Multifunctional Silver(I) Complexes with Metronidazole Drug Reveal Antimicrobial Properties and Antitumor Activity against Human Hepatoma and Colorectal Adenocarcinoma Cells †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthetic Procedures
2.2.1. Synthesis of [Ag(MTZ)2NO3]
2.2.2. Synthesis of [Ag(MTZ)2]2SO4·5H2O
2.3. Light Stability of Silver(I) Complexes
2.4. X-ray Diffraction Study
2.5. Chemistry
2.6. Cell Culture and Cytotoxicity Assessment
2.6.1. Cell Line Cultures
2.6.2. MTT Assay
2.6.3. NRU Assay
2.6.4. TPC Assay
2.6.5. LDH Leakage Assay
2.6.6. Statistical Analysis
2.7. Antimicrobial Activity
2.8. Biofilm Eradication Study
2.9. Crystal Violet (CV) Method
2.10. Qualitative Determination of Antibiofilm Activity via Confocal Laser Scanning Microscope (CLSM)
3. Results
3.1. Synthesis of Silver(I) Complexes
3.1.1. Synthesis of [Ag(MTZ)2NO3]
3.1.2. Synthesis of [Ag(MTZ)2]2SO4·5H2O
3.2. Light Stability of Siver(I) Complexes
3.3. Crystal Structure of [Ag(MTZ)2]2SO4·5H2O
3.4. Cytotoxicity of the Compounds
3.5. Antimicrobial Activity
3.6. Quantitative and Qualitative Determination of Antibiofilm Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lansdown, A.B. Silver in Health Care: Antimicrobial Effects and Safety in Use. Biofunctional Textiles and the Skin. Curr. Probl. Dermatol. 2006, 33, 17–34. [Google Scholar]
- Wirth, S. Pediatric Infectious Diseases Revisited; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Żyro, D.; Śliwińska, A.; Szymczak-Pajor, I.; Stręk, M.; Ochocki, J. Light Stability, Pro-Apoptotic and Genotoxic Properties of Silver (I) Complexes of Metronidazole and 4-Hydroxymethylpyridine against Pancreatic Cancer Cells In Vitro. Cancers 2020, 12, 3848. [Google Scholar] [CrossRef] [PubMed]
- Radko, L.; Stypuła-Trębas, S.; Posyniak, A.; Żyro, D.; Ochocki, J. Silver(I) Complexes of the Pharmaceutical Agents Metronidazole and 4-Hydroxymethylpyridine: Comparison of Cytotoxic Profile for Potential Clinical Application. Molecules 2019, 24, 1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giglio, J.; Dematteis, S.; Fernández, S.; Cerecetto, H.; Rey, A. Synthesis and evaluation of a new 99mTc (I)-tricarbonyl complex bearing the 5-nitroimidazol-1-yl moiety as potential hypoxia imaging agent. J. Label. Compd. Radiopharm. 2014, 57, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Wardman, P. Radiation chemistry in the clinic: Hypoxic cell radiosensitizers for radiotherapy. Radiat. Phys. Chem. 1984, 24, 293–305. [Google Scholar] [CrossRef]
- Shimamura, M.; Nagasawa, H.; Ashino, H.; Yamamoto, Y.; Hazato, T.; Uto, Y.; Hori, H.; Inayama, S. A novel hypoxia-dependent 2-nitroimidazole KIN-841 inhibits tumour-specific angiogenesis by blocking production of angiogenic factors. Br. J. Cancer 2003, 88, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dingsdag, S.A.; Hunter, N. Metronidazole: An update on metabolism, structure-cytotoxicity and resistance mechanisms. J. Antimicrob Chemother 2018, 73, 265–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, C.D.; Klutman, N.E.; Lamp, K.C. Metronidazole—A therapeutic review and update. Drugs 1997, 54, 679–708. [Google Scholar] [CrossRef]
- Stryjska, K.; Radko, L.; Chęcińska, L.; Kusz, J.; Posyniak, A.; Ochocki, J. Synthesis, Spectroscopy, Light Stability, Single-Crystal Analysis, and In Vitro Cytotoxic Activity on HepG2 Liver Cancer of Two Novel Silver(I) Complexes of Miconazole. Int. J. Mol. Sci. 2020, 21, 3629. [Google Scholar] [CrossRef]
- Soliman, S.M.; Elsilk, S.E. Synthesis, structural analyses and antimicrobial activity of the water soluble 1D coordination polymer [Ag(3-aminopyridine)]ClO4. J. Mol. Struct. 2017, 1149, 58–68. [Google Scholar] [CrossRef]
- Kalinowska-Lis, U.; Felczak, A.; Chęcińska, L.; Zawadzka, K.; Patyna, E.; Lisowska, K.; Ochocki, J. Synthesis, characterization and antimicrobial activity of water-soluble silver(I) complexes of metronidazole drug and selected counter-ions. Dalton Trans. 2015, 44, 8178–8189. [Google Scholar] [CrossRef]
- Durić, S.; Vojnovic, S.; Pavic, A.; Mojicevic, M.; Wadepohl, H.; Savić, N.D.; Popsavin, M.; Nikodinovic-Runic, J.; Djuran, M.I.; Glišića, B.D. New polynuclear 1,5-naphthyridine-silver(I) complexes as potential antimicrobial agents: The key role of the nature of donor coordinated to the metal center. J. Inorg. Biochem. 2019, 203, 110872. [Google Scholar] [CrossRef]
- Poornima, S.; Packiaraja, S.; Pushpaveni, A.; Govindarajan, S.; Butcher, R.J.; Jasinski, J.P.; Zellerf, M. Neutral and ion-pair silver(I) complexes of Schiff bases derived from methyl and ethyl carbazates with glyoxylic acid: Synthesis, structure, thermal behavior and cytotoxic activity. Inorg. Chim. Acta 2019, 497, 119072. [Google Scholar] [CrossRef]
- CrysAlis PRO; Ver. 1.171.38.41q; Rigaku: Oxford, UK, 2015.
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wol, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17, University of Western Australia. 2017. Available online: http://crystalexplorer.scb.uwa.edu.au/ (accessed on 20 June 2021).
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assay. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Borenfreund, E.; Puerner, J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Korzeniewski, C.; Calleawert, D.M. An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods 1983, 64, 313–320. [Google Scholar]
- Żesławska, E.; Korona-Głowniak, I.; Szczesio, M.; Olczak, A.; Żylewska, A.; Tejchman, W.; Malm, A. Structural analysis and antimicrobial activity of 2[1H]-pyrimidinethione/selenone derivatives. J. Mol. Struct. 2017, 1142, 261–266. [Google Scholar] [CrossRef]
- Pigge, F.C.; Burgard, M.D.; Rath, N.P. 1,3,5-Triaroylbenzenes as Ligands: Synthesis and Characterization of Three New Coordination Polymers from the Tritopic Ligand 1,3,5-Tris(4,4’,4”-tricyanobenzoyl)benzene and Ag(I)X (X=OSO2CF3, BF4, or PF6). Cryst. Growth Des. 2003, 3, 331–333. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 37, 3814–3816. [Google Scholar] [CrossRef] [PubMed]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D 2009, 65, 148–155. [Google Scholar]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- O’Donnell, F.; Smyth, T.J.P.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. Int. J. Antimicrob. Agents 2009, 35, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev. 2016, 327–328, 349–359. [Google Scholar] [CrossRef]
- Starek, M.; Dąbrowska, M.; Chebda, J.; Żyro, D.; Ochocki, J. Stability of Metronidazole and Its Complexes with Silver(I) Salts under Various Stress Conditions. Molecules 2021, 26, 3582. [Google Scholar] [CrossRef]
- Radko, L.; Minta, M. Cytotoxicity of some nitroimidazole derivatives-Comparative studies on human and rat hepatoma cell lines. Bull. Vet. Inst. Pulawy 2012, 56, 579–584. [Google Scholar] [CrossRef] [Green Version]
- Radko, L.; Minta, M.; Stypuła-Trębas, S. Influence of fluoroquinolones on viability of Balb/c 3T3 and HepG2 cells. Bull. Vet. Inst. Pulawy 2013, 57, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Lozynskyi, A.; Zimenkovsky, B.; Radko, L.; Stypula-Trebas, S.; Roman, O.; Gzella, A.K.; Lesyk, R. Synthesis and cytotoxicity of new thiazolo[4,5-b]pyridine-2(3H)-one derivatives based on α,β-unsaturated ketones and α-ketoacids. Chem. Pap. 2018, 72, 669–681. [Google Scholar] [CrossRef]
- Eisenbrand, G.; Pool-Zobel, B.; Baker, V.; Balls, M.; Blaauboer, B.J.; Boobis, A.; Carere, A.; Kevekordes, S.; Lhuguenot, J.C.; Pieters, R.; et al. Methods of in vitro toxicology. Food Chem. Toxicol. 2002, 40, 193–236. [Google Scholar] [CrossRef]
- Weyermenn, J.; Lohmann, D.; Zimmer, A. A practical note on the use of cytotoxicity assays. Int. J. Pharm. 2005, 288, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, T.; Strigun, A.; Verlohner, A.; Huener, H.A.; Peter, E.; Herold, M.; Bordag, N.; Mellert, W.; Walk, T.; Spitzer, M.; et al. Prediction of liver toxicity and mode of action using metabolomics in vitro in HepG2 cells. Arch. Toxicol. 2017, 92, 893–906. [Google Scholar] [CrossRef] [Green Version]
- Natoli, M.; Leoni, B.D.; D’Agnano, I.; Zucco, F.; Felsani, A. Good Caco-2 cell culture practices. Toxicol. Vitr. 2012, 26, 1243–1246. [Google Scholar] [CrossRef]
- Ferreira, M.B.; Myiagi, S.; Nogales, C.G.; Campos, M.S.; Lage-Marques, J.L. Time- and concentration-dependent cytotoxicity of antibiotics used in endodontic therapy. J. Appl. Oral Sci. 2010, 18, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Salahuddin, A.; Agarwal, S.M.; Avecilla, F.; Azam, A. Metronidazole thiosalicylate conjugates: Synthesis, crystal structure, docking studies and antiamoebic activity. Bioorg. Med. Chem. Lett. 2012, 17, 5694–5699. [Google Scholar] [CrossRef]
- Hausen, M.A.; Menna-Barreto, R.F.S.; Lira, D.C.; de Carvalho, L.; Barbosa, H.S. Synergic effect of metronidazole and pyrantelpamoate on Giardia lamblia. Parasitol. Int. 2011, 1, 54–58. [Google Scholar] [CrossRef]
- Kalinowska-Lis, U.; Felczak, A.; Chęcińska, L.; Szabłowska-Gadomska, I.; Patyna, E.; Małecki, M.; Lisowska, K.; Ochocki, J. Antibacterial Activity and Cytotoxicity of Silver(I) Complexes of Pyridine and (Benz)Imidazole Derivatives. X-ray Crystal Structure of [Ag(2,6-di(CH2OH)py)2]NO3. Molecules 2016, 21, 87. [Google Scholar] [CrossRef] [Green Version]
- Miyayama, T.; Arai, Y.; Suzuki, N.; Hirano, S. Mitochondrial electron transport is inhibited by disappearance of metallothionein in human bronchial epithelial cells following exposure to silver nitrate. Toxicology 2013, 305, 20–29. [Google Scholar] [CrossRef]
- Hsin, Y.H.; Chen, C.F.; Huang, S.; Shih, T.S.; Lai, P.S.; Chueh, P.J. The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 2008, 179, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Foldbjerg, R.; Dang, D.A.; Autrup, H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011, 85, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhang, S.; Hwang, J.; Kong, I. Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells. Oxid. Med. Cell. Longev. 2018, 2018, 6121328. [Google Scholar] [CrossRef] [PubMed]
- Buttacavoli, M.; Albanese, N.N.; di Cara, G.; Alduina, R.; Faleri, C.; Gallo, M.; Pizzolanti, G.; Gallo, G.; Feo, S.; Baldi, F.; et al. Anticancer activity of biogenerated silver nanoparticles: An integrated proteomic investigation. Oncotarget 2018, 9, 9685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foldbjerg, R.; Olesen, P.; Hougaard, M.; Dang, D.A.; Hoffmann, H.J.; Autrup, H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 2009, 190, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Balasubramanian, M.G.; Ponnusamy, P.; Vijayan, P. Antineoplastic effect of PAC capped silver nanoparticles promote apoptosis in HT-29 human colon cancer cells. J. Clust. Sci. 2019, 30, 483–493. [Google Scholar] [CrossRef]
- Gurunathan, S.; Qasim, M.; Park, C.; Yoo, H.; Kim, J.H.; Hong, K. Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116. Int. J. Mol. Sci. 2018, 19, 2269. [Google Scholar] [CrossRef] [Green Version]
- Ota, A.; Tajima, M.; Mori, K.; Sugiyama, E.; Sato, V.H.; Sato, H. The selective cytotoxicity of silver thiosulfate, a silver complex, on MCF-7 breast cancer cells through ROS-induced cell death. Pharmacol. Rep. 2021, 73, 847–857. [Google Scholar] [CrossRef]
- Brook, I. Spectrum and treatment of anaerobic infections. J. Infect. Chemother. 2016, 22, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef]
- Banti, C.N.; Giannoulis, A.D.; Kourkoumelis, N.; Owczarzak, A.M.; Poyraz, M.; Kubicki, M.; Charalabopoulos, K.; Hadjikakou, S.K. Mixed ligand–silver(I) complexes with anti-inflammatory agents which can bind to lipoxygenase and calf-thymus DNA, modulating their function and inducing apoptosis. Metallomics 2012, 4, 545–560. [Google Scholar] [CrossRef] [PubMed]
- Banti, C.N.; Kyros, L.; Geromichalos, G.D.; Kourkoumelis, N.; Kubicki, M.; Hadjikakou, S.K. A novel silver iodide metalo-drug: Experimental and computational modelling assessment of its interaction with intracellular DNA, lipoxygenase and glutathione. Eur. J. Med. Chem. 2014, 17, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Hickey, J.L.; Ruhayel, R.A.; Barnard, P.J.; Baker, M.V.; Berners-Price, S.J.; Filipovska, A. Mitochondria-targeted chemotherapeutics: The rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J. Am. Chem. Soc. 2008, 130, 12570–12571. [Google Scholar] [CrossRef] [PubMed]
- Nobili, S.; Mini, E.; Landini, I.; Gabbiani, C.; Casini, A.; Messori, L. Gold compounds as anticancer agents: Chemistry, cellular pharmacology, and preclinical studies. Med. Res. Rev. 2009, 30, 550–580. [Google Scholar] [CrossRef]
- Ott, I. On the medicinal chemistry of gold complexes as anticancer drugs. Coord. Chem. Rev. 2009, 253, 1670–1681. [Google Scholar] [CrossRef]
- Berners-Price, S.J.; Filipovska, A. Gold compounds as therapeutic agents for human diseases. Metallomics 2011, 3, 863–873. [Google Scholar]
- Azócar, M.I.; Gómez, G.; Velásquez, C.; Abarca, R.; Kogan, M.J.; Páez, M. Antibacterial, kinetics and bacteriolytic properties of silver(I) pyridinedicarboxylate compounds. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 37, 356–362. [Google Scholar] [CrossRef]
- Hindi, K.M.; Siciliano, T.J.; Durmus, S.; Panzner, M.J.; Medvetz, D.A.; Reddy, D.V.; Hogue, L.A.; Hovis, C.E.; Hilliard, J.K.; Mallet, R.J.; et al. Synthesis, Stability, and Antimicrobial Studies of Electronically Tuned Silver Acetate N-Heterocyclic Carbenes. J. Med. Chem. 2008, 51, 1577–1583. [Google Scholar] [CrossRef]
- Dibrov, P.; Dzioba, J.; Gosink, K.K.; Häse, C.C. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob Agents Chemother. 2002, 46, 2668–2670. [Google Scholar] [CrossRef] [Green Version]
- Jung, W.K.; Koo, H.C.; Kim, K.W.; Shin, S.; Kim, S.H.; Park, Y.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 2008, 74, 2171–2178. [Google Scholar] [CrossRef] [Green Version]
- Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci. 2018, 19, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velluti, F.; Mosconi, N.; Acevedo, A.; Borthagaray, G.; Castiglioni, J.; Faccio, R.; Back, D.F.; Moyna, G.; Rizzotto, M.; Torre, M.H. Synthesis, characterization, microbiological evaluation, genotoxicity and synergism tests of new nano silver complexes with sulfamoxole: X-ray diffraction of [Ag2(SMX)2]·DMSOJ. Inorg. Biochem. 2014, 141, 58–69. [Google Scholar]
- Karataş, M.O.; Özdemir, N.; Sarıman, M.; Günal, S.; Ulukayae, E.; Özdemir, İ. Water-soluble silver(I) complexes with N-donor benzimidazole ligands containing an imidazolium core: Stability and preliminary biological studies. Dalton Trans. 2021, 50, 11596. [Google Scholar] [CrossRef] [PubMed]
- Jaros, S.W.; Krogul-Sobczak, A.; Bażanów, B.; Florek, M.; Poradowski, D.; Nesterov, D.S.; Śliwińska-Hill, U.; Kirillov, A.M.; Smoleński, P. Self-Assembly and Multifaceted Bioactivity of a Silver(I) Quinolinate Coordination Polymer. Inorg. Chem. 2021, 60, 15435–15444. [Google Scholar] [CrossRef] [PubMed]
- Waszczykowska, A.; Żyro, D.; Jurowski, P.; Ochocki, J. Effect of treatment with silver(I) complex of metronidazole on ocular rosacea: Design and formulation of new silver drug with potent antimicrobial activity. J. Trace Elem. Med. Biol. 2020, 61, 126531. [Google Scholar] [PubMed]
Ag Interaction | Distance | Ag Interaction | Distance |
---|---|---|---|
Ag1–N1 | 2.186(3) | Ag2–N7 | 2.197(2) |
Ag1–N4 | 2.182(3) | Ag2–N10 | 2.197(2) |
Ag1–O7 | 2.591(2) | Ag2–O4 | 2.554(2) |
Ag1–O10 i | 2.635(3) | Ag2–O1 ii | 2.613(2) |
Ag1···O9 iii | 2.944(2) | Ag2···O3 iii | 2.928(3) |
Ag1···O12 iv | 2.995(3) | Ag2···O6 iv | 2.954(2) |
Hydrogen Bond | D–H | H···A | D···A | ∠ D–H···A |
---|---|---|---|---|
O1–H1D···O400 | 0.82(2) | 1.95(2) | 2.756(3) | 168(4) |
O4–H4D···O15 | 0.81(2) | 1.93(2) | 2.689(4) | 155(4) |
O7–H7D···O200 | 0.83(2) | 1.88(2) | 2.700(4) | 172(5) |
O10–H10D···O300 | 0.83(2) | 1.94(2) | 2.768(5) | 174(4) |
HepG2 | Caco-2 | Balb/c 3T3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MTT | NRU | TPC | LDH | MTT | NRU | TPC | LDH | MTT | NRU | TPC | LDH | |
[Ag(MTZ)2]2SO4 | 2.88 a ± 0.3 | 2.93 a ± 0.3 | 3.13 a ± 0.1 | 3.02 a ± 0.1 | 2.73 a ± 0.3 | 2.63 a ± 0.4 | 3.05 a ± 0.1 | 2.61 a ± 0.6 | 4.17 b ± 0.1 | 4.06 b ± 0.1 | 4.29 b ± 0.3 | 4.53 b ± 0.2 |
[Ag(MTZ)2NO3] | 8.03 a ± 0.5 | 8.24 a ± 0.3 | >10 | 4.45 a ± 0.3 | 7.32 a ± 0.4 | 6.96 a ± 0.4 | 8.62 a ± 0.5 | 4.42 a ± 0.4 | 2.42 b ± 0.6 | 2.17 b ± 0.2 | 2.04 b ± 0.4 | 4.21 a ± 0.5 |
Ag2SO4 | >10 | >10 | >10 | 3.13 a ± 0.2 | 9.01 a ± 0.5 | 7.23 a ± 0.2 | 8.23 a ± 0.5 | 7.42 b ± 0.03 | 1.92 b ± 0.2 | 2.57 b ± 0.3 | 2.39 b ± 0.4 | 2.56 c ± 0.2 |
AgNO3 | 5.50 a ± 0.3 | 5.06 a ± 0.2 | >10 | 3.06 a ± 0.3 | 5.40 a ± 0.6 | 3.85 a ± 0.4 | 5.49 a ± 0.5 | 3.20 a ± 0.2 | 2.72 b ± 0.2 | 2.82 b ± 0.3 | 2.92 b ± 0.04 | 3.60 a ± 0.3 |
MTZ | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 |
Cisplatin | 3.6 a ± 1.3 | 5.20 a ± 0.4 | 2.00 a ± 0.8 | <0.1 | 9.12 b ± 0.8 | 3.30 b ± 0.2 | 5.30 b ± 0.5 | >10 | >10 | >10 | >10 | >10 |
Chemicals | MTZ | [Ag(MTZ)2]2SO4·5H2O | Ag2SO4 | [Ag(MTZ)2 NO3] | AgNO3 | Ag sulfadiazine | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
in mg/L (µM/mL) | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | ||
Microorganism | ||||||||||||||
Gram-positive bacteria | Aerobic | S. aureus ATCC 25923 | >1000 (>5.85) | >1000 (>5.85) | 15.6 (0.014) | 15.6 (0.014) | 15.6 (0.05) | 31.3 (0.1) | 15.6 (0.049) | 62.5 (0.2) | 7.8 (0.049) | 31.3 (0.185) | 7.8 (0.022) | 15.6 (0.044) |
S. epidermidis ATCC 12228 | 500 (2.93) | 500 (2.93) | 7.8 (0.007) | 15.6 (0.014) | 15.6 (0.05) | 31.3 (0.1) | 7.8 (0.025) | 62.5 (0.2) | 3.9 (0.025) | 15.6 (0.09) | 15.6 (0.044) | 15.6 (0.044) | ||
M. luteus ATCC 10240 | 1000 (5.85) | >1000 (>5.85) | 7.8 (0.007) | 125 (0.12) | 15.6 (0.05) | 125 (0.4) | 7.8 (0.025) | 62.5 (0.2) | 3.9 (0.025) | 31.3 (0.185) | 3.9 (0.011) | 31.3 (0.088) | ||
B. subtilis ATCC 6633 | 125 (0.73) | 250 (1.46) | 15.6 (0.014) | 15.6 (0.014) | 31.3 (0.1) | 31.3 (0.1) | 15.6 (0.049) | 15.6 (0.049) | 15.6 (0.09) | 15.6 (0.09) | 3.9 (0.011) | 7.8 (0.022) | ||
B. cereus ATCC 10876 | 500 (2.93) | >1000 (>5.85) | 62.5 (0.06) | 125 (0.12) | 31.3 (0.1) | 500 (1.6) | 62.5 (0.2) | 125 (0.4) | 31.3 (0.185) | 62.5 (0.37) | 15.6 (0.044) | 125 (0.352) | ||
E. faecalis ATCC 29212 | >1000 (>5.85) | >1000 (>5.85) | 31.3 (0.03) | 62.5 (0.06) | 31.3 (0.1) | 125 (0.4) | 31.3 (0.1) | 62.5 (0.2) | 15.6 (0.09) | 31.3 (0.185) | 31.3 (0.088) | 31.3 (0.088) | ||
Anaerobic | A. israeli ATCC 10049 | >1000 (>5.85) | >1000 (>5.85) | 7.8 (0.007) | 15.6 (0.014) | 0.98 (0.003) | 15.6 (0.05) | 0.49 (0.0015) | 3.9 (0.012) | 0.49 (0.003) | 0.49 (0.003) | 62.5 (0.176) | 125 (0.352) | |
P. acnes ATCC 11827 | >1000 (>5.85) | >1000 (>5.85) | 125 (0.12) | 500 (0.46) | 125 (0.4) | 500 (1.6) | 125 (0.4) | 125 (0.4) | 62.5 (0.37) | 62.5 (0.37) | 125 (0.352) | 500 (1.408) | ||
C. perfringens ATCC 13124 | 1.95 (0.01) | 1.95 (0.01) | 1.95 (0.002) | 3.9 (0.004) | 250 (0.8) | 250 (0.8) | 1.95 (0.006) | 1.95 (0.006) | 62.5 (0.37) | 62.5 (0.37) | 31.3 (0.088) | 250 (0.704) | ||
Gram-negative bacteria | Microaerophilic/Aerobic | C. jejunii ATCC 33291 | 500 (2.93) | >1000 (>5.85) | 250 (0.23) | 500 (0.46) | 1000 (3.2) | >1000 (>3.2) | 31.3 (0.1) | 125 (0.4) | 62.5 (0.37) | 125 (0.74) | 62.5 (0.176) | 62.5 (0.176) |
H. pylori ATCC 43504 | 15.6 (0.09) | 15.6 (0.09) | 7.8 (0.008) | 31.3 (0.03) | 15.6 (0.05) | 15.6 (0.05) | 15.6 (0.049) | 15.6 (0.049) | 15.6 (0.09) | 15.6 (0.09) | 31.3 (0.088) | 31.3 (0.088) | ||
S. typhimurium ATCC 14028 | >1000 (>5.85) | >1000 (>5.85) | 15.6 (0.014) | 62.5 (0.06) | 31.3 (0.1) | 250 (0.8) | 15.6 (0.049) | 31.3 (0.1) | 15.6 (0.09) | 15.6 (0.09) | 15.6 (0.044) | 31.3 (0.088) | ||
E. coli ATCC 25922 | >1000 (>5.85) | >1000 (>5.85) | 15.6 (0.014) | 31.3 (0.03) | 62.5 (0.2) | 62.5 (0.2) | 15.6 (0.049) | 31.3 (0.1) | 7.8 (0.049) | 15.6 (0.09) | 15.6 (0.044) | 31.3 (0.088) | ||
P. mirabilis ATCC 12453 | >1000 (>5.85) | >1000 (>5.85) | 15.6 (0.014) | 15.6 (0.014) | 31.3 (0.1) | 31.3 (0.1) | 15.6 (0.049) | 31.3 (0.1) | 7.8 (0.049) | 15.6 (0.09) | 7.8 (0.022) | 15.6 (0.044) | ||
K. pneumoniae ATCC 13883 | 1000 (5.85) | 1000 (5.85) | 15.6 (0.014) | 31.3 (0.03) | 31.3 (0.1) | 31.3 (0.1) | 15.6 (0.049) | 31.3 (0.1) | 7.8 (0.049) | 7.8 (0.049) | 15.6 (0.044) | 31.3 (0.088) | ||
P. aeruginosa ATCC 9027 | >1000 (>5.85) | >1000 (>5.85) | 7.8 (0.008) | 15.6 (0.014) | 62.5 (0.2) | 125 (0.4) | 7.8 (0.025) | 15.6 (0.049) | 3.9 (0.025) | 3.9 (0.025) | 7.8 (0.022) | 15.6 (0.044) | ||
Anaerobic | B. fragilis ATCC 10240 | 0.49 (0.003) | 0.49 (0.003) | 0.24 (0.0002) | 0.98 (0.0009) | 250 (0.8) | 1000 (3.2) | 0.98 (0.003) | 0.98 (0.003) | 15.6 (0.09) | 62.5 (0.37) | 15.6 (0.044) | 62.5 (0.176) | |
P. intermedia ATCC 25611 | 1000 (5.85) | >1000 (>5.85) | 0.98 (0.0009) | 15.6 (0.014) | 7.8 (0.025) | 7.8 (0.025) | 0.98 (0.003) | 0.98 (0.003) | 0.49 (0.003) | 0.49 (0.003) | 3.9 (0.011) | 31.3 (0.088) | ||
F. nucleatum ATCC 25586 | 1.95 (0.01) | 1.95 (0.01) | 0.49 (0.0004) | 0.49 (0.0004) | 31.3 (0.1) | 31.3 (0.1) | 0.49 (0.0015) | 0.98 (0.003) | 0.49 (0.003) | 0.98 (0.006) | 3.9 (0.011) | 15.6 (0.044) | ||
V. parvula ATCC 10790 | 1.95 (0.01) | 1.95 (0.01) | 3.9 (0.004) | 3.9 (0.004) | 62.5 (0.2) | 62.5 (0.2) | 1.95 (0.006) | 1.95 (0.006) | 7.8 (0.049) | 15.6 (0.09) | 3.9 (0.011) | 31.3 (0.088) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żyro, D.; Radko, L.; Śliwińska, A.; Chęcińska, L.; Kusz, J.; Korona-Głowniak, I.; Przekora, A.; Wójcik, M.; Posyniak, A.; Ochocki, J. Multifunctional Silver(I) Complexes with Metronidazole Drug Reveal Antimicrobial Properties and Antitumor Activity against Human Hepatoma and Colorectal Adenocarcinoma Cells. Cancers 2022, 14, 900. https://doi.org/10.3390/cancers14040900
Żyro D, Radko L, Śliwińska A, Chęcińska L, Kusz J, Korona-Głowniak I, Przekora A, Wójcik M, Posyniak A, Ochocki J. Multifunctional Silver(I) Complexes with Metronidazole Drug Reveal Antimicrobial Properties and Antitumor Activity against Human Hepatoma and Colorectal Adenocarcinoma Cells. Cancers. 2022; 14(4):900. https://doi.org/10.3390/cancers14040900
Chicago/Turabian StyleŻyro, Dominik, Lidia Radko, Agnieszka Śliwińska, Lilianna Chęcińska, Joachim Kusz, Izabela Korona-Głowniak, Agata Przekora, Michał Wójcik, Andrzej Posyniak, and Justyn Ochocki. 2022. "Multifunctional Silver(I) Complexes with Metronidazole Drug Reveal Antimicrobial Properties and Antitumor Activity against Human Hepatoma and Colorectal Adenocarcinoma Cells" Cancers 14, no. 4: 900. https://doi.org/10.3390/cancers14040900
APA StyleŻyro, D., Radko, L., Śliwińska, A., Chęcińska, L., Kusz, J., Korona-Głowniak, I., Przekora, A., Wójcik, M., Posyniak, A., & Ochocki, J. (2022). Multifunctional Silver(I) Complexes with Metronidazole Drug Reveal Antimicrobial Properties and Antitumor Activity against Human Hepatoma and Colorectal Adenocarcinoma Cells. Cancers, 14(4), 900. https://doi.org/10.3390/cancers14040900