sivils, K.; Theander, E.; Tzioufas, A.; Ramos-Casals, M. Sjögren syndrome. Nat. Rev. Dis. Primers 2016, 2, 16047. [Google Scholar] [CrossRef]
- Jonsson, R.; Brokstad, K.A.; Jonsson, M.V.; Delaleu, N.; Skarstein, K. Current concepts on Sjögren’s syndrome - classification criteria and biomarkers. Eur. J. Oral. Sci. 2018, 126 Suppl 1, 37–48. [Google Scholar] [CrossRef]
- Verstappen, G.M.; Corneth, O.B.J.; Bootsma, H.; Kroese, F.G.M. Th17 cells in primary Sjögren’s syndrome: Pathogenicity and plasticity. J. Autoimmun. 2018, 87, 16–25. [Google Scholar] [CrossRef]
- Parisis, D.; Chivasso, C.; Perret, J.; Soyfoo, M.S.; Delporte, C. Current State of Knowledge on Primary Sjögren’s Syndrome, an Autoimmune Exocrinopathy. J. Clin. Med. 2020, 9, 2299. [Google Scholar] [CrossRef]
- Reed, J.H.; Verstappen, G.M.; Rischmueller, M.; Bryant, V.L. When B cells break bad: Development of pathogenic B cells in Sjögren’s syndrome. Clin. Exp. Rheumatol. 2020, 38 (Suppl. 126), 271–282. [Google Scholar] [PubMed]
- Ramos-Casals, M.; Maria, A.; Suárez-Almazor, M.E.; Lambotte, O.; Fisher, B.A.; Hernández-Molina, G.; Guilpain, P.; Pundole, X.; Flores-Chávez, A.; Baldini, C.; et al. Sicca/Sjögren’s syndrome triggered by PD-1/PD-L1 checkpoint inhibitors. Data from the International ImmunoCancer Registry (ICIR). Clin. Exp. Rheumatol. 2019, 37 (Suppl. 118), 114–122. [Google Scholar]
- Le Burel, S.; Champiat, S.; Mateus, C.; Marabelle, A.; Michot, J.M.; Robert, C.; Belkhir, R.; Soria, J.C.; Laghouati, S.; Voisin, A.L.; et al. Prevalence of immune-related systemic adverse events in patients treated with anti-Programmed cell Death 1/anti-Programmed cell Death-Ligand 1 agents: A single-centre pharmacovigilance database analysis. Eur. J. Cancer 2017, 82, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, L.C.; Gutierrez, A.K.; Baer, A.N.; Albayda, J.; Manno, R.L.; Haque, U.; Lipson, E.J.; Bleich, K.B.; Shah, A.A.; Naidoo, J.; et al. Inflammatory arthritis and sicca syndrome induced by nivolumab and ipilimumab. Ann. Rheum. Dis. 2017, 76, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Teyssonneau, D.; Cousin, S.; Italiano, A. Gougerot-Sjogren-like syndrome under PD-1 inhibitor treatment. Ann. Oncol. 2017, 28, 3108. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, C.; Kirchner, E.; Kontzias, A.; Velcheti, V.; Calabrese, L.H. Rheumatic immune-related adverse events of checkpoint therapy for cancer: Case series of a new nosological entity. RMD Open 2017, 3, e000412. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Chieko, X.; Sakai, T.; Hirose, S.; Nakamura, M. Nivolumab-induced sialadenitis. Respirol. Case Rep. 2018, 6, e00322. [Google Scholar] [CrossRef] [Green Version]
- Warner, B.M.; Baer, A.N.; Lipson, E.J.; Allen, C.; Hinrichs, C.; Rajan, A.; Pelayo, E.; Beach, M.; Gulley, J.L.; Madan, R.A.; et al. Sicca Syndrome Associated with Immune Checkpoint Inhibitor Therapy. Oncologist 2019, 24, 1259–1269. [Google Scholar] [CrossRef] [Green Version]
- Ortiz Brugués, A.; Sibaud, V.; Herbault-Barrés, B.; Betrian, S.; Korakis, I.; De Bataille, C.; Gomez-Roca, C.; Epstein, J.; Vigarios, E. Sicca Syndrome Induced by Immune Checkpoint Inhibitor Therapy: Optimal Management Still Pending. Oncologist 2020, 25, e391–e395. [Google Scholar] [CrossRef] [Green Version]
- Higashi, T.; Miyamoto, H.; Yoshida, R.; Furuta, Y.; Nagaoka, K.; Naoe, H.; Naito, H.; Nakayama, H.; Tanaka, M. Sjögren’s Syndrome as an Immune-related Adverse Event of Nivolumab Treatment for Gastric Cancer. Intern. Med. 2020, 59, 2499–2504. [Google Scholar] [CrossRef]
- Costa, S.; Schutz, S.; Cornec, D.; Uguen, A.; Quintin-Roué, I.; Lesourd, A.; Berthelot, J.M.; Hachulla, E.; Hatron, P.Y.; Goeb, V.; et al. B-cell and T-cell quantification in minor salivary glands in primary Sjögren’s syndrome: Development and validation of a pixel-based digital procedure. Arthritis Res. Ther. 2016, 18, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessandri, C.; Ciccia, F.; Priori, R.; Astorri, E.; Guggino, G.; Alessandro, R.; Rizzo, A.; Conti, F.; Minniti, A.; Barbati, C.; et al. CD4 T lymphocyte autophagy is upregulated in the salivary glands of primary Sjögren’s syndrome patients and correlates with focus score and disease activity. Arthritis Res. Ther. 2017, 19, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodi, G.; Scully, C.; Carrozzo, M.; Griffiths, M.; Sugerman, P.B.; Thongprasom, K. Current controversies in oral lichen planus: Report of an international consensus meeting. Part 1. Viral infections and etiopathogenesis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 100, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Al-Hashimi, I.; Schifter, M.; Lockhart, P.B.; Wray, D.; Brennan, M.; Migliorati, C.A.; Axéll, T.; Bruce, A.J.; Carpenter, W.; Eisenberg, E.; et al. Oral lichen planus and oral lichenoid lesions: Diagnostic and therapeutic considerations. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 103 (Suppl. 25), e1–e12. [Google Scholar] [CrossRef] [PubMed]
- Juneja, M.; Mahajan, S.; Rao, N.N.; George, T.; Boaz, K. Histochemical analysis of pathological alterations in oral lichen planus and oral lichenoid lesions. J. Oral Sci. 2006, 48, 185–193. [Google Scholar] [CrossRef] [Green Version]
- van der Waal, I. Oral lichen planus and oral lichenoid lesions; a critical appraisal with emphasis on the diagnostic aspects. Med. Oral Patol. Oral Cir. Bucal. 2009, 14, E310–E314. [Google Scholar]
- Shi, V.J.; Rodic, N.; Gettinger, S.; Leventhal, J.S.; Neckman, J.P.; Girardi, M.; Bosenberg, M.; Choi, J.N. Clinical and Histologic Features of Lichenoid Mucocutaneous Eruptions Due to Anti-Programmed Cell Death 1 and Anti-Programmed Cell Death Ligand 1 Immunotherapy. JAMA Dermatol. 2016, 152, 1128–1136. [Google Scholar] [CrossRef] [Green Version]
- Sibaud, V.; Eid, C.; Belum, V.R.; Combemale, P.; Barres, B.; Lamant, L.; Mourey, L.; Gomez-Roca, C.; Estilo, C.L.; Motzer, R.; et al. Oral lichenoid reactions associated with anti-PD-1/PD-L1 therapies: Clinicopathological findings. J. Eur. Acad. Dermatol. Venereol. 2017, 31, e464–e469. [Google Scholar] [CrossRef]
- Namiki, T.; Hanafusa, T.; Ueno, M.; Miura, K.; Yokozeki, H. Severe Oral Ulcers Associated With Nivolumab Treatment. JAMA Dermatol. 2017, 153, 235–237. [Google Scholar] [CrossRef]
- Obara, K.; Masuzawa, M.; Amoh, Y. Oral lichenoid reaction showing multiple ulcers associated with anti-programmed death cell receptor-1 treatment: A report of two cases and published work review. J. Dermatol. 2018, 45, 587–591. [Google Scholar] [CrossRef]
- Enomoto, Y.; Nakatani, H.; Kondo, S.; Kasai, T.; Tsuchiya, Y. Drug-induced oral lichenoid reaction during nivolumab therapy. Int. J. Oral Maxillofac. Surg. 2019, 48, 488–491. [Google Scholar] [CrossRef] [PubMed]
- Shazib, M.A.; Woo, S.B.; Sroussi, H.; Carvo, I.; Treister, N.; Farag, A.; Schoenfeld, J.; Haddad, R.; LeBoeuf, N.; Villa, A. Oral immune-related adverse events associated with PD-1 inhibitor therapy: A case series. Oral Dis. 2020, 26, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Economopoulou, P.; Nicolatou-Galitis, O.; Kotsantis, I.; Psyrri, A. Nivolumab-related lichen planus of the lip in a patient with head and neck cancer. Oral Oncol. 2020, 104, 104623. [Google Scholar] [CrossRef] [PubMed]
- Aminzadeh, A.; Jahanshahi, G.; Ahmadi, M. A retrospective comparative study on clinico-pathologic features of oral lichen planus and oral lichenoid lesions. Dent. Res. J. (Isfahan) 2013, 10, 168–172. [Google Scholar] [CrossRef]
- Kuten-Shorrer, M.; Hochberg, E.P.; Woo, S.B. Lichenoid mucosal reaction to rituximab. Oncologist 2014, 19, e12–e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zembiec-Wheeler, B.; Lott-Limbach, A.; Malmström, H.; Elad, S. Oral lichenoid reactions may possibly be associated with abatacept: A case report and literature update. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 126, e245–e251. [Google Scholar] [CrossRef]
- Acero Brand, F.Z.; Suter, N.; Adam, J.P.; Faulques, B.; Maietta, A.; Soulières, D.; Blais, N. Severe immune mucositis and esophagitis in metastatic squamous carcinoma of the larynx associated with pembrolizumab. J. Immunother. Cancer 2018, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Miyagawa, F.; Nakajima, A.; Ohyama, S.I.; Aoki, Y.; Nishikawa, M.; Nakamura, Y.; Hashimoto, T.; Asada, H. Mucosal Lichen Planus Mimicking Mucosal Lesions in Stevens-Johnson Syndrome after Nivolumab Therapy. Acta Derm. Venereol. 2019, 99, 687–688. [Google Scholar] [CrossRef] [Green Version]
- Cardona, A.F.; Ruiz-Patiño, A.; Ricaurte, L.; Zatarain-Barrón, Z.L.; Barrón, F.; Arrieta, O. Chronic and Severe Non-Lichenoid Oral Ulcers Induced by Nivolumab - Diagnostic and Therapeutic Challenge: A Case Report. Case Rep. Oncol. 2020, 13, 314–320. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, S.; Ding, P.; Zhao, Y.; Zhang, X.; Zhao, Q. Immune-Related Adverse Events Mimicking Behcet’s Disease in a Gastric Cancer Patient Following Camrelizumab Treatment. Iran. J. Immunol. 2020, 17, 167–171. [Google Scholar] [CrossRef]
- Naidoo, J.; Schindler, K.; Querfeld, C.; Busam, K.; Cunningham, J.; Page, D.B.; Postow, M.A.; Weinstein, A.; Lucas, A.S.; Ciccolini, K.T.; et al. Autoimmune Bullous Skin Disorders with Immune Checkpoint Inhibitors Targeting PD-1 and PD-L1. Cancer Immunol. Res. 2016, 4, 383–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.J.; Carlos, G.; Chou, S.; Wakade, D.; Carlino, M.S.; Fernandez-Penas, P. Bullous pemphigoid, an autoantibody-mediated disease, is a novel immune-related adverse event in patients treated with anti-programmed cell death 1 antibodies. Melanoma Res. 2016, 26, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Jour, G.; Glitza, I.C.; Ellis, R.M.; Torres-Cabala, C.A.; Tetzlaff, M.T.; Li, J.Y.; Nagarajan, P.; Huen, A.; Aung, P.P.; Ivan, D.; et al. Autoimmune dermatologic toxicities from immune checkpoint blockade with anti-PD-1 antibody therapy: A report on bullous skin eruptions. J. Cutan Pathol. 2016, 43, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Sowerby, L.; Dewan, A.K.; Granter, S.; Gandhi, L.; LeBoeuf, N.R. Rituximab Treatment of Nivolumab-Induced Bullous Pemphigoid. JAMA Dermatol. 2017, 153, 603–605. [Google Scholar] [CrossRef]
- Haug, V.; Behle, V.; Benoit, S.; Kneitz, H.; Schilling, B.; Goebeler, M.; Gesierich, A. Pembrolizumab-associated mucous membrane pemphigoid in a patient with Merkel cell carcinoma. Br. J. Dermatol. 2018, 179, 993–994. [Google Scholar] [CrossRef]
- Wang, X.; Suppa, M.; Bruderer, P.; Sirtaine, N.; Aspeslagh, S.; Kerger, J. A Late Dermatologic Presentation of Bullous Pemphigoid Induced by Anti-PD-1 Therapy and Associated with Unexplained Neurological Disorder. Case Rep. Oncol. 2021, 14, 861–867. [Google Scholar] [CrossRef]
- Sadik, C.D.; Langan, E.A.; Gutzmer, R.; Fleischer, M.I.; Loquai, C.; Reinhardt, L.; Meier, F.; Göppner, D.; Herbst, R.A.; Zillikens, D.; et al. Retrospective Analysis of Checkpoint Inhibitor Therapy-Associated Cases of Bullous Pemphigoid From Six German Dermatology Centers. Front. Immunol. 2020, 11, 588582. [Google Scholar] [CrossRef]
- Nishie, W. Update on the pathogenesis of bullous pemphigoid: An autoantibody-mediated blistering disease targeting collagen XVII. J. Dermatol. Sci. 2014, 73, 179–186. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Hwang, S.J.E.; Consuegra, G.; Chou, S.; Fernandez-Peñas, P. Anti-programmed cell death-1 therapy-associated bullous disorders: A systematic review of the literature. Melanoma Res. 2018, 28, 491–501. [Google Scholar] [CrossRef]
- Yatim, A.; Bohelay, G.; Grootenboer-Mignot, S.; Prost-Squarcioni, C.; Alexandre, M.; Le Roux-Villet, C.; Martin, A.; Maubec, E.; Caux, F. Paraneoplastic Pemphigus Revealed by Anti-programmed Death-1 Pembrolizumab Therapy for Cutaneous Squamous Cell Carcinoma Complicating Hidradenitis Suppurativa. Front. Med. 2019, 6, 249. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, R.P.; Sharma, S.; Watabe, K. The Confounders of Cancer Immunotherapy: Roles of Lifestyle, Metabolic Disorders and Sociological Factors. Cancers 2020, 12, 2983. [Google Scholar] [CrossRef] [PubMed]
ICIs | First Author | Any Event | Dermatological | Endorine | Gastro-Intestinal | Hepatic | Pulmonary | General | Oral | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[Ref.] | AG (%) | G3 ≤(%) | AG (%) | G3 ≤(%) | AG (%) | G3 ≤(%) | AG (%) | G3 ≤(%) | AG (%) | G3 ≤(%) | AG (%) | G3 ≤(%) | AG (%) | G3 ≤(%) | AG (%) | G3 ≤(%) | |
Nivolu mab | Ferris | 139 (58.9) | 31 (13.1) | 42 (18.0) | 0 | 61 (25.8) | 0 | 37 (15.7) | 5 (2.1) | 5 (2.1) | 1 (0.4) | ||||||
[17] n = 236 | Rash | Nausea | Fatigue | Fatigue | Stomatitis | ||||||||||||
Pruritus | Appetite decrease | Asthenia | Stomati tis | ||||||||||||||
Dry skin | Diarrhea | ||||||||||||||||
Alopecia | Vomiting | ||||||||||||||||
Kiyota | 16 (69.6) | 2 (8.7) | 8 (34.8) | 0 | 8 (34.8) | 0 | 4 (17.4) | 0 | 1 (4.3) | 0 | |||||||
[82] n = 23 | Rash | Nausea | Fatigue | Stomatitis | |||||||||||||
Pruritus | Appetite decrease | ||||||||||||||||
Alopecia | Diarrhea | ||||||||||||||||
Okamoto | 30 (30) | NR | 3 (3) | 1 (1) | 17 (17) | 0 | 2 (2) | 1 (0.4) | 4 (4) | 2 (2) | 11 (11) | 3 (3) | 1 (1) | 0 | |||
[84] n=100 | Dermatitis | Hypo thyroidism | Gastro- intestinal | Liver | Liver | Interstitial | Interstitial | Weight loss | |||||||||
Dermatitis | Hyper thyroidism | Hemorrhage | Hemorrhage | Dysfunc tion | Dysfunc tion | lung | lung | ||||||||||
Adrenal insufficiency | Diarrhea | disease | disease | ||||||||||||||
Matsuo | 53 (49.1) | 11 (10.2) | 11 (20.8) | 1 (1.9) | 14 (26.4) | 2 (3.8) | 8 (15.1) | 0 | 6 (11.4) | 3 (5.7) | 4 (7.6) | 2 (3.8) | 1 (1.9) | 0 | |||
[22] n = 108 | Rash/ | Rash/ | Hypo thyroidism | Diarrhea | Elevated hepatic | Elevated hepatic | Pneumonia | Pneumonia | Fever | ||||||||
Pruritus | Pruritus | Hypophysitis | Hypophysis | Nausea | enzymes | enzymes | |||||||||||
Hyper glycemia | Hyper glycemia | Cholangitis | |||||||||||||||
Pembrolizumab | Bauml | 109 (63.7) | 26 (15.2) | 21 (12.3) | 1 (0.6) | 16 (9.3) | 0 | 30 (17.5) | 1 (0.6) | 27 (15.8) | 6 (3.5) | 11 (6.4) | 2 (1.2) | 30 (17.5) | 1 (0.6) | ||
[19] n = 171 | Rash | Rash | Hypo thyroidism | Nausea | AST increase | AST increase | Pneumoni tis | Pneumonia | Fatigue | Fatigue | |||||||
Pruritus | Diarrhea | Diarrhea | ALT increase | ALT increase | Cough | ||||||||||||
Appetite decrease | Bilirubin increase | Bilirubin increase | |||||||||||||||
ALP increase | ALP increase | ||||||||||||||||
Mehra | 123 (64) | 24 (12.5) | 47 (24.5) | NR | 23 (12) | 2 (1) | 36 (18.8) | 2 (1) | 11 (5.7) | 6 (3.1) | 5 (2.6) | 2 (1) | 63 (32.8) | 2 (1) | 4 (2.1) | NR | |
[83] n = 192 | Rash | Hypo thyroidism | Hypo thyroidism | Appetite decrease | Appetite decrease | AST increase | AST increase | Pneumoni tis | Penumonia | Fatigue | Fatigue | Stomatitis | |||||
Pruritus | TSH level | Nausea | ALT increase | ALT increase | Pyrexia | ||||||||||||
Dry skin | increase | Diarrhea Vomiting | Weight loss | ||||||||||||||
Burtness | 164 (54.7) | NR | 96 (32) | 10 (3.3) | 65 (21.7) | 5 (1.7) | 206 (68.7) | 26 (8.7) | 139 (44.7) | 34 (11.3) | 162 (54) | 22 (7.3) | 9 (3) | 0 | |||
[21] n-300 | Rash | Rash | Hypo thyroidism | NR | Constipation | Constipation | Cough | NR | Fatigue | Fatigue | Stomatitis | ||||||
Derma titis | Diarrhea | Diarrhea | Asthenia | Asthenia | |||||||||||||
acneiform | Vomiting | Vomiting | Pyrexia | Pyrexia | |||||||||||||
Appetite decrease | |||||||||||||||||
Durvalu mab | Siu | 42 (63.1) | 8 (12.3) | 6 (9.2) | 0 | 7 (10.8) | 0 | 11 (16.9) | 0 | 17 (26.2) | 2 (3.1) | ||||||
[46] n = 65 | Rash | Diarrhea | Fatigue | Fatigue | |||||||||||||
Pruritus | Appetite decrease | Asthenia | |||||||||||||||
Nausea Vomiting | |||||||||||||||||
Tremelimumab | Siu | 36 (55.4) | 11 (16.9) | 8 (12.3) | 0 | 1 (1.5) | 0 | 23 (35.4) | 3 (4.6) | 12 (18.5) | 1 (1.5) | ||||||
[46] n = 65 | Rash | Hypo thyroidism | Diarrhea | Diarrhea | Fatigue | Fatigue | |||||||||||
Pruritus | Appetite decrease | Asthenia | |||||||||||||||
Nausea Vomiting | Pyrexia | ||||||||||||||||
Durvalu mab | Siu | 77 (57.9) | 21 (15.8) | 14 (10.5) | 0 | 11 (8.3) | 0 | 39 (29.3) | 4 (3.0) | 27 (20.3) | 4 (3.0) | ||||||
[46] n = 133 | Rash | Hypo thyroidism | Appetite decrease | Asthenia | Asthenia | ||||||||||||
Tremelimumab | Pruritus | Nausea Vomiting | Fatigue | Fatigue | |||||||||||||
Diarrhea | Diarrhea | Pyrexia |
First Author | Age/Sex | Cancer Type | ICIs | Time to irAE | Clinical Feature (Distribution) | Pathological | Immunological | Other irAEs | Tumor | Treatment of irAEs | Clinical Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|
[Ref.] | M/cycle | Feature | Data | Response | |||||||
Oral lichenoid reaction | |||||||||||
Shi | F | RCC | Nivolumab | 1.6 M | Papular (mouth) | Lichenoid | Papular (palms, soles) | SD | ICI continued | ||
[107] | F | Lung cancer | Nivolumab | 10.2 M | Mucositis (mouth) | Lichenoid | None | PR | ICI continued | ||
M | Melanoma | Nivolumab | 0.5 M | Erosive lichen planus | Lichenoid | None | SD | ICI discontinued | |||
(mouth, penis) | |||||||||||
F | RCC | Atezolizumab | 8.3 M | Papular (mouth) | Lichenoid | Papular (plams, arms) | PR | ICI discontinued | |||
Sibaud | 53/M | Multiple myeloma | Nivolumab | 2 cycles | Papule, Reticular streaks | Cutaneous lichenoid | DEX | Resolved after | |||
[108] | (lip, tongue, buccal) | eruption | Mouth wash | several weeks | |||||||
62/M | RCC | Nivolumab | 23 cycles | White streaks (buccal), | No dermal lesions | None | Resolved after ICI | ||||
White plaque (tomhue) | ICI discontinued | discontinuation | |||||||||
42/M | Glioblastoma | Nivolumab | 2 cycles | White papule (lip, tongue, | No dermal lesions | Topical corticosteroids | |||||
multiforme | buccal) | Anti-fungal lozenges | |||||||||
70/F | Lung cancer | Nivolmab | 6 cycles | White streaks (buccal, lip, mouth | Cutaneous lichenoid | Topical and oral | Resolved after | ||||
floor, soft palate, tongue), | eruption | corticosteroids | several weeks | ||||||||
Erythema/atrophy (tongue) | Pneumonitis | ||||||||||
41/F | Breast cancer | Pembrolizu mab | 10 cycles | White plaque-like lesion | No dermal lesions | None | |||||
(tongue) | |||||||||||
63/M | Lung carcinoma | Nivolumab | 3 cycles | Reticular white streaks | Nonspecifc maculo- | Topical coticosteroids | |||||
(buccal, soft palate) | papular rash | ||||||||||
56/M | Renal cell | Atezolizumab | 11 cycles | White plaque-like lesions | Cutaneous lichenoid | Topical corticosteroids | Resolved after | ||||
carcinoma | (tongue), Reticular white | reaction | ICI discontinued | ICI discontinuation | |||||||
streaks (hard palate) | |||||||||||
66/M | Adenocarcinoma | Atezolizumab | 14 cycles | Reticular white streak | Xerostomia | None | |||||
of esophagus | (buccal) | ||||||||||
54/M | RCC | Atezolizumab | 5 cycles | Ulcers (floor of mouth) | No dermal lesions | Topical corticosteroids | Resolved eventually | ||||
Sensitive tongue | |||||||||||
58/M | Lung carcinoma | Pembrolizu mab | 12 cycles | Reticular white streaks | Cutaneous | Topical corticosteroids | Resolved eventually | ||||
Oral lichenoid reaction | |||||||||||
Namiki | 84/F | Melanoma | Nivolumab | 3 M | Ulcers (buccal, tongure) | Epithelial necrosis, | None | Methylprednisolone, | Resolved after | ||
[109] | Lichenoid lymphocyte | Oral prednisolone | a month | ||||||||
infiltration | |||||||||||
Shazib | 74/F | Melanoma | Nivolumab | 4 doses | Lichenoid (buccal, lip, | Lichenoid mucositis | Pneumonitis | PR | Topical CLO | ||
[112] | gingiva) | ||||||||||
55/F | Melanoma | Nivolumab | 16 doses | Lichenoid (palate) | Pneumotitis | PR | Topical FLUOC | ||||
68/M | OSCC | Nivolumab | 2 doses | Lichenoid (buccal, gingiva) | Lichenoid mucositis | PR | Topical DEX | ||||
39/M | OSCC | Nivolumab | 2 doses | Oral erythema | Topical DEX | ||||||
multiforme (bucal, lip, palate) | Prednisolne | ||||||||||
60/F | Breast cancer | Pembrolizumab | 2 doses | Lichenoid (tongue, buccal, | Topical DEX | ||||||
gingiva, lip) | Prednisolone | ||||||||||
Severe immune mucositis | |||||||||||
Cardona | 93/M | Pharyngeal carcinoma | Nivolumab | 10 cycles | Ulcers (buccal, tongue, | Infiltration of | Hypothyroidism | CR | Topical triamcinolone | Complete resolution | |
[119] | 50% of oral mucosa) | lymphocytes and | Dysphagia | Oral prednisolone | Cyclophosphamide | ||||||
silimar to GVHD, | macrophage-like cells | Methylprednisolone | and colchicine | ||||||||
Behcet’s disease | Cyclophosphamide, Colchicine | ||||||||||
Acero Brand | 69/M | Layngeal carcinoma | Pembrolizumab | 14 cycles | Oral and pharynx | Ulcerative esphoagitis | None | CR | ICI discontinued | Marked improvement | |
[117] | mucositis, esphagitis | with granulation tissue | Methylprednisolone | within 48 h | |||||||
Miyagawa | 75/M | Gastric cancer | Nivolumab | 19 cycles | Erosion and ulcers | Infiltration of band-like | Dsg1 (-), Dsg3 (-) | Perianal erosions | ICI discontinued | Improved gradually | |
[118] | (buccal mucosa, tongue, lip) | inflammatory cells | BP180 (-), BP230 (-) | Erosion (glans, | Pednisolone | ||||||
IIF (-), DIF (-) | penis) | ||||||||||
Wang | 32/M | Gastric cancer | Camrelizu mab | 15 cycles | Behchet’s disease, Ulcers (lip, | ICI discontinued | Lip lesion healed | ||||
[120] | penis, abdominal, skin), | Oral prednisolone | after few days | ||||||||
folliculitis/acne (hands, feet) | and thalidomide | ||||||||||
Oral lichenoid reaction | |||||||||||
Obara | 67/M | Lung adenocarcinoma | Nivolumab | 0.5 M | Ulcers (entire oral mucosa, | Epithelial necrosis, | Dsg1 (-), Dsg3 (-) | None | PD | Topical triamcinolone | Resolved afer |
[106] | lip, tongue) | Lichenoid lymphocyte | BP180 (-) | 3 weeks | |||||||
infiltration | |||||||||||
74/F | Lung adenocarcinoma | Nivolumab | 5 M | Ulcers (entire oral mucosa, | Epithelial necrosis, | Dsg1 (-), Dsg3 (-) | Erythromatous | PR | Oral prednisolone | Resolved after | |
lip, tongue) | Lichenoid lymphocyte | papule | 2 weeks | ||||||||
Enomo to | 52/M | Lung adenocarcinoma | Nivolumab | 5.5 M | Erosion (buccal, mouth floor, | Dsg1 (-), Dsg3 (-) | None | Oral prednisolone | Resolved within | ||
[107] | gingiva) | BP180 (+) | 3 weeks | ||||||||
Economopoulou | 66/M | OSCC | Nivolumab | 8 cycles | Ulcers (lower lip) | Bethamethasone cream | Responded well | ||||
[109] | ICI continued | ||||||||||
Shazib | 82/F | Melanoma | Pembrolizumab | 1 dose | Lichenoid (buccal, tongue) | Papular rash | PR | Topical DEX | [12/13 of patients | ||
[108] | Knee arthralgia | reported greater than | |||||||||
68/M | NSCLC | Pembrolizumab | 9 doses | Lichenoid (buccal, tongue) | Lichenoid mucositis | None | PR | Topical DEX | 80% improvement in pain scores, | ||
43/F | Melanoma | Pembrolizumab | 2 doses | Lichenoid (palate, buccal, | Papular rash, | PR | Topical DEX | but there was | |||
tongue) | Adrenal crisis | Topical FLUOC | minimal | ||||||||
57/M | Melanoma | Nivolumab | 11 doses | Lichenoid (tongue) | Papular rash, | PR | objective | ||||
Acute nephritis | Topical CLO | improvement] | |||||||||
76/M | NSCLC | Nivolumab | 6 doses | Lichenoid (tongue) | Papular rash, | PD | DEX | ||||
Diarrhea | |||||||||||
70/M | OSCC | Pembrolizumab | 4 doses | EM-like (tongue, | Dermatitis | PR | Topical DEX | ||||
buccak mucosa, lip | Prednisolone | ||||||||||
73/F | NSCLC | Nivolumab | 8 doses | Lichenoid (palate, buccal) | Lichenoid mucositis | Pneumonitis | PR | Topical CLO | |||
Vaginal ulcers | |||||||||||
57/M | Colon cancer | Pembrolizumab | 1 dose | Acute GVHD | Papular rash | PD | Topical DEX | ||||
reactivation (palate, | M-prednisolone | ||||||||||
tongue, buccal, lip) | |||||||||||
Phemphigoid with oral lesions | |||||||||||
Zumelzu | 83/F | Melanoma | Pembrolizumab | 16.5 M | MMP, erosion, blister | Subepithelial cleavage | DIF (+) | No skin lesions | CR | Doxycycline | Controled MMP |
[63] | of gingiva | Perivascular infilitrate of | BP180 (-) | within 2 weeks | |||||||
lymphocytes and histiocytes | BP230 (-) | ||||||||||
Haug | 62/M | Merkei cell carcinoma | Pembrolizumab | 3.3 M | MMP, erosion, aphthous | DIF (+), IIF (+) | None | ICI discontinued | Erosion healed after | ||
[125] | ulcers (tongue, buccal) | BP180 (+) | Doxycycline | 6 weeks | |||||||
Topical mometasone | |||||||||||
Naidoo | 80/M | Melanoma | Nivolumab | 6 M | BP, bucal mucosa | Subepithelial vesicular | BP180 (+) | CR | Topical tacrolimus | ||
[121] | dermatitis with | BP230 (+), DIF (+) | and DEX | ||||||||
eosinophils | |||||||||||
78/F | Melanoma | Durvalumab | 13 M | BP, bucal mucosa | Subepithelial cleft | BP180 (+) | PR | Topical steroids | |||
BP230 (+), DIF (+) | |||||||||||
Hwang | 68/M | Melanoma | Pembrolizumab | 19.5 M | BP, bucal mucosa | Dermal chronic | DIF (+) | Papules on trunks, | PR | Topical methyl- | Responded promptly |
[122] | inflammation with | backs, legs | prednisolone | ||||||||
eosinophils | Doxycycline | ||||||||||
72/M | Melanoma | Pembrolizumab | 6.8 M | BP, bucal mucosa | Subepithelial blister | DIF (+) | Excorated blisters | PD | ICI stop, Doxcycline | ||
with eosinophils | on trunk, back, legs | Topical prednisolone | |||||||||
Methotrexate | |||||||||||
Jour | 63/M | HNSCC | Nivolumab | 3.5 M | BP, bucal mucosa | Subepithelial blisters | DIF (+) | Vesiclees and bulae | PD | Topical fluocinonide | Progressive |
[123] | with eosinophils | on neck, chin, trunk, | Oral prodnisolone | improvement | |||||||
four extremities | ICI discontinued | ||||||||||
Sowerby | 80/M | Lung adenocarcinoma | Nivolumab | 20 M | BP, gingival bulla | Subepithelial vesicle | DIF (+) | Vesicles and bullae | CR | ICI discontinued | Cleared within 2 |
[124] | with eosinophils | Dsg1 (+), BP180 (+) | on 4–5% of body | Oral steroids, Rituximab | months by rituximab | ||||||
surface | |||||||||||
Phemphigoid with oral lesions | |||||||||||
Wang | 70/M | Melanoma | Pembrolizumab | 35 cycles | BP, hard palate | Detachment of the | DIF (+) | Erosions (trunk, limbs) | CR | Oral prednisolone | Disappered 4 weeks later |
[126] | epidermis | Blisters (hands, legs) | |||||||||
Sadik | 62/M | Melanoma | Pembrolizumab | 6.8 M | BP, vesicular lesions of the oral mucosa | Interface dermatitis, | IIF (IgG+) BP180 (+), | Scattered skin papules | CR | Topical clobetasol, Oral prednisolone | Minor alleviation |
[127] | Focal epidermal | BP230 (+) | with central vesicles | , Rituximab | |||||||
necrosis | |||||||||||
76/M | RCC | Nivolumab | 4.8 M | BP, vesicular and white | Lichenoid interface | DIF (C3+), IIF (IgG+) | Palmoplanter hyper- | SD | Topical clobetasol (skin) | Alleviated but not completely | |
reticular lesions of the | dermatitis | BP180 (+), BP230 (+) | keratosis, Polygonal | Topical triamcinolone, | resolved | ||||||
oral mucosa | papules, and vesicles | Dexpanthenol | |||||||||
Paraneoplastic pemphigus | |||||||||||
Yatim | 64/M | Cutaneous SCC | Pembrolizumab | 0.7 M | Paraneoplastic pemphigus, | Suprabasal acantholysis | DIF (+) | Extensive cutaneous | ICI discontinued | Complete healing | |
[130] | blisters, pustules, | Intraepithelial blisters | Dsg1 (+), Dsg3 (+) | involvement | Oral prednisolone | ||||||
Severe stomatitis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yura, Y.; Hamada, M. Oral Immune-Related Adverse Events Caused by Immune Checkpoint Inhibitors: Salivary Gland Dysfunction and Mucosal Diseases. Cancers 2022, 14, 792. https://doi.org/10.3390/cancers14030792
Yura Y, Hamada M. Oral Immune-Related Adverse Events Caused by Immune Checkpoint Inhibitors: Salivary Gland Dysfunction and Mucosal Diseases. Cancers. 2022; 14(3):792. https://doi.org/10.3390/cancers14030792
Chicago/Turabian StyleYura, Yoshiaki, and Masakazu Hamada. 2022. "Oral Immune-Related Adverse Events Caused by Immune Checkpoint Inhibitors: Salivary Gland Dysfunction and Mucosal Diseases" Cancers 14, no. 3: 792. https://doi.org/10.3390/cancers14030792
APA StyleYura, Y., & Hamada, M. (2022). Oral Immune-Related Adverse Events Caused by Immune Checkpoint Inhibitors: Salivary Gland Dysfunction and Mucosal Diseases. Cancers, 14(3), 792. https://doi.org/10.3390/cancers14030792