MicroRNA Profile Alterations in Parathyroid Carcinoma: Latest Updates and Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. MicroRNAs as a Potential Source of Biomarkers in Parathyroid Tumors
3. Genetic Background of Parathyroid Tumors
4. MicroRNA Profile Alterations in Parathyroid Carcinomas
4.1. Differentially Expressed Tissue-Related microRNAs in Parathyroid Carcinoma
4.2. Differentially Expressed Serum-Related microRNAs in Parathyroid Carcinoma
4.3. Identification of miRNA Alterations in PC-Studies Limitations
4.4. Familial Syndromes and Parathyroid Tumors
5. Latest Updates and Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vaira, V.; Verdelli, C.; Forno, I.; Corbetta, S. MicroRNAs in parathyroid physiopathology. Mol. Cell Endocrinol. 2017, 456, 9–15. [Google Scholar] [CrossRef]
- Cetani, F.; Picone, A.; Cerrai, P.; Vignali, E.; Borsari, S.; Pardi, E.; Viacava, P.; Naccarato, A.G.; Miccoli, P.; Kifor, O.; et al. Parathyroid expression of calcium-sensing receptor protein and in vivo parathyroid hormone-Ca(2+) set-point in patients with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2000, 85, 4789–4794. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Abiega, S.; Mos, I.; Centeno, P.P.; Elajnaf, T.; Schlattl, W.; Ward, D.T.; Goedhart, J.; Kallay, E. Sensing Extracellular Calcium–An Insight into the Structure and Function of the Calcium-Sensing Receptor (CaSR). Adv. Exp. Med. Biol. 2020, 1131, 1031–1063. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.D.; Bilezikian, J.P. Primary Hyperparathyroidism. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Sadowski, S.M.; Pusztaszeri, M.; Brulhart-Meynet, M.C.; Petrenko, V.; De Vito, C.; Sobel, J.; Delucinge-Vivier, C.; Kebebew, E.; Regazzi, R.; Philippe, J.; et al. Identification of Differential Transcriptional Patterns in Primary and Secondary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2018, 103, 2189–2198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcocci, C.; Saponaro, F. Epidemiology, pathogenesis of primary hyperparathyroidism: Current data. Ann. Endocrinol. 2015, 76, 113–115. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Bandeira, L.; Khan, A.; Cusano, N.E. Hyperparathyroidism. Lancet 2018, 391, 168–178. [Google Scholar] [CrossRef]
- Kong, S.H.; Kim, J.H.; Park, M.Y.; Kim, S.W.; Shin, C.S. Epidemiology and prognosis of parathyroid carcinoma: Real-world data using nationwide cohort. J. Cancer Res. Clin. Oncol. 2021, 147, 3091–3097. [Google Scholar] [CrossRef]
- Alberto, F. Genetics of parathyroids disorders: Overview. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 781–790. [Google Scholar] [CrossRef]
- Shi, Y.; Hogue, J.; Dixit, D.; Koh, J.; Olson, J.A., Jr. Functional and genetic studies of isolated cells from parathyroid tumors reveal the complex pathogenesis of parathyroid neoplasia. Proc. Natl. Acad. Sci. USA 2014, 111, 3092–3097. [Google Scholar] [CrossRef] [Green Version]
- Ryhänen, E.M.; Leijon, H.; Metso, S.; Eloranta, E.; Korsoff, P.; Ahtiainen, P.; Kekäläinen, P.; Tamminen, M.; Ristamäki, R.; Knutar, O.; et al. A nationwide study on parathyroid carcinoma. Acta Oncol. 2017, 56, 991–1003. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, X.; Cui, M.; Su, Z.; Wang, M.; Liao, Q.; Zhao, Y. Verification of candidate microRNA markers for parathyroid carcinoma. Endocrine 2018, 60, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Verdelli, C.; Corbetta, S. Epigenetic Alterations in Parathyroid Cancers. Int. J. Mol. Sci. 2017, 18, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, C.H.; Harari, A. Parathyroid carcinoma: Update and guidelines for management. Curr. Treat Options Oncol. 2012, 13, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xue, S.; Wang, S.; Lv, Z.; Meng, X.; Wang, G.; Meng, W.; Liu, J.; Chen, G. Clinical characteristics and treatment outcomes of parathyroid carcinoma: A retrospective review of 234 cases. Oncol. Lett. 2017, 14, 7276–7282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahbari, R.; Holloway, A.K.; He, M.; Khanafshar, E.; Clark, O.H.; Kebebew, E. Identification of differentially expressed microRNA in parathyroid tumors. Ann. Surg. Oncol. 2011, 18, 1158–1165. [Google Scholar] [CrossRef]
- Cardoso, L.; Stevenson, M.; Thakker, R.V. Molecular genetics of syndromic and non-syndromic forms of parathyroid carcinoma. Hum. Mutat. 2017, 38, 1621–1648. [Google Scholar] [CrossRef] [Green Version]
- Schulte, K.M.; Talat, N. Diagnosis and management of parathyroid cancer. Nat. Rev. Endocrinol. 2012, 8, 612–622. [Google Scholar] [CrossRef]
- Harari, A.; Waring, A.; Fernandez-Ranvier, G.; Hwang, J.; Suh, I.; Mitmaker, E.; Shen, W.; Gosnell, J.; Duh, Q.Y.; Clark, O. Parathyroid carcinoma: A 43-year outcome and survival analysis. J. Clin. Endocrinol. Metab. 2011, 96, 3679–3686. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, V.; Sgaramella, L.I.; Di Meo, G.; Prete, F.P.; Logoluso, F.; Minerva, F.; Noviello, M.; Renzulli, G.; Gurrado, A.; Testini, M. Current concepts in parathyroid carcinoma: A single Centre experience. BMC Endocr. Disord. 2019, 19, 46. [Google Scholar] [CrossRef]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Shilo, V.; Ben-Dov, I.Z.; Nechama, M.; Silver, J.; Naveh-Many, T. Parathyroid-specific deletion of dicer-dependent microRNAs abrogates the response of the parathyroid to acute and chronic hypocalcemia and uremia. Faseb J. 2015, 29, 3964–3976. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, K.; Ochiya, T. Possible connection between diet and microRNA in cancer scenario. Semin. Cancer Biol 2021, 73, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Jorge, A.L.; Pereira, E.R.; Oliveira, C.S.; Ferreira, E.D.S.; Menon, E.T.N.; Diniz, S.N.; Pezuk, J.A. MicroRNAs: Understanding their role in gene expression and cancer. Einstein 2021, 19, eRB5996. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, E.; Erozenci, A.; Smit, J.; Danesi, R.; Peters, G.J. Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit. Rev. Oncol. Hematol. 2012, 81, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Kentwell, J.; Gundara, J.S.; Sidhu, S.B. Noncoding RNAs in endocrine malignancy. Oncologist 2014, 19, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Cherone, J.M.; Jorgji, V.; Burge, C.B. Cotargeting among microRNAs in the brain. Genome Res. 2019, 29, 1791–1804. [Google Scholar] [CrossRef]
- Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Rooda, I.; Hensen, K.; Kaselt, B.; Kasvandik, S.; Pook, M.; Kurg, A.; Salumets, A.; Velthut-Meikas, A. Target prediction and validation of microRNAs expressed from FSHR and aromatase genes in human ovarian granulosa cells. Sci. Rep. 2020, 10, 2300. [Google Scholar] [CrossRef] [Green Version]
- Shilo, V.; Silver, J.; Naveh-Many, T. Micro-RNAs in the parathyroid: A new portal in understanding secondary hyperparathyroidism. Curr. Opin Nephrol. Hypertens 2016, 25, 271–277. [Google Scholar] [CrossRef]
- Lee, Y.S.; Dutta, A. MicroRNAs in cancer. Annu. Rev. Pathol. 2009, 4, 199–227. [Google Scholar] [CrossRef]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Glinge, C.; Clauss, S.; Boddum, K.; Jabbari, R.; Jabbari, J.; Risgaard, B.; Tomsits, P.; Hildebrand, B.; Kääb, S.; Wakili, R.; et al. Stability of Circulating Blood-Based MicroRNAs–Pre-Analytic Methodological Considerations. PLoS ONE 2017, 12, e0167969. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Zhao, T.; Liu, X.; Bai, G.; Xin, Y.; Shen, H.; Wei, B. Expression profile of serum-related exosomal miRNAs from parathyroid tumor. Endocrine 2021, 72, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Armand-Labit, V.; Pradines, A. Circulating cell-free microRNAs as clinical cancer biomarkers. Biomol. Concepts 2017, 8, 61–81. [Google Scholar] [CrossRef] [PubMed]
- Titov, S.E.; Kozorezova, E.S.; Demenkov, P.S.; Veryaskina, Y.A.; Kuznetsova, I.V.; Vorobyev, S.L.; Chernikov, R.A.; Sleptsov, I.V.; Timofeeva, N.I.; Ivanov, M.K. Preoperative Typing of Thyroid and Parathyroid Tumors with a Combined Molecular Classifier. Cancers 2021, 13, 237. [Google Scholar] [CrossRef] [PubMed]
- Brewer, K.; Costa-Guda, J.; Arnold, A. Molecular genetic insights into sporadic primary hyperparathyroidism. Endocr. Relat. Cancer 2019, 26, R53–R72. [Google Scholar] [CrossRef]
- Tonelli, F.; Giudici, F.; Giusti, F.; Marini, F.; Cianferotti, L.; Nesi, G.; Brandi, M.L. A heterozygous frameshift mutation in exon 1 of CDKN1B gene in a patient affected by MEN4 syndrome. Eur. J. Endocrinol. 2014, 171, K7–K17. [Google Scholar] [CrossRef] [Green Version]
- DeLellis, R.A.; Mazzaglia, P.; Mangray, S. Primary hyperparathyroidism: A current perspective. Arch. Pathol. Lab. Med. 2008, 132, 1251–1262. [Google Scholar] [CrossRef]
- Verdelli, C.; Forno, I.; Vaira, V.; Corbetta, S. Epigenetic alterations in human parathyroid tumors. Endocrine 2015, 49, 324–332. [Google Scholar] [CrossRef]
- Berger, A.C.; Libutti, S.K.; Bartlett, D.L.; Skarulis, M.G.; Marx, S.J.; Spiegel, A.M.; Doppman, J.L.; Alexander, H.R. Heterogeneous gland size in sporadic multiple gland parathyroid hyperplasia. J. Am. Coll. Surg. 1999, 188, 382–389. [Google Scholar] [CrossRef]
- Hwang, S.; Jeong, J.J.; Kim, S.H.; Chung, Y.J.; Song, S.Y.; Lee, Y.J.; Rhee, Y. Differential expression of miRNA199b-5p as a novel biomarker for sporadic and hereditary parathyroid tumors. Sci. Rep. 2018, 8, 12016. [Google Scholar] [CrossRef]
- Pandya, C.; Uzilov, A.V.; Bellizzi, J.; Lau, C.Y.; Moe, A.S.; Strahl, M.; Hamou, W.; Newman, L.C.; Fink, M.Y.; Antipin, Y.; et al. Genomic profiling reveals mutational landscape in parathyroid carcinomas. JCI Insight 2017, 2, e92061. [Google Scholar] [CrossRef] [Green Version]
- Ciuffi, S.; Cianferotti, L.; Nesi, G.; Luzi, E.; Marini, F.; Giusti, F.; Zonefrati, R.; Gronchi, G.; Perigli, G.; Brandi, M.L. Characterization of a novel CDC73 gene mutation in a hyperparathyrodism-jaw tumor patient affected by parathyroid carcinoma in the absence of somatic loss of heterozygosity. Endocr. J. 2019, 66, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Rather, M.I.; Nagashri, M.N.; Swamy, S.S.; Gopinath, K.S.; Kumar, A. Oncogenic microRNA-155 down-regulates tumor suppressor CDC73 and promotes oral squamous cell carcinoma cell proliferation: Implications for cancer therapeutics. J. Biol. Chem. 2013, 288, 608–618. [Google Scholar] [CrossRef] [Green Version]
- Lima, C.R.; Gomes, C.C.; Santos, M.F. Role of microRNAs in endocrine cancer metastasis. Mol. Cell Endocrinol. 2017, 456, 62–75. [Google Scholar] [CrossRef]
- Krupinova, J.; Mokrysheva, N.; Petrov, V.; Pigarova, E.; Eremkina, A.; Dobreva, E.; Ajnetdinova, A.; Melnichenko, G.; Tiulpakov, A. Serum circulating miRNA-342-3p as a potential diagnostic biomarker in parathyroid carcinomas: A pilot study. Endocrinol. Diabetes Metab. 2021, 4, e00284. [Google Scholar] [CrossRef] [PubMed]
- Yart, A.; Gstaiger, M.; Wirbelauer, C.; Pecnik, M.; Anastasiou, D.; Hess, D.; Krek, W. The HRPT2 tumor suppressor gene product parafibromin associates with human PAF1 and RNA polymerase II. Mol. Cell Biol. 2005, 25, 5052–5060. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.A.; Howell, V.M.; Gill, A.J.; Clarkson, A.; Weaire-Buchanan, G.; Robinson, B.G.; Delbridge, L.; Gimm, O.; Schmitt, W.D.; Teh, B.T.; et al. CDC73/HRPT2 CpG island hypermethylation and mutation of 5′-untranslated sequence are uncommon mechanisms of silencing parafibromin in parathyroid tumors. Endocr. Relat. Cancer 2010, 17, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Costa-Guda, J.; Arnold, A. Genetic and epigenetic changes in sporadic endocrine tumors: Parathyroid tumors. Mol. Cell Endocrinol. 2014, 386, 46–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruijff, S.; Sidhu, S.B.; Sywak, M.S.; Gill, A.J.; Delbridge, L.W. Negative parafibromin staining predicts malignant behavior in atypical parathyroid adenomas. Ann. Surg. Oncol. 2014, 21, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Gill, A.J. Understanding the genetic basis of parathyroid carcinoma. Endocr. Pathol. 2014, 25, 30–34. [Google Scholar] [CrossRef]
- Juhlin, C.C.; Nilsson, I.L.; Lagerstedt-Robinson, K.; Stenman, A.; Bränström, R.; Tham, E.; Höög, A. Parafibromin immunostainings of parathyroid tumors in clinical routine: A near-decade experience from a tertiary center. Mod. Pathol. 2019, 32, 1082–1094. [Google Scholar] [CrossRef]
- Verdelli, C.; Forno, I.; Vaira, V.; Corbetta, S. MicroRNA deregulation in parathyroid tumours suggests an embryonic signature. J. Endocrinol. Invest. 2015, 38, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, S.; Vaira, V.; Guarnieri, V.; Scillitani, A.; Eller-Vainicher, C.; Ferrero, S.; Vicentini, L.; Chiodini, I.; Bisceglia, M.; Beck-Peccoz, P.; et al. Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr. Relat. Cancer 2010, 17, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Vaira, V.; Faversani, A.; Dohi, T.; Montorsi, M.; Augello, C.; Gatti, S.; Coggi, G.; Altieri, D.C.; Bosari, S. miR-296 regulation of a cell polarity-cell plasticity module controls tumor progression. Oncogene 2012, 31, 27–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Dong, B.; Zhang, K.; Ji, Z.; Cheng, C.; Zhao, H.; Sheng, Y.; Li, X.; Fan, L.; Xue, W.; et al. E-cadherin bridges cell polarity and spindle orientation to ensure prostate epithelial integrity and prevent carcinogenesis in vivo. PLoS Genet. 2018, 14, e1007609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, J.; Pagano, M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin. Cancer Biol. 2003, 13, 41–47. [Google Scholar] [CrossRef]
- Fodor, A.; Lazar, A.L.; Buchman, C.; Tiperciuc, B.; Orasan, O.H.; Cozma, A. MicroRNAs: The Link between the Metabolic Syndrome and Oncogenesis. Int. J. Mol. Sci. 2021, 22, 6337. [Google Scholar] [CrossRef]
- Rouigari, M.; Dehbashi, M.; Ghaedi, K.; Pourhossein, M. Targetome Analysis Revealed Involvement of MiR-126 in Neurotrophin Signaling Pathway: A Possible Role in Prevention of Glioma Development. Cell J. 2018, 20, 150–156. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, S.; Zhao, J.; Zhou, Y.; Xu, L. MicroRNA-126: A new and promising player in lung cancer. Oncol. Lett. 2021, 21, 35. [Google Scholar] [CrossRef]
- Vaira, V.; Elli, F.; Forno, I.; Guarnieri, V.; Verdelli, C.; Ferrero, S.; Scillitani, A.; Vicentini, L.; Cetani, F.; Mantovani, G.; et al. The microRNA cluster C19MC is deregulated in parathyroid tumours. J. Mol. Endocrinol. 2012, 49, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Verdelli, C.; Forno, I.; Morotti, A.; Creo, P.; Guarnieri, V.; Scillitani, A.; Cetani, F.; Vicentini, L.; Balza, G.; Beretta, E.; et al. The aberrantly expressed miR-372 partly impairs sensitivity to apoptosis in parathyroid tumor cells. Endocr. Relat. Cancer 2018, 25, 761–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandelin, K.; Tullgren, O.; Farnebo, L.O. Clinical course of metastatic parathyroid cancer. World J. Surg. 1994, 18, 594–598; discussion 599. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Z.; Yang, G.; You, L.; Zhang, T.; Zhao, Y. MicroRNA-27a (miR-27a) in Solid Tumors: A Review Based on Mechanisms and Clinical Observations. Front. Oncol. 2019, 9, 893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svedlund, J.; Aurén, M.; Sundström, M.; Dralle, H.; Akerström, G.; Björklund, P.; Westin, G. Aberrant WNT/β-catenin signaling in parathyroid carcinoma. Mol. Cancer 2010, 9, 294. [Google Scholar] [CrossRef] [Green Version]
- Westin, G. Molecular genetics and epigenetics of nonfamilial (sporadic) parathyroid tumours. J. Intern Med. 2016, 280, 551–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Ying, J.; Shang, W.; Ding, D.; Guo, M.; Wang, H. miR-342-3p Regulates the Proliferation and Apoptosis of NSCLC Cells by Targeting BCL-2. Technol. Cancer Res. Treat 2021, 20, 1–12. [Google Scholar] [CrossRef]
- Zatelli, M.C.; Grossrubatscher, E.M.; Guadagno, E.; Sciammarella, C.; Faggiano, A.; Colao, A. Circulating tumor cells and miRNAs as prognostic markers in neuroendocrine neoplasms. Endocr. Relat. Cancer 2017, 24, R223–R237. [Google Scholar] [CrossRef]
- Kamilaris, C.D.C.; Stratakis, C.A. Multiple Endocrine Neoplasia Type 1 (MEN1): An Update and the Significance of Early Genetic and Clinical Diagnosis. Front Endocrinol. 2019, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Z.; Szabó, P.M.; Grolmusz, V.K.; Perge, P.; Igaz, I.; Patócs, A.; Igaz, P. MEN1 and microRNAs: The link between sporadic pituitary, parathyroid and adrenocortical tumors? Med. Hypotheses 2017, 99, 40–44. [Google Scholar] [CrossRef]
- Piecha, G.; Chudek, J.; Więcek, A. Primary hyperparathyroidism in patients with multiple endocrine neoplasia type 1. Int. J. Endocrinol. 2010, 2010, 928383. [Google Scholar] [CrossRef] [Green Version]
- Luzi, E.; Marini, F.; Giusti, F.; Galli, G.; Cavalli, L.; Brandi, M.L. The negative feedback-loop between the oncomir Mir-24-1 and menin modulates the Men1 tumorigenesis by mimicking the “Knudson’s second hit”. PLoS ONE 2012, 7, e39767. [Google Scholar] [CrossRef] [PubMed]
- Ellur, G.; Sukhdeo, S.V.; Khan, M.T.; Sharan, K. Maternal high protein-diet programs impairment of offspring’s bone mass through miR-24-1-5p mediated targeting of SMAD5 in osteoblasts. Cell Mol. Life Sci. 2021, 78, 1729–1744. [Google Scholar] [CrossRef]
- Marini, F.; Brandi, M.L. Role of miR-24 in Multiple Endocrine Neoplasia Type 1: A Potential Target for Molecular Therapy. Int. J. Mol. Sci. 2021, 22, 7352. [Google Scholar] [CrossRef] [PubMed]
- Silva-Figueroa, A.M.; Perrier, N.D. Epigenetic processes in sporadic parathyroid neoplasms. Mol. Cell Endocrinol. 2018, 469, 54–59. [Google Scholar] [CrossRef]
- Luzi, E.; Marini, F.; Ciuffi, S.; Galli, G.; Brandi, M.L. An autoregulatory network between menin and pri-miR-24-1 is required for the processing of its specific modulator miR-24-1 in BON1 cells. Mol. Biosyst. 2016, 12, 1922–1928. [Google Scholar] [CrossRef] [PubMed]
- Luzi, E.; Ciuffi, S.; Marini, F.; Mavilia, C.; Galli, G.; Brandi, M.L. Analysis of differentially expressed microRNAs in MEN1 parathyroid adenomas. Am. J. Transl. Res. 2017, 9, 1743–1753. [Google Scholar] [PubMed]
- Aurilia, C.; Donati, S.; Palmini, G.; Miglietta, F.; Falsetti, I.; Iantomasi, T.; Brandi, M.L. Are Non-Coding RNAs Useful Biomarkers in Parathyroid Tumorigenesis? Int. J. Mol. Sci. 2021, 22, 10465. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiao, X.; Pestell, T.G.; Fan, C.; Qin, S.; Mirabelli, E.; Ren, H.; Pestell, R.G. MicroRNAs and cancer stem cells: The sword and the shield. Oncogene 2014, 33, 4967–4977. [Google Scholar] [CrossRef] [Green Version]
- Glover, A.R.; Zhao, J.T.; Gill, A.J.; Weiss, J.; Mugridge, N.; Kim, E.; Feeney, A.L.; Ip, J.C.; Reid, G.; Clarke, S.; et al. MicroRNA-7 as a tumor suppressor and novel therapeutic for adrenocortical carcinoma. Oncotarget 2015, 6, 36675–36688. [Google Scholar] [CrossRef] [Green Version]
- Cetani, F.; Pardi, E.; Marcocci, C. Parathyroid carcinoma: A clinical and genetic perspective. Minerva Endocrinol. 2018, 43, 144–155. [Google Scholar] [CrossRef] [PubMed]
Aim of the Study | Sample Type | Sample Size | Method | miRNA Expression | Main Findings | Limitations | Others | References |
---|---|---|---|---|---|---|---|---|
The identification of differentially expressed miRNAs in PCs compared with normal tissues | Tissue | 4 PCs 26 PAds 3 PNs | Microarray, qPCR | miR-296 ↓ in PCs vs. PN and PAd miR-139 ↓ in PCs vs. PN and PAd miR-503 ↑ in PCs vs. PN and PAd miR-222 ↑ in PCs vs. PN and PAd | Global miRNA profiles correctly sorted PCs from PNs miR-296, miR-139, miR-222, and miR-503 were significantly differentially expressed between PCs and PNs PCs could be discriminated from PAds by a computed score based on the expression levels of miR-296, miR-222, and miR-503 The potential role of miR-296 as an oncosuppressor in PCs | The small sample size analyzed in the study | All PC samples were sequenced to indicate CDC73/ HRPT2 mutations | Cobetta et al., 2010 [55] |
Checking if parathyroid neoplasm had a distinct miRNA signature | Tissue | 9 PCs 12 PAds 15 PHyps 4 PNs | miRNA arrays, qPCR | miR-126 ↓ in PCs vs. PAd miR-26b ↓ in PCs vs. PAd miR-30b ↓ in PCs vs. PAd | miR-126, miR-26b, and miR-30b were significantly different between PAd and PC miR-126 levels were the most accurate differentiator between PC and PAd (AUC 0.776) Most miRNAs were downregulated in PCs Most miRNAs were upregulated in pHyps | The lack of the genetic characterization of PCs The small sample size analyzed in the study | Primary PHyp was analyzed in the study | Rahbari et al., 2011 [16] |
An assessment of the expression of C19MC–MiR371–3 clusters in parathyroid tumors | Tissue | 15 PCs+5 matched mts 24 PAds 6 PNs | qPCR | miR517c ↑ in PCs vs. PAds | C19MC cluster aberrations are a characteristic of PCs with respect to PAds miR-517c were the most significantly different in expression between PCs and PAds miR-517c positively correlated with serum calcium, PTH and tumor weight The copy number variations of 19q13.4 loci were associated with miR-517c up-regulation | The small sample size analyzed in the study | The set of miRNAs was chosen according to their genomic location and biological importance PC samples were sequenced to indicate CDC73/ HRPT2 mutations | Vaira et al., 2012 [62] |
The verification of a group of miRNA markers in a new series of samples to explore their potential significance in PC diagnosis | Tissue | 17 PCs 41 PAds | qPCR | miR-222 ↑ in PCs vs. PAds miR-139 ↓ in PCs vs. PAds miR-126 ↓ in PCs vs. PAds miR-30b ↓ in PCs vs. PAds miR-517c ↓ in PCs vs. PAds | miR-139, miR-222, miR-30b, miR-517c, and miR-126 were differentially expressed between PCs and PAds The combination of miR-139 and miR-30b was the best diagnostic marker between PCs and PAds (AUC 0.888) miR-30b was negatively correlated with serum calcium, PTH and akaline phophatase | CDC73 gene sequencing was completed in only a fraction of the PCs The diagnosis of PCs was histopathologically established, but local recurrences or metastases were not observed during follow-up | The study design was based on the validation of nine candidate miRNA markers, identified by prior studies in a new set of PC cases from the Chinese population | Hu et al., 2018 [12] |
The investigation of the differences in the miRNA expression profile present in serum exosomes by comparing PC and PAd | Serum | 4 PCs 4 PAds | NGS, qPCR | miR-27a ↑ in PCs vs. PAds | miR-146b-5p, miR-27a-5p, miR-93-5p, miR-381-3p, and miR-134-5p were differentially expressed in PC patients The expression of exosomal hsa-miR-27a-5p was significantly different between PCs and PAds (AUC 0.8594) and it could be a valuable molecular marker for PC diagnosis | The small sample size analyzed in the study The lack of the genetic characterization of PCs | It is the first study investigating the serum exosomal miRNA in patients with PC | Wang et al., 2021 [34] |
Comparing the serum miRNA expression alterations between patients with benign and malignant parathyroid tumors | Serum | 13PCs 11PAds | qPCR | miR342-3p ↓ in PCs vs. PAds | miR-342-3p was the most promising biomarker in distinguishing patients with PC and PAd (AUC 0.888) | The found miRNA biomarker is not specific only for PC The correlation between miRNAs, calcium and PTH concentrations in the two examined groups was not excluded | Study evaluating serum miRNA expression profiles | Krupinova et al., 2021 [47] |
miRNA | MiRBase | Chromosome | Variation in PCs vs. PAds | Sample Type | References |
---|---|---|---|---|---|
miR-126 | hsa-miR-126-5p | 9q34.3 | ↓ | Tissue | Rahbari et al. 2011 [16] Hu et al., 2018 [12] |
miR-26b | hsa-miR-26b-5p | 2q35 | ↓ | Tissue | Rahbari et al. 2011 [16] |
miR-30b | hsa-miR-30b-5p | 8q24.22 | ↓ | Tissue | Rahbari et al. 2011 [16] Hu et al., 2018 [12] |
miR-296 | hsa-miR-296-5p | 20q13.32 | ↓ | Tissue | Corbetta et al. 2010 [55] |
miR-139 | hsa-miR-139-5p | 11q13.4 | ↓ | Tissue | Corbetta et al. 2010 [55] Hu et al., 2018 [12] |
miR-503 | hsa-miR-503-5p | Xq26.3 | ↑ | Tissue | Corbetta et al. 2010 [55] |
miR-222 | hsa-miR-222-3p | Xp11.3 | ↑ | Tissue | Corbetta et al. 2010 [55] Hu et al., 2018 [12] |
miR-517c | hsa-miR-517c-3p | 19q13.42 | ↑ ↓ | Tissue Tissue | Vaira et al., 2012 [62] Hu et al., 2018 [12] |
miR-27a | hsa-miR-27a-5p | 19p13.13 | ↑ | Serum | Wang et al., 2021 [34] |
miR-342-3p | hsa-miR-342-3p | 14q32.2 | ↓ | Serum | Krupinova et al., 2021 [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wielogórska, M.; Podgórska, B.; Niemira, M.; Szelachowska, M.; Krętowski, A.; Siewko, K. MicroRNA Profile Alterations in Parathyroid Carcinoma: Latest Updates and Perspectives. Cancers 2022, 14, 876. https://doi.org/10.3390/cancers14040876
Wielogórska M, Podgórska B, Niemira M, Szelachowska M, Krętowski A, Siewko K. MicroRNA Profile Alterations in Parathyroid Carcinoma: Latest Updates and Perspectives. Cancers. 2022; 14(4):876. https://doi.org/10.3390/cancers14040876
Chicago/Turabian StyleWielogórska, Marta, Beata Podgórska, Magdalena Niemira, Małgorzata Szelachowska, Adam Krętowski, and Katarzyna Siewko. 2022. "MicroRNA Profile Alterations in Parathyroid Carcinoma: Latest Updates and Perspectives" Cancers 14, no. 4: 876. https://doi.org/10.3390/cancers14040876
APA StyleWielogórska, M., Podgórska, B., Niemira, M., Szelachowska, M., Krętowski, A., & Siewko, K. (2022). MicroRNA Profile Alterations in Parathyroid Carcinoma: Latest Updates and Perspectives. Cancers, 14(4), 876. https://doi.org/10.3390/cancers14040876