RAS Mutation Conversion in Bevacizumab-Treated Metastatic Colorectal Cancer Patients: A Liquid Biopsy Based Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Samples Collection
2.2. RAS Mutational Analysis in Tissue and Plasma Samples
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Tracking RAS/BRAF Mutations in Plasma Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS Proteins and Their Regulators in Human Disease. Cell 2017, 170, 17–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–1422. [Google Scholar]
- Mody, K.; Baldeo, C.; Bekaii-Saab, T. Antiangiogenic Therapy in Colorectal Cancer. Cancer J. 2018, 24, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, C.; Nicolazzo, C.; Belardinilli, F.; Loreni, F.; Gradilone, A.; Mahdavian, Y.; Gelibter, A.; Giannini, G.; Cortesi, E.; Gazzaniga, P. Transient Disappearance of RAS Mutant Clones in Plasma: A Counterintuitive Clinical Use of EGFR Inhibitors in RAS Mutant Metastatic Colorectal Cancer. Cancers 2019, 11, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein-Scory, S.; Wahner, I.; Maslova, M.; Al-Sewaidi, Y.; Pohl, M.; Mika, T.; Ladigan, S.; Schroers, R.; Baraniskin, A. Evolution of RAS Mutational Status in Liquid Biopsies During First-Line Chemotherapy for Metastatic Colorectal Cancer. Front Oncol. 2020, 10, 1115. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.; Muinelo, L.; Dalmases, A.; Jones, F.; Edelstein, D.; Iglesias, M.; Orrillo, M.; Abalo, A.; Rodríguez, C.; Brozos, E.; et al. Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients. Ann. Oncol. 2017, 28, 1325–1332. [Google Scholar] [CrossRef]
- Bouchahda, M.; Saffroy, R.; Karaboué, A.; Hamelin, J.; Innominato, P.; Saliba, F.; Lévi, F.; Bosselut, N.; Lemoine, A. Undetectable RAS-Mutant Clones in Plasma: Possible Implication for Anti-EGFR Therapy and Prognosis in Patients With RAS-Mutant Metastatic Colorectal Cancer JCO Precis. Oncol. 2020, 4, 1070–1079. [Google Scholar] [CrossRef]
- Nicolazzo, C.; Barault, L.; Caponnetto, S.; De Renzi, G.; Belardinilli, F.; Bottillo, I.; Bargiacchi, S.; Macagno, M.; Grammatico, P.; Giannini, G.; et al. True conversions from RAS mutant to RAS wild-type in circulating tumor DNA from metastatic colorectal cancer patients as assessed by methylation and mutational signature. Cancer Lett. 2021, 507, 89–96. [Google Scholar] [CrossRef]
- Gazzaniga, P.; Raimondi, C.; Urbano, F.; Cortesi, E. Second line EGFR-inhibitors in RAS mutant metastatic colorectal cancer: The plasma RAS wild-type “window of opportunity”. Ann. Oncol. 2018, 29 (Suppl. 8), viii150–viii204. [Google Scholar] [CrossRef]
- Gazzaniga, P.; Raimondi, C.; Nicolazzo, C.; Gradilone, A.; Cortesi, E. ctDNA might expand therapeutic options for second line treatment of KRAS mutant mCRC. Ann. Oncol. 2017, 28 (Suppl. 5), v573–v594. [Google Scholar] [CrossRef]
- Bouchahda, M.; Saffroy, R.; Karaboué, A.; Hamelin, J.; Innominato, P.; Saliba, F.; Levi, F.; Bosselut, N.; Lemoin, A. Efficacy of an anti-EGFR after ctDNA conversion from mutated RAS status of metastatic colorectal cancer: Results of a pilot study. J. Clin. Oncol. 2021, 39 (Suppl. 15), e15574. [Google Scholar] [CrossRef]
- Ma, X.; Edmonson, M.; Yergeau, D.; Muzny, D.M.; Hampton, O.A.; Rusch, M.; Song, G.; Easton, J.; Harvey, R.; Wheeler, D.A.; et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat. Commun. 2015, 6, 6604. [Google Scholar] [CrossRef]
- Bachet, J.B.; Bouche, O.; Taieb, J.; Dubreuil, O.; Garcia, M.L.; Meurisse, A.; Gornet, J.-M.; Pascal Artru, P.; Louafi, S.; Emilie Soularue, E.; et al. RAS mutations concordance in circulating tumor DNA (ctDNA) and tissue in metastatic colorectal cancer (mCRC): RASANC, an AGEO prospective multicenter study. J. Clin. Oncol. 2017, 35 (Suppl. 15), 11509. [Google Scholar] [CrossRef]
- Barault, L.; Amatu, A.; Siravegna, G.; Ponzetti, A.; Moran, S.; Cassingena, A.; Mussolin, B.; Falcomatà, C.; Binder, A.M.; Cristiano, C.; et al. Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer. Gut 2018, 67, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Morris, V.K.; Allegra, C.J.; Atreya, C.; Benson, A.B., 3rd; Boland, P.; Chung, K.; Copur, M.S.; Corcoran, R.B.; Deming, D.A.; et al. ctDNA applications and integration in colorectal cancer: An NCI Colon and Rectal-Anal Task Forces whitepaper. Nat. Rev. Clin. Oncol. 2020, 17, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Said, R.; Guibert, N.; Oxnard, G.R.; Tsimberidou, A.M. Circulating tumor DNA analysis in the era of precision oncology. Oncotarget 2020, 11, 188–211. [Google Scholar] [CrossRef] [Green Version]
- Siravegna, G.; Mussolin, B.; Venesio, T.; Marsoni, S.; Seoane, J.; Dive, C.; Papadopoulos, N.; Kopetz, S.; Corcoran, R.B.; Siu, L.L.; et al. How liquid biopsies can change clinical practice in oncology. Ann. Oncol. 2019, 30, 1580–1590. [Google Scholar] [CrossRef] [Green Version]
- Siravegna, G.; Mussolin, B.; Buscarino, M.; Corti, G.; Cassingena, A.; Crisafulli, G.; Ponzetti, A.; Cremolini, C.; Amatu, A.; Lauricella, C.; et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. 2015, 21, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Moati, E.; Blons, H.; Taly, V.; Garlan, F.; Wang-Renault, S.F.; Pietrasz, D.; Didelot, A.; Garrigou, S.; Saint, A.; Pernot, S.; et al. Plasma clearance of RAS mutation under therapeutic pressure is a rare event in metastatic colorectal cancer. Int. J. Cancer 2020, 147, 1185–1189. [Google Scholar] [CrossRef]
- Spindler, K.-L.G.; Pallisgaard, N.; Andersen, R.F.; Jakobsen, A. Changes in mutational status during third-line treatment for metastatic colorectal cancer–results of consecutive measurement of cell free DNA, KRAS and BRAF in the plasma. Int. J. Cancer 2014, 135, 2215–2222. [Google Scholar] [CrossRef]
- Sunakawa, Y.; Usher, J.; Satake, H.; Jaimes, Y.; Miyamoto, Y.; Nakamura, M.; Kataoka, M.; Shiozawa, M.; Takagane, A.; Terazawa, T.; et al. 543PGene mutation status in circulating tumor DNA (ctDNA) and first-line FOLFOXIRI plus bevacizumab (bev) in metastatic colorectal cancer (mCRC) harboring RAS mutation. Ann. Oncol. 2018, 29 (Suppl. 8), viii181–viii182. [Google Scholar] [CrossRef]
- Nicolazzo, C.; Belardinilli, F.; Caponnetto, S.; Gradilone, A.; Cortesi, E.; Giannini, G.; Gazzaniga, P. Why the Therapeutic Impact of RAS Mutation Clearance in Plasma ctDNA Deserves to Be Further Explored in Metastatic Colorectal Cancer. Front Oncol. 2019, 9, 1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García de Santiago, B.; López-gómez, M.; Delgado-lópez, P.; Gordo, A.; Neria, F.; Thuissard-vasallo, I.J.; Gómez-raposo, C.; Zambrana Tevar, F.; Moreno-rubio, J.; Martínez hernández, A.; et al. RAS Mutational Status in Advanced Colorectal Adenocarcinoma Treated with Anti-angiogenics: Preliminary Experience with Liquid Biopsy. In Vivo 2021, 35, 2841–2844. [Google Scholar] [CrossRef] [PubMed]
- Epistolio, S.; Cefalì, M.; Spina, P.; Molinari, F.; Movilia, A.; Cergnul, M.; Mazzucchelli, L.; De Dosso, S.; Frattini, M.; Saletti, P. Occurence of RAS reversion in metastatic colorectal cancer patients treated with bevacizumab. Oncotarget 2021, 12, 1046–1056. [Google Scholar] [CrossRef] [PubMed]
- Parsons, B.; Myers, M.B. Personalized cancer treatment and the myth of KRAS wild-type colon tumors. Discov. Med. 2013, 15, 259–267. [Google Scholar] [PubMed]
- Lim, J.K.M.; Leprivier, G. The impact of oncogenic RAS on redox balance and implications for cancer development. Cell Death Dis. 2019, 10, 955. [Google Scholar] [CrossRef]
- Bartolacci, C.; Andreani, C.; El-Gammal, Y.; Scaglioni, P.P. Lipid Metabolism Regulates Oxidative Stress and Ferroptosis in RAS-Driven Cancers: A Perspective on Cancer Progression and Therapy. Front Mol. Biosci. 2021, 8, 706650. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Trepel, J.; Neckers, L. Ras, ROS and proteotoxic stress: A delicate balance. Cancer Cell 2011, 20, 281–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincenzi, B.; Cremolini, C.; Sartore-Bianchi, A.; Russo, A.; Mannavola, F.; Perrone, G.; Pantano, F.; Loupakis, F.; Rossini, D.; Ongaro, E.; et al. Prognostic significance of K-Ras mutation rate in metastatic colorectal cancer patients. Oncotarget 2015, 6, 31604–31612. [Google Scholar] [CrossRef] [Green Version]
- De Falco, V.; Napolitano, S.; Roselló, S.; Huerta, M.; Cervantes, A.; Ciardiello, F.; Troiani, T. How we treat metastatic colorectal cancer. ESMO Open 2020, 4 (Suppl. 2), e000813. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nagashima, K.; Kawakami, T.; Mitani, S.; Komoda, M.; Tsuji, Y.; Izawa, N.; Kawakami, K.; Yamamoto, Y.; Makiyama, A.; et al. Second-line chemotherapy after early disease progression during first-line chemotherapy containing bevacizumab for patients with metastatic colorectal cancer. BMC Cancer 2021, 21, 1159. [Google Scholar] [CrossRef] [PubMed]
Age, years | |
Mean | 67 |
Range | 44–88 |
Sex, n.(%) | |
Male | 46 (64%) |
Female | 26 (36%) |
Line of therapy | |
1st | 72 (100%) |
Treatment received | |
CT plus Bev CT alone | 50 (69%) 22 (31%) |
Location of primary tumor | |
Left | 48 (66%) |
Right | 24 (34%) |
Site of metastasis | |
Single organ | 26 (36%) |
Multi-organ | 46 (64%) |
Liver | 62 (86%) |
Peritoneum | 12 (17%) |
Lymph-node | 10 (14%) |
Lung | 6 (8%) |
Histology | |
Adenocarcinoma | 72 (100%) |
RAS tissue/plasma baseline | |
Mutated KRAS G12D KRAS G12V KRAS G12A KRAS G12R/S KRAS G12C KRAS Q61 KRAS A146T KRAS G13D NRAS G12D NRAS G12C NRAS Q61R NRAS A146T BRAF V600E | 72(100%) 19 (26%) 16 (22%) 5 (7%) 2 (3%) 6 (8%) 5 (7%) 5 (7%) 7 (10%) 3 (4%) 1(1%) 1 (1%) 1(1%) 1(1%) |
Pt. N. | Bevacizumab | RAS Mutation Tissue/Plasma Baseline | Timing of RAS Conversion (Months) | ctDNA Confirmation Test | |
---|---|---|---|---|---|
1 | no | KRAS G12V | 3 | NGS | TP53 c.524G>A p.R175H |
5 | yes | KRAS G12V | 9 | methylation | MSC ITGA4 EYA4 |
7 | yes | KRAS G12V | 9 | NGS | SMAD4 c.1522G>T p.G508C |
9 | yes | KRAS G12V | 3 | NGS | TP53 c.659A>G p.Y220C |
22 | yes | KRAS G12V | 3 | NGS | SMAD4 c.1522G>T p.G508C |
27 | yes | KRAS G12V | 9 | NGS | TP53: c.659A>G p.Y220C |
39 | yes | KRAS G12V | 6 | NGS | PIK3CA c.1625A>T p.E542V |
24 | yes | KRAS G12V | 3 | none | |
2 | no | NRAS G12C | 3 | methylation | MAP3K MSC ITGA4 EYA4 |
8 | yes | KRAS G12C | 6 | NGS | TP53: c.527G>T p.C176F |
26 | yes | KRAS G12C | 3 | methylation | MAP3K EYA4 |
33 | yes | KRAS G12C | 12 | NGS | PIK3CA: c.3062A>G p. Y1021C |
36 | yes | KRAS G12C | 6 | methylation | MAP3K MSC ITGA4 EYA4 GRIA4 |
3 | yes | KRAS G12D | 6 | NGS | TP53 c.743G>A p.R248Q |
6 | yes | KRAS G12D | 3 | NGS | PTEN c.209+6T>C |
16 | yes | KRAS G12D | 3 | NGS | TP53 c.743G>A p.R248Q |
21 | yes | KRAS G12D | 6 | NGS | TP53 c.524G>A p.R175H |
23 | yes | KRAS G12D | 9 | none | |
28 | yes | KRAS G12D | 3 | NGS | PIK3CA: c.3062A>G p. Y1021C |
30 | yes | KRAS G12D | 3 | NGS | TP53 c.844C>T p.R282W |
37 | yes | KRAS G12D | 9 | NGS | TP53 c.517G>A p.V173M |
34 | yes | KRAS G12D | 6 | none | |
35 | yes | KRAS G12D | 9 | NGS | FBXW7 c.1513C>T p.R505C; AKT1 c.49G>A p.E17K |
32 | yes | KRAS G12D | 6 | none | |
38 | yes | KRAS G12D | 9 | NGS | TP53 c.524G>A p.R175H |
43 | yes | KRAS G12D | 12 | NGS | PIK3CA c.1625A>T p.E542V |
17 | yes | KRAS G12A | 6 | methylation | MAP3K MSC ITGA4 EYA4 GRIA4 |
19 | yes | KRAS G12A | 6 | NGS | PIK3CA c.3140A>G p.H1047R |
41 | yes | KRAS G12A | 6 | methylation | EYA4 GRIA4 |
14 | yes | KRAS G13D | 3 | NGS | MAP2K1 c.171G>T p.K57N |
20 | yes | KRAS G13D | 6 | methylation | MAP3K MSC ITGA4 EYA4 GRIA4 |
4 | yes | KRAS A146t | 3 | none | |
25 | yes | KRAS A146T | 6 | NGS | TP53 c.817C>T p.T273C |
29 | yes | KRAS A146T | 9 | methylation | MAP3K ITGA4 EYA4 GRIA4 |
42 | yes | KRAS A146T | 12 | NGS | DDR2 c.1376C>T p.S459F |
12 | yes | KRAS Q61K | 3 | NGS | TP53: c.659A>G p.Y220C |
13 | yes | KRAS Q61K | 6 | NGS | PIK3CA: c.3062A>G p. Y1021C |
40 | yes | KRAS Q61H | 12 | NGS | TP53 c.401T>C p.F134S |
11 | yes | NRAS G12D | 3 | NGS | FBXW7 c.1513C>T p.R505C |
10 | yes | NRAS G12D | 6 | none | |
15 | yes | NRAS G12D | 9 | none | |
18 | yes | NRAS A146T | 3 | methylation | ITGA4 EYA4 |
31 | yes | NRAS Q61R | 3 | NGS | SMAD4 c.989A>C p.E330A |
Ras Mutation Tissue/Plasma Baseline | Timing of First Ras Conversion (Months) | Response at First Ras Conversion | Ras Status at Serial Timepoints (* PD) | |||
---|---|---|---|---|---|---|
3 Mo | 6 Mo | 9 Mo | 12 Mo | |||
KRAS G12V | 3 | SD | wild-type | wild-type | wild-type | wild-type * |
KRAS G12V | 9 | PD | KRAS G12V | KRAS G12V | wild-type * | wild type |
KRAS G12V | 9 | PD | KRAS G12V | KRAS G12V | wild-type * | wild-type |
KRAS G12V | 3 | PR | wild-type | wild-type | wild-type | wild-type |
KRAS G12V | 3 | PR | wild-type | wild-type | wild-type | wild-type * |
KRAS G12V | 3 | PR | wild-type | wild-type | wild-type | wild-type |
KRAS G12V | 9 | PR | KRAS G12V | KRAS G12V | wild-type | wild-type |
KRAS G12V | 6 | PR | KRAS G12V | wild-type | wild-type | wild-type * |
KRAS G12C | 6 | PR | KRAS G12C | wild-type | wild-type | wild-type * |
KRAS G12C | 3 | PR | wild-type | wild-type | wild-type | wild-type * |
KRAS G12C | 6 | PR | KRAS G12C | wild-type | wild-type | wild-type |
KRAS G12C | 12 | PD | KRAS G12C | KRAS G12C | KRAS G12C | wild-type * |
KRAS G12D | 6 | PD | KRAS G12D | wild-type * | wild-type | wild type |
KRAS G12D | 3 | PR | wild-type | wild-type | wild-type | KRAS G12D* |
KRAS G12D | 6 | SD | KRAS G12D | wild-type | wild-type * | wild-type |
KRAS G12D | 9 | PD | KRAS G12D | KRAS G12D | wild-type * | wild-type |
KRAS G12D | 3 | PR | wild-type | wild-type | wild-type | wild type * |
KRAS G12D | 6 | PR | KRAS G12D | wild-type | wild-type | wild-type |
KRAS G12D | 3 | SD | wild-type | wild-type | wild-type * | KRAS Q61H |
KRAS G12D | 6 | SD | G12D | wild-type | wild-type | wild type * |
KRAS G12D | 9 | PD | KRAS G12D | KRAS G12D | wild-type * | wild-type |
KRAS G12D | 9 | PD | KRAS G12D | KRAS G12D | wild-type * | wild-type |
KRAS G12D | 9 | SD | KRAS G12D | KRAS G12D | wild-type | wild type |
KRAS G12D | 12 | PD | KRAS G12D | KRAS G12D | KRAS G12D | wild type * |
KRAS G12D | 3 | SD | wild-type | wild-type | wild-type | KRAS Q61K* |
KRAS G12A | 6 | SD | KRAS G12A | wild-type | wild-type * | wild-type |
KRAS G12A | 6 | PR | KRAS G12A | wild-type | wild-type | wild-type |
KRAS G12A | 6 | CR | KRAS G12A | wild-type | wild-type | wild-type |
KRAS G13D | 3 | PR | wild-type | wild-type | wild-type | KRAS G13D * |
KRAS G13D | 6 | PR | KRAS G13D | wild-type | wild-type | wild-type |
KRAS A146T | 3 | PR | wild-type | wild-type | wild-type * | KRAS G12C |
KRAS A146T | 6 | PD | KRAS A146 | wild-type * | wild-type | wild-type |
KRAS A146T | 9 | CR | KRAS A146T | KRAS A146T | wild-type | wild type |
KRAS A146T | 12 | PR | KRASA146P/T/V | KRASA146P/T/V | KRASA146P/T/V | wild-type |
KRAS Q61K | 3 | PR | wild-type | wild-type | wild-type | wild-type * |
KRAS Q61K | 6 | SD | KRAS Q61K | wild-type | wild-type * | wild-type |
KRAS Q61H | 12 | PD | KRAS Q61H | KRAS Q61H | KRAS Q61H | wild type * |
NRAS G12C | 3 | PR | wild-type | wild-type | wild-type | wild-type * |
NRAS G12D | 6 | PD | NRAS G12D | wild-type * | wild-type | wild-type |
NRAS G12D | 3 | SD | wild-type | wild-type | wild-type* | wild type |
NRAS G12D | 9 | PD | NRAS G12D | NRAS G12D | wild-type * | wild-type |
NRAS A146T | 3 | SD | wild-type | wild-type * | wild-type | wild-type |
NRAS Q61R | 3 | SD | wild-type | wild-type * | wild-type | wild-type |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolazzo, C.; Belardinilli, F.; Vestri, A.; Magri, V.; De Renzi, G.; De Meo, M.; Caponnetto, S.; Di Nicolantonio, F.; Cortesi, E.; Giannini, G.; et al. RAS Mutation Conversion in Bevacizumab-Treated Metastatic Colorectal Cancer Patients: A Liquid Biopsy Based Study. Cancers 2022, 14, 802. https://doi.org/10.3390/cancers14030802
Nicolazzo C, Belardinilli F, Vestri A, Magri V, De Renzi G, De Meo M, Caponnetto S, Di Nicolantonio F, Cortesi E, Giannini G, et al. RAS Mutation Conversion in Bevacizumab-Treated Metastatic Colorectal Cancer Patients: A Liquid Biopsy Based Study. Cancers. 2022; 14(3):802. https://doi.org/10.3390/cancers14030802
Chicago/Turabian StyleNicolazzo, Chiara, Francesca Belardinilli, Annarita Vestri, Valentina Magri, Gianluigi De Renzi, Michela De Meo, Salvatore Caponnetto, Federica Di Nicolantonio, Enrico Cortesi, Giuseppe Giannini, and et al. 2022. "RAS Mutation Conversion in Bevacizumab-Treated Metastatic Colorectal Cancer Patients: A Liquid Biopsy Based Study" Cancers 14, no. 3: 802. https://doi.org/10.3390/cancers14030802
APA StyleNicolazzo, C., Belardinilli, F., Vestri, A., Magri, V., De Renzi, G., De Meo, M., Caponnetto, S., Di Nicolantonio, F., Cortesi, E., Giannini, G., & Gazzaniga, P. (2022). RAS Mutation Conversion in Bevacizumab-Treated Metastatic Colorectal Cancer Patients: A Liquid Biopsy Based Study. Cancers, 14(3), 802. https://doi.org/10.3390/cancers14030802