Immune Checkpoint Inhibitors as a Threat to the Hypothalamus–Pituitary Axis: A Completed Puzzle
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Hypothalamic–Pituitary Axis
3. Injury to the Pituitary Gland
4. Anterior/Adeno-Hypophysistis: Clinical Aspects
5. Injury to the Posterior Pituitary: Clinical Aspects
6. Injury to the Hypothalamus: Clinical Aspects
7. ICI-Induced Injury to the Posterior Pituitary and Hypothalamus
8. Discussion
8.1. Pathogenic Aspects
8.2. Clinical Aspects
8.3. Management Considerations
9. Future Directions
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pardoll, D.M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.J.; Weber, J.S. Immune-Related Toxicities of Checkpoint Inhibitors: Mechanisms and Mitigation Strategies. Nat. Rev. Drug Discov. 2021. [Google Scholar] [CrossRef]
- Deshpande, R.P.; Sharma, S.; Watabe, K. The Confounders of Cancer Immunotherapy: Roles of Lifestyle, Metabolic Disorders and Sociological Factors. Cancers 2020, 12, 2983. [Google Scholar] [CrossRef]
- Chang, L.-S.; Barroso-Sousa, R.; Tolaney, S.M.; Hodi, F.S.; Kaiser, U.B.; Min, L. Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocr. Rev. 2019, 40, 17–65. [Google Scholar] [CrossRef] [Green Version]
- Barroso-Sousa, R.; Barry, W.T.; Garrido-Castro, A.C.; Hodi, F.S.; Min, L.; Krop, I.E.; Tolaney, S.M. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-Analysis. JAMA Oncol. 2018, 4, 173–182. [Google Scholar] [CrossRef]
- De Filette, J.; Andreescu, C.E.; Cools, F.; Bravenboer, B.; Velkeniers, B. A Systematic Review and Meta-Analysis of Endocrine-Related Adverse Events Associated with Immune Checkpoint Inhibitors. Horm. Metab. Res. 2019, 51, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Dillard, T.; Yedinak, C.G.; Alumkal, J.; Fleseriu, M. Anti-CTLA-4 Antibody Therapy Associated Autoimmune Hypophysitis: Serious Immune Related Adverse Events across a Spectrum of Cancer Subtypes. Pituitary 2010, 13, 29–38. [Google Scholar] [CrossRef]
- Nallapaneni, N.N.; Mourya, R.; Bhatt, V.R.; Malhotra, S.; Ganti, A.K.; Tendulkar, K.K. Ipilimumab-Induced Hypophysitis and Uveitis in a Patient with Metastatic Melanoma and a History of Ipilimumab-Induced Skin Rash. J. Natl. Compr. Cancer Netw. 2014, 12, 1077–1081. [Google Scholar] [CrossRef]
- Gunawan, F.; George, E.; Roberts, A. Combination Immune Checkpoint Inhibitor Therapy Nivolumab and Ipilimumab Associated with Multiple Endocrinopathies. Endocrinol. Diabetes Metab. Case Rep. 2018, 2018, 17–0146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Tella, S.H.; Del Rivero, J.; Kommalapati, A.; Ebenuwa, I.; Gulley, J.; Strauss, J.; Brownell, I. Anti-PD-L1 Treatment Induced Central Diabetes Insipidus. J. Clin. Endocrinol. Metab. 2018, 103, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Tshuma, N.; Glynn, N.; Evanson, J.; Powles, T.; Drake, W.M. Hypothalamitis and Severe Hypothalamic Dysfunction Associated with Anti-Programmed Cell Death Ligand 1 Antibody Treatment. Eur. J. Cancer 2018, 104, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Deligiorgi, M.V.; Siasos, G.; Vergadis, C.; Trafalis, D.T. Central Diabetes Insipidus Related to Anti-Programmed Cell-Death 1 Protein Active Immunotherapy. Int. Immunopharmacol. 2020, 83, 106427. [Google Scholar] [CrossRef]
- Barnabei, A.; Carpano, S.; Chiefari, A.; Bianchini, M.; Lauretta, R.; Mormando, M.; Puliani, G.; Paoletti, G.; Appetecchia, M.; Torino, F. Case Report: Ipilimumab-Induced Panhypophysitis: An Infrequent Occurrence and Literature Review. Front. Oncol. 2020, 10, 582394. [Google Scholar] [CrossRef]
- Grami, Z.; Manjappachar, N.; Reddy Dereddi, R. Diabetes insipidus in checkpoint inhibitor treatment and acute myeloid leukemia. Crit. Care Med. 2020, 48, 144. [Google Scholar] [CrossRef]
- Brilli, L.; Calabrò, L.; Campanile, M.; Pilli, T.; Agostinis, C.; Cerase, A.; Maio, M.; Castagna, M.G. Permanent Diabetes Insipidus in a Patient with Mesothelioma Treated with Immunotherapy. Arch. Endocrinol. Metab. 2020, 64, 483–486. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Liu, L.; Shi, P.; Zhou, H.; Qian, S.; Chen, K. Anti-PD-1 Treatment-Induced Immediate Central Diabetes Insipidus: A Case Report. Immunotherapy 2021, 13, 1255–1260. [Google Scholar] [CrossRef]
- Fosci, M.; Pigliaru, F.; Salcuni, A.S.; Ghiani, M.; Cherchi, M.V.; Calia, M.A.; Loviselli, A.; Velluzzi, F. Diabetes Insipidus Secondary to Nivolumab-Induced Neurohypophysitis and Pituitary Metastasis. Endocrinol. Diabetes Metab. Case Rep. 2021, 2021, EDM200123. [Google Scholar] [CrossRef]
- Melmed, S.; Polonsky, K.; Larsen, P.R.; Kronenberg, H.M. Posterior Pituitary. In Williams Textbook of Endocrinology, 13th ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 300–332. ISBN 9780323297387. [Google Scholar]
- Le Tissier, P.; Campos, P.; Lafont, C.; Romanò, N.; Hodson, D.J.; Mollard, P. An Updated View of Hypothalamic-Vascular-Pituitary Unit Function and Plasticity. Nat. Rev. Endocrinol. 2017, 13, 257–267. [Google Scholar] [CrossRef]
- Türe, U.; De Bellis, A.; Harput, M.V.; Bellastella, G.; Topcuoglu, M.; Yaltirik, C.K.; Cirillo, P.; Yola, R.N.; Sav, A.; Kelestimur, F. Hypothalamitis: A Novel Autoimmune Endocrine Disease. A Literature Review and Case Report. J. Clin. Endocrinol. Metab. 2021, 106, e415–e429. [Google Scholar] [CrossRef]
- Kelberman, D.; Dattani, M.T. Hypothalamic and Pituitary Development: Novel Insights into the Aetiology. Eur. J. Endocrinol. 2007, 157 (Suppl. 1), S3–S14. [Google Scholar] [CrossRef] [Green Version]
- Rizzoti, K.; Lovell-Badge, R. Early Development of the Pituitary Gland: Induction and Shaping of Rathke’s Pouch. Rev. Endocr. Metab. Disord. 2005, 6, 161–172. [Google Scholar] [CrossRef]
- Prete, A.; Salvatori, R. Hypophysitis. In Endotext (Internet); Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Hershman, J.M., Hofland, J., Kalra, S., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Faje, A. Hypophysitis: Evaluation and Management. Clin. Diabetes Endocrinol. 2016, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Caturegli, P.; Newschaffer, C.; Olivi, A.; Pomper, M.G.; Burger, P.C.; Rose, N.R. Autoimmune Hypophysitis. Endocr. Rev. 2005, 26, 599–614. [Google Scholar] [CrossRef] [Green Version]
- Del Rivero, J.; Cordes, L.M.; Klubo-Gwiezdzinska, J.; Madan, R.A.; Nieman, L.K.; Gulley, J.L. Endocrine-Related Adverse Events Related to Immune Checkpoint Inhibitors: Proposed Algorithms for Management. Oncologist 2020, 25, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Di Dalmazi, G.; Ippolito, S.; Lupi, I.; Caturegli, P. Hypophysitis Induced by Immune Checkpoint Inhibitors: A 10-Year Assessment. Expert. Rev. Endocrinol. Metab. 2019, 14, 381–398. [Google Scholar] [CrossRef]
- Gubbi, S.; Hannah-Shmouni, F.; Stratakis, C.A.; Koch, C.A. Primary Hypophysitis and Other Autoimmune Disorders of the Sellar and Suprasellar Regions. Rev. Endocr. Metab. Disord. 2018, 19, 335–347. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, M.; Zheng, X.; Yang, T. Immune Checkpoint Inhibitor-Induced Adrenalitis and Primary Adrenal Insufficiency: Systematic Review and Optimal Management. Endocr. Pract. 2021, 27, 165–169. [Google Scholar] [CrossRef]
- Garrahy, A.; Moran, C.; Thompson, C.J. Diagnosis and Management of Central Diabetes Insipidus in Adults. Clin. Endocrinol 2019, 90, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Ball, S. Diabetes Insipidus. In Endotext (Internet); Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Hershman, J.M., Hofland, J., Kalra, S., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Clinical Manifestations and Causes of Central Diabetes Insipidus. Available online: www.uptodate.com (accessed on 21 October 2021).
- Scherbaum, W.A. Autoimmune diabetes insipidus. Handb. Clin. Neurol. 2021, 181, 193–204. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, A.; Colao, A.; Di Salle, F.; Muccitelli, V.I.; Iorio, S.; Perrino, S.; Pivonello, R.; Coronella, C.; Bizzarro, A.; Lombardi, G.; et al. A Longitudinal Study of Vasopressin Cell Antibodies, Posterior Pituitary Function, and Magnetic Resonance Imaging Evaluations in Subclinical Autoimmune Central Diabetes Insipidus. J. Clin. Endocrinol. Metab. 1999, 84, 3047–3051. [Google Scholar] [CrossRef] [PubMed]
- Faje, A.T.; Nachtigall, L.; Wexler, D.; Miller, K.K.; Klibanski, A.; Makimura, H. Central Diabetes Insipidus: A Previously Unreported Side Effect of Temozolomide. J. Clin. Endocrinol. Metab. 2013, 98, 3926–3931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahiat, C.; Capes, A.; Duprez, T.; Whenham, N.; Duck, L.; Labriola, L. Central Diabetes Insipidus Induced by Temozolomide: A Report of Two Cases. J. Oncol. Pharm. Pract. 2021, 27, 1040–1045. [Google Scholar] [CrossRef]
- Kuo, C.; Foon, D.; Waters, K.; Cheung, C.; Margol, A.S. Central Diabetes Insipidus: A Rare Unreported Side Effect of Temozolomide in Pediatrics. Pediatr. Blood Cancer 2020, 67, e28516. [Google Scholar] [CrossRef]
- Diagnostic Testing for Diabetes Insipidus. Available online: www.endotext.org (accessed on 21 October 2021).
- Shin, J.H.; Lee, H.K.; Choi, C.G.; Suh, D.C.; Kim, C.J.; Hong, S.K.; Na, D.G. MR Imaging of Central Diabetes Insipidus: A Pictorial Essay. Korean J. Radiol. 2001, 2, 222–230. [Google Scholar] [CrossRef]
- Treatment of Central Diabetes Insipidus. Available online: www.uptodate.com (accessed on 20 October 2021).
- Rembratt, A.; Graugaard-Jensen, C.; Senderovitz, T.; Norgaard, J.P.; Djurhuus, J.C. Pharmacokinetics and Pharmacodynamics of Desmopressin Administered Orally versus Intravenously at Daytime versus Night-Time in Healthy Men Aged 55–70 Years. Eur. J. Clin. Pharmacol. 2004, 60, 397–402. [Google Scholar] [CrossRef]
- Oiso, Y.; Robertson, G.L.; Nørgaard, J.P.; Juul, K.V. Clinical Review: Treatment of Neurohypophyseal Diabetes Insipidus. J. Clin. Endocrinol. Metab. 2013, 98, 3958–3967. [Google Scholar] [CrossRef] [Green Version]
- Arima, H.; Oiso, Y.; Juul, K.V.; Nørgaard, J.P. Efficacy and Safety of Desmopressin Orally Disintegrating Tablet in Patients with Central Diabetes Insipidus: Results of a Multicenter Open-Label Dose-Titration Study. Endocr. J. 2013, 60, 1085–1094. [Google Scholar] [CrossRef] [Green Version]
- Guitar Shaikh, M. Hypothalamic dysfunction (hypothalamic syndromes). In Oxford Textbook of Endocrinology and Diabetes, 2nd ed.; Wass, J., Stewart, P.M., Amiel, S.A., Davies, M.J., Eds.; Oxford University Press: Oxford, UK, 2011; ISBN 13 9780199235292. [Google Scholar]
- Chiloiro, S.; Tartaglione, T.; Giampietro, A.; Bianchi, A. Hypothalamitis and Pituitary Atrophy. Handb. Clin. Neurol. 2021, 181, 149–159. [Google Scholar] [CrossRef]
- Bianchi, A.; Mormando, M.; Doglietto, F.; Tartaglione, L.; Piacentini, S.; Lauriola, L.; Maira, G.; De Marinis, L. Hypothalamitis: A Diagnostic and Therapeutic Challenge. Pituitary 2014, 17, 197–202. [Google Scholar] [CrossRef]
- Asztely, F.; Kumlien, E. The Diagnosis and Treatment of Limbic Encephalitis. Acta Neurol. Scand. 2012, 126, 365–375. [Google Scholar] [CrossRef]
- Bataduwaarachchi, V.R.; Tissera, N. Paraneoplastic Limbic Encephalitis with Associated Hypothalamitis Mimicking a Hyperdense Hypothalamic Tumor: A Case Report. BMC Med. Imaging 2016, 16, 8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, J.; Wu, Y.; Tang, Y.; Tao, R.; Ye, H.; Yao, Z. Magnetic Resonance Imaging Features of Solitary Hypothalamitis. J. Comput. Assist. Tomogr. 2017, 41, 190–194. [Google Scholar] [CrossRef]
- Wei, Q.; Yang, G.; Lue, Z.; Dou, J.; Zang, L.; Li, Y.; Du, J.; Gu, W.; Mu, Y. Clinical Aspects of Autoimmune Hypothalamitis, a Variant of Autoimmune Hypophysitis: Experience from One Center. J. Int. Med. Res. 2020, 48, 300060519887832. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Chen, X.; Wu, X.; Huang, Y.; Zhuang, Y.; Chen, Y.; Feng, C.; Lin, X. Immune Checkpoint Inhibitor-Associated Pituitary Adverse Events: An Observational, Retrospective, Disproportionality Study. J. Endocrinol. Investig. 2020, 43, 1473–1483. [Google Scholar] [CrossRef]
- Yeung, S.C.; Chiu, A.C.; Vassilopoulou-Sellin, R.; Gagel, R.F. The Endocrine Effects of Nonhormonal Antineoplastic Therapy. Endocr. Rev. 1998, 19, 144–172. [Google Scholar] [CrossRef]
- Hamnvik, O.-P.R.; Larsen, P.R.; Marqusee, E. Thyroid Dysfunction from Antineoplastic Agents. J. Natl. Cancer Inst. 2011, 103, 1572–1587. [Google Scholar] [CrossRef] [Green Version]
- Torino, F.; Corsello, S.M.; Longo, R.; Barnabei, A.; Gasparini, G. Hypothyroidism Related to Tyrosine Kinase Inhibitors: An Emerging Toxic Effect of Targeted Therapy. Nat. Rev. Clin. Oncol. 2009, 6, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.-I.; Ishida, H.; Kubota, Y.; Sasaki, Y. Toxicities of Receptor Tyrosine Kinase Inhibitors in Cancer Pharmacotherapy: Management with Clinical Pharmacology. Curr. Drug. Metab. 2017, 18, 186–198. [Google Scholar] [CrossRef]
- Torino, F.; Barnabei, A.; De Vecchis, L.; Sini, V.; Schittulli, F.; Marchetti, P.; Corsello, S.M. Chemotherapy-Induced Ovarian Toxicity in Patients Affected by Endocrine-Responsive Early Breast Cancer. Crit. Rev. Oncol. Hematol. 2014, 89, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, J.M.; Bender, C.; Agarwala, S.; Tarhini, A.; Shipe-Spotloe, J.; Smelko, B.; Donnelly, S.; Stover, L. Mechanisms and Management of Toxicities Associated with High-Dose Interferon Alfa-2b Therapy. J. Clin. Oncol. 2002, 20, 3703–3718. [Google Scholar] [CrossRef] [PubMed]
- Iwama, S.; De Remigis, A.; Callahan, M.K.; Slovin, S.F.; Wolchok, J.D.; Caturegli, P. Pituitary Expression of CTLA-4 Mediates Hypophysitis Secondary to Administration of CTLA-4 Blocking Antibody. Sci. Transl. Med. 2014, 6, 230ra45. [Google Scholar] [CrossRef] [PubMed]
- Okabe, N.; Kobayashi, T.; Furuse, J.; Fujiwara, M.; Kamma, H. An Autopsy Case Study of Lymphocytic Hypophysitis Induced by Nivolumab Treatment for Esophageal Malignant Melanoma. Pathol. Int. 2021, 71, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG Subclasses and Allotypes: From Structure to Effector Functions. Front. Immunol. 2014, 5, 520. [Google Scholar] [CrossRef] [Green Version]
- Chalan, P.; Thomas, N.; Caturegli, P. Th17 Cells Contribute to the Pathology of Autoimmune Hypophysitis. J. Immunol. 2021, 206, 2536–2543. [Google Scholar] [CrossRef]
- Mazzarella, L.; Giugliano, S.; D’Amico, P.; Belli, C.; Duso, B.A.; Rescigno, M.; Curigliano, G. Evidence for Interleukin 17 Involvement in Severe Immune-Related Neuroendocrine Toxicity. Eur. J. Cancer 2020, 141, 218–224. [Google Scholar] [CrossRef]
- Udagawa, C.; Zembutsu, H. Pharmacogenetics for Severe Adverse Drug Reactions Induced by Molecular-Targeted Therapy. Cancer Sci. 2020, 111, 3445–3457. [Google Scholar] [CrossRef]
- Ueda, H.; Howson, J.M.M.; Esposito, L.; Heward, J.; Snook, H.; Chamberlain, G.; Rainbow, D.B.; Hunter, K.M.D.; Smith, A.N.; Di Genova, G.; et al. Association of the T-Cell Regulatory Gene CTLA4 with Susceptibility to Autoimmune Disease. Nature 2003, 423, 506–511. [Google Scholar] [CrossRef]
- Hertz, D.L.; Rae, J. Pharmacogenetics of Cancer Drugs. Annu. Rev. Med. 2015, 66, 65–81. [Google Scholar] [CrossRef]
- Caturegli, P.; Di Dalmazi, G.; Lombardi, M.; Grosso, F.; Larman, H.B.; Larman, T.; Taverna, G.; Cosottini, M.; Lupi, I. Hypophysitis Secondary to Cytotoxic T-Lymphocyte-Associated Protein 4 Blockade: Insights into Pathogenesis from an Autopsy Series. Am. J. Pathol. 2016, 186, 3225–3235. [Google Scholar] [CrossRef] [Green Version]
- De Bellis, A.; Sinisi, A.A.; Pane, E.; Dello Iacovo, A.; Bellastella, G.; Di Scala, G.; Falorni, A.; Giavoli, C.; Gasco, V.; Giordano, R.; et al. Involvement of Hypothalamus Autoimmunity in Patients with Autoimmune Hypopituitarism: Role of Antibodies to Hypothalamic Cells. J. Clin. Endocrinol. Metab. 2012, 97, 3684–3690. [Google Scholar] [CrossRef]
- Bellastella, G.; Maiorino, M.I.; Longo, M.; Cirillo, P.; Scappaticcio, L.; Vietri, M.T.; Bellastella, A.; Esposito, K.; De Bellis, A. Impact of Pituitary Autoimmunity and Genetic Disorders on Growth Hormone Deficiency in Children and Adults. Int. J. Mol. Sci. 2020, 21, 1392. [Google Scholar] [CrossRef] [Green Version]
- Bellastella, A.; Bizzarro, A.; Coronella, C.; Bellastella, G.; Sinisi, A.A.; De Bellis, A. Lymphocytic Hypophysitis: A Rare or Underestimated Disease? Eur. J. Endocrinol. 2003, 149, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Caturegli, P.; Lupi, I.; Landek-Salgado, M.; Kimura, H.; Rose, N.R. Pituitary Autoimmunity: 30 Years Later. Autoimmun. Rev. 2008, 7, 631–637. [Google Scholar] [CrossRef] [Green Version]
- Lupi, I.; Brancatella, A.; Cosottini, M.; Viola, N.; Lanzolla, G.; Sgrò, D.; Dalmazi, G.D.; Latrofa, F.; Caturegli, P.; Marcocci, C. Clinical Heterogeneity of Hypophysitis Secondary to PD-1/PD-L1 Blockade: Insights from Four Cases. Endocrinol. Diabetes Metab. Case Rep. 2019, 2019, EDM190102. [Google Scholar] [CrossRef]
- Bellastella, G.; Carbone, C.; Scappaticcio, L.; Cirillo, P.; Troiani, T.; Morgillo, F.; Vietri, M.T.; Della Corte, C.M.; De Falco, V.; Napolitano, S.; et al. Hypothalamic-Pituitary Autoimmunity in Patients Treated with Anti-PD-1 and Anti-PD-L1 Antibodies. Cancers 2021, 13, 4036. [Google Scholar] [CrossRef]
- Iervasi, E.; Strangio, A.; Saverino, D. Hypothalamic Expression of PD-L1: Does It Mediate Hypothalamitis? Cell. Mol. Immunol. 2019, 16, 625–626. [Google Scholar] [CrossRef]
- Suzuki, S. Encephalitis as an Immune-Related Adverse Event. J. Neurol. Neurosurg. Psychiatry 2020, 91, 680. [Google Scholar] [CrossRef]
- Higham, C.E.; Olsson-Brown, A.; Carroll, P.; Cooksley, T.; Larkin, J.; Lorigan, P.; Morganstein, D.; Trainer, P.J.; Society for Endocrinology Clinical Committee. Society for Endocrinology Endocrine Emergency Guidance: Acute Management of the Endocrine Complications of Checkpoint Inhibitor Therapy. Endocr. Connect. 2018, 7, G1–G7. [Google Scholar] [CrossRef]
- Haanen, J.B.A.G.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K.; ESMO Guidelines Committee. Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2017, 28, iv119–iv142. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Abu-Sbeih, H.; Ascierto, P.A.; Brufsky, J.; Cappelli, L.C.; Cortazar, F.B.; Gerber, D.E.; Hamad, L.; Hansen, E.; Johnson, D.B.; et al. Society for Immunotherapy of Cancer (SITC) Clinical Practice Guideline on Immune Checkpoint Inhibitor-Related Adverse Events. J. Immunother. Cancer 2021, 9, e002435. [Google Scholar] [CrossRef] [PubMed]
- NCCN Guidelines® for Management of Immunotherapy-Related Toxicities in NCCN Guidelines for Supportive Care. Version 2. 2021. Available online: https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf (accessed on 21 October 2021).
- Faje, A.T.; Lawrence, D.; Flaherty, K.; Freedman, C.; Fadden, R.; Rubin, K.; Cohen, J.; Sullivan, R.J. High-Dose Glucocorticoids for the Treatment of Ipilimumab-Induced Hypophysitis Is Associated with Reduced Survival in Patients with Melanoma. Cancer 2018, 124, 3706–3714. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Iwama, S.; Yasuda, Y.; Okada, N.; Okuji, T.; Ito, M.; Onoue, T.; Goto, M.; Sugiyama, M.; Tsunekawa, T.; et al. Pituitary Dysfunction Induced by Immune Checkpoint Inhibitors Is Associated with Better Overall Survival in Both Malignant Melanoma and Non-Small Cell Lung Carcinoma: A Prospective Study. J. Immunother. Cancer 2020, 8, e000779. [Google Scholar] [CrossRef]
- Osorio, J.C.; Ni, A.; Chaft, J.E.; Pollina, R.; Kasler, M.K.; Stephens, D.; Rodriguez, C.; Cambridge, L.; Rizvi, H.; Wolchok, J.D.; et al. Antibody-Mediated Thyroid Dysfunction during T-Cell Checkpoint Blockade in Patients with Non-Small-Cell Lung Cancer. Ann. Oncol. 2017, 28, 583–589. [Google Scholar] [CrossRef]
- Yamauchi, I.; Yasoda, A.; Matsumoto, S.; Sakamori, Y.; Kim, Y.H.; Nomura, M.; Otsuka, A.; Yamasaki, T.; Saito, R.; Kitamura, M.; et al. Incidence, Features, and Prognosis of Immune-Related Adverse Events Involving the Thyroid Gland Induced by Nivolumab. PLoS ONE 2019, 14, e0216954. [Google Scholar] [CrossRef] [Green Version]
- Iwama, S.; Kobayashi, T.; Arima, H. Clinical Characteristics, Management, and Potential Biomarkers of Endocrine Dysfunction Induced by Immune Checkpoint Inhibitors. Endocrinol. Metab. 2021, 36, 312–321. [Google Scholar] [CrossRef]
- Kotwal, A.; Ryder, M. Survival Benefit of Endocrine Dysfunction Following Immune Checkpoint Inhibitors for Nonthyroidal Cancers. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 517–524. [Google Scholar] [CrossRef]
Classification | Pituitary | Hypothalamus |
---|---|---|
Anatomical [25,27] |
|
|
Pathological [22,25,27,47] |
| - |
Pathogenic [22,25,27,46,47,49] | Primary
| Primary
|
Secondary
| Secondary
| |
Clinical [7,8,25,27,35,46] |
|
|
Authors | Age | Sex | Malignancy | Drug(s) | ICI Target/IgG-Subclass | Injury to | Median Time to Onset (Days) | MRI | ICI Delay/Discontinuation (Dis) | GC Treatment | Follow up (Days) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anterior Pituitary | Posterior Pituitary | Hypothalamus | Anterior Pituitary | Posterior Pituitary BS | ||||||||||
Dillard et al. [9] | 50 | M | Prostate | Ipilimumab | CTLA4/IgG1 | Yes | Yes | No | 84 | Normal | evident # -- | Normal end (4th cycle) | Yes | NR |
Nallapanemi et al. [10] | 62 | M | Melanoma | Ipilimumab | CTLA4/IgG1 | Yes | Yes | No | 121 | Normal | data NR-- | Normal end (4th cycle) | Yes | 180 |
Gunawan et al. [11] | 52 | M | Melanoma | Ipilimumab + Nivolumab | CTLA4/IgG1 PD-1/IgG4 | NR | Yes | No | 28 | Hemorrhagic | data NR -- | Dis | Yes | NR |
Zhao et al. [12] | 73 | M | MCC | Avelumab | PD-L1/IgG1 | No | Yes | No | 112 | Normal | NE -- | Dis | No | 240 |
Tshuma et al. [13] | 74 | F | Bladder | Atezolizumab | PD-L1/IgG1 | Yes | No | Yes | 270 | Normal | Data NR; Hypo-thalamic mass | Dis | Yes | 365 |
Deligiorgi et al. [14] | 71 | M | NSCLC | Nivolumab | PD-1/IgG4 | No | Yes | No | 150 | Normal | Evident -- | Dis | No | 0 § |
Barnabei et al. [15] | 64 | M | Melanoma | Ipilimumab | CTLA4/IgG1 | Yes | Yes | No | 60 | Micro-infarcts | Evident -- | Delay | Yes | 1230 |
Grami et al. [16] | 30 | M | AML | Ipilimumab + Nivolumab | CTLA4/IgG1 PD-1/IgG4 | Yes | Yes | No | NR | NR | NR | Dis | Yes | NR |
Brilli et al. [17] | 68 | M | Mesothelioma | Tremelimumab + Durvalumab | CTLA4/IgG2 PD-L1/IgG1 | No | Yes | No | 178 | Normal | NE -- | Delay | No | 570 |
Yu et al. [18] | 60 | M | HL | Sintilimab | PD-1/IgG4 | No | Yes | No | Immediate | Normal | Nodular signal | Dis | Yes | 90 |
Fosci et al. [19] | 62 | M | Hypopharynx | Nivolumab | PD-1/IgG4 | Yes ° | Yes | No | 35 | Metastasis | NE + stalk enlarged | Dis | Yes | 24 |
Major Criteria |
---|
|
Minor Criteria |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnabei, A.; Corsello, A.; Paragliola, R.M.; Iannantuono, G.M.; Falzone, L.; Corsello, S.M.; Torino, F. Immune Checkpoint Inhibitors as a Threat to the Hypothalamus–Pituitary Axis: A Completed Puzzle. Cancers 2022, 14, 1057. https://doi.org/10.3390/cancers14041057
Barnabei A, Corsello A, Paragliola RM, Iannantuono GM, Falzone L, Corsello SM, Torino F. Immune Checkpoint Inhibitors as a Threat to the Hypothalamus–Pituitary Axis: A Completed Puzzle. Cancers. 2022; 14(4):1057. https://doi.org/10.3390/cancers14041057
Chicago/Turabian StyleBarnabei, Agnese, Andrea Corsello, Rosa Maria Paragliola, Giovanni Maria Iannantuono, Luca Falzone, Salvatore Maria Corsello, and Francesco Torino. 2022. "Immune Checkpoint Inhibitors as a Threat to the Hypothalamus–Pituitary Axis: A Completed Puzzle" Cancers 14, no. 4: 1057. https://doi.org/10.3390/cancers14041057
APA StyleBarnabei, A., Corsello, A., Paragliola, R. M., Iannantuono, G. M., Falzone, L., Corsello, S. M., & Torino, F. (2022). Immune Checkpoint Inhibitors as a Threat to the Hypothalamus–Pituitary Axis: A Completed Puzzle. Cancers, 14(4), 1057. https://doi.org/10.3390/cancers14041057