Discoidin Domain Receptor 1 Expression in Colon Cancer: Roles and Prognosis Impact
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Culture Cells
2.2. RNA Isolation from Cell Culture
2.3. Total Protein Extraction and Immunoblotting
2.4. Invasion Assay
2.5. Patients
2.6. Pathology
2.7. Immunohistochemistry
2.8. Scoring
2.9. Molecular Analyses
2.10. Laser Capture Microdissection
2.11. DDR1 mRNA Expression
2.12. Data Mining and Bioinformatic Analyses
2.13. Statistical and Survival Analyses
3. Results
3.1. Association of DDR1 Immunohistochemical Expression with Clinico-Pathological Features
3.2. Survival Analysis
3.3. DDR1 Is More Expressed in Tumor Cells Compared with Stromal Cells
3.4. DDR1 Mediates the Invasion of CRC Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Dienstmann, R.; Vermeulen, L.; Guinney, J.; Kopetz, S.; Tejpar, S.; Tabernero, J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 2017, 17, 79–92. [Google Scholar] [CrossRef]
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.; Siegel, R. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveres, H.; Pesántez, D.; Maurel, J. Lessons to Learn for Adequate Targeted Therapy Development in Metastatic Colorectal Cancer Patients. Int. J. Mol. Sci. 2021, 22, 5019. [Google Scholar] [CrossRef] [PubMed]
- Lafitte, M.; Sirvent, A.; Roche, S. Collagen Kinase Receptors as Potential Therapeutic Targets in Metastatic Colon Cancer. Front. Oncol. 2020, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Stefani, C.; Miricescu, D.; Stanescu-Spinu, I.-I.; Nica, R.I.; Greabu, M.; Totan, A.R.; Jinga, M. Growth Factors, PI3K/AKT/mTOR and, M.APK Signaling Pathways in Colorectal Cancer Pathogenesis: Where Are We Now? Int. J. Mol. Sci. 2021, 22, 10260. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, S.R.; Till, J.H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 2000, 69, 373–398. [Google Scholar] [CrossRef] [Green Version]
- Vogel, W.; Gish, G.D.; Alves, F.; Pawson, T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol. Cell 1997, 1, 13–23. [Google Scholar] [CrossRef]
- Henriet, E.; Sala, M.; Abou Hammoud, A.; Tuariihionoa, A.; Di Martino, J.; Ros, M.; Saltel, F. Multitasking discoidin domain receptors are involved in several and specific hallmarks of cancer. Cell Adhes. Migr. 2018, 12, 363–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rammal, H.; Saby, C.; Magnien, K.; Van-Gulick, L.; Garnotel, R.; Buache, E.; El btaouri, H.; Jeannesson, P.; Morjani, H. Discoidin Domain Receptors: Potential Actors and Targets in Cancer. Front. Pharmacol. 2016, 7, 346. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, J.; Li, J. Discoidin domain receptors orchestrate cancer progression: A focus on cancer therapies. Cancer Sci. 2021, 112, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Bonfil, R.D.; Chen, W.; Vranic, S.; Sohail, A.; Shi, D.; Jang, H.; Kim, H.R.; Prunotto, M.; Fridman, R. Expression and subcellular localization of Discoidin Domain Receptor 1 (DDR1) define prostate cancer aggressiveness. Cancer Cell Int. 2021, 21, 507. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, Y.; Li, Y.; Ding, J.; Dai, J.; Cai, H.; Zhang, D.; Song, Y. Discoidin domain receptor 1 is associated with poor prognosis of non-small cell lung cancer and promotes cell invasion via epithelial-to-mesenchymal transition. Med. Oncol. 2013, 30, 626. [Google Scholar]
- Borza, C.M.; Pozzi, A. Discoidin domain receptors in disease. Matrix Biol. J. Int. Soc. Matrix Biol. 2014, 34, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Yahata, T.; Adachi, S.; Yoshihara, K.; Tanaka, K. Identification of Receptor Tyrosine Kinase, Discoidin Domain Receptor 1 (DDR1), as a Potential Biomarker for Serous Ovarian Cancer. Int. J. Mol. Sci. 2011, 12, 971–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.; Ham, I.-H.; Oh, H.J.; Bae, C.A.; Lee, D.; Kim, Y.-B.; Son, S.-Y.; Chwae, Y.-J.; Han, S.-U.; Brekken, R.A.; et al. Inhibition of Discoidin Domain Receptor 1 Prevents Stroma-Induced Peritoneal Metastasis in Gastric Carcinoma. Mol. Cancer Res. 2018, 16, 1590–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Chakraborty, G.; Zhang, Z.; Akalay, I.; Gadiya, M.; Gao, Y.; Sinha, S.; Hu, J.; Jiang, C.; Akram, M.; et al. Multi-organ Site Metastatic Reactivation Mediated by Non-canonical Discoidin Domain Receptor 1 Signaling. Cell 2016, 166, 47–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Gupta, K.; Wu, B.; Zhang, D.; Yuan, B.; Zhang, X.; Chiang, H.-C.; Zhang, C.; Curiel, T.J.; Bendeck, M.P.; et al. Tumor-extrinsic discoidin domain receptor 1 promotes mammary tumor growth by regulating adipose stromal interleukin 6 production in mice. J. Biol. Chem. 2018, 293, 2841–2849. [Google Scholar] [CrossRef] [Green Version]
- Yuge, R.; Kitadai, Y.; Takigawa, H.; Naito, T.; Oue, N.; Yasui, W.; Tanaka, S.; Chayama, K. Silencing of Discoidin Domain Receptor-1 (DDR1) Concurrently Inhibits Multiple Steps of Metastasis Cascade in Gastric Cancer. Transl. Oncol. 2018, 11, 575–584. [Google Scholar] [CrossRef]
- Nemoto, T.; Ohashi, K.; Akashi, T.; Johnson, J.D.; Hirokawa, K. Overexpression of protein tyrosine kinases in human esophageal cancer. Pathobiol. J. Immunopathol. Mol Cell Biol. 1997, 65, 195–203. [Google Scholar] [CrossRef]
- Weiner, H.L.; Huang, H.; Zagzag, D.; Boyce, H.; Lichtenbaum, R.; Ziff, E.B. Consistent and Selective Expression of the Discoidin Domain Receptor-1 Tyrosine Kinase in Human Brain Tumors. Neurosurgery 2000, 47, 1400–1409. [Google Scholar] [CrossRef]
- Yang, S.H.; Baek, H.A.; Lee, H.J.; Park, H.S.; Jang, K.Y.; Kang, M.J.; Lee, D.G.; Lee, Y.C.; Moon, W.S.; Chung, M.J. Discoidin domain receptor 1 is associated with poor prognosis of non-small cell lung carcinomas. Oncol. Rep. 2010, 24, 311–319. [Google Scholar] [PubMed] [Green Version]
- Tao, Y.; Wang, R.; Lai, Q.; Wu, M.; Wang, Y.; Jiang, X.; Zeng, L.; Zhou, S.; Li, Z.; Yang, T.; et al. Targeting of DDR1 with antibody-drug conjugates has antitumor effects in a mouse model of colon carcinoma. Mol. Oncol. 2019, 13, 1855–1873. [Google Scholar] [CrossRef] [PubMed]
- Romayor, I.; Márquez, J.; Benedicto, A.; Herrero, A.; Arteta, B.; Olaso, E. Tumor DDR1 deficiency reduces liver metastasis by colon carcinoma and impairs stromal reaction. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G1002-13. [Google Scholar] [CrossRef] [PubMed]
- Jeitany, M.; Leroy, C.; Tosti, P.; Lafitte, M.; Le Guet, J.; Simon, V.; Bonenfant, D.; Robert, B.; Grillet, F.; Mollevi, C.; et al. Inhibition of DDR1-BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer. EMBO Mol. Med. 2018, 10, e7918. [Google Scholar] [CrossRef]
- Sirvent, A.; Lafitte, M.; Roche, S. DDR1 inhibition as a new therapeutic strategy for colorectal cancer. Mol. Cell Oncol. 2018, 5, e1465882. [Google Scholar] [CrossRef] [Green Version]
- Le, C.C.; Bennasroune, A.; Collin, G.; Hachet, C.; Lehrter, V.; Rioult, D.; Dedieu, S.; Morjani, H.; Appert-Collin, A. LRP-1 Promotes Colon Cancer Cell Proliferation in 3D Collagen Matrices by Mediating DDR1 Endocytosis. Front. Cell Dev. Biol. 2020, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Theret, L.; Jeanne, A.; Langlois, B.; Hachet, C.; David, M.; Khrestchatisky, M.; Devy, J.; Hervé, E.; Almagro, S.; Dedieu, S. Identification of LRP-1 as an endocytosis and recycling receptor for β1-integrin in thyroid cancer cells. Oncotarget 2017, 8, 78614–78632. [Google Scholar] [CrossRef] [Green Version]
- Boulagnon-Rombi, C.; Schneider, C.; Leandri, C.; Jeanne, A.; Grybek, V.; Bressenot, A.M.; Barbe, C.; Marquet, B.; Nasri, S.; Coquelet, S.; et al. LRP1 expression in colon cancer predicts clinical outcome. Oncotarget 2018, 9, 8849–8869. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, S.R.; Bosman, F.T.; Boffetta, P.; Ilyas, M.; Morreau, H.; Nakamura, S.I. Carcinoma of the colon and rectum. In WHO Classification of Tumours of the Digestive System; IARC Press: Lyon, France, 2010; 417p. [Google Scholar]
- Sobin, L.; Gospodarowicz, M.; Wittekind, C. TNM Classification of Malignant Tumours; Wiley-Blackwell: Oxford, UK, 2010; 30p. [Google Scholar]
- Lugli, A.; Kirsch, R.; Ajioka, Y.; Bosman, F.; Cathomas, G.; Dawson, H.; El Zimaity, H.; Fléjou, J.-F.; Hansen, T.P.; Hartmann, A.; et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod. Pathol. 2017, 30, 1299–1311. [Google Scholar] [CrossRef]
- Boulagnon, C.; Dudez, O.; Beaudoux, O.; Dalstein, V.; Kianmanesh, R.; Bouché, O.; Diebold, M.-D. BRAF V600E Gene Mutation in Colonic Adenocarcinomas. Immunohistochemical Detection Using Tissue Microarray and Clinicopathologic Characteristics: An 86 Case Series. Appl. Immunohistochem. Mol. Morphol. 2016, 24, 88–96. [Google Scholar] [CrossRef]
- Cherradi, S.; Martineau, P.; Gongora, C.; Del Rio, M. Claudin gene expression profiles and clinical value in colorectal tumors classified according to their molecular subtype. Cancer Manag. Res. 2019, 11, 1337–1348. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitinger, B. Discoidin domain receptor functions in physiological and pathological conditions. Int. Rev. Cell Mol. Biol. 2014, 310, 39–87. [Google Scholar] [PubMed] [Green Version]
- Valiathan, R.R.; Marco, M.; Leitinger, B.; Kleer, C.G.; Fridman, R. Discoidin domain receptor tyrosine kinases: New players in cancer progression. Cancer Metastasis Rev. 2012, 31, 295–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef]
- Valencia, K.; Ormazábal, C.; Zandueta, C.; Luis-Ravelo, D.; Antón, I.; Pajares, M.J.; Agorreta, J.; Montuenga, L.M.; Martinez-Canarias, S.; Leitinger, B.; et al. Inhibition of Collagen Receptor Discoidin Domain Receptor-1 (DDR1) Reduces Cell Survival, Homing, and Colonization in Lung Cancer Bone Metastasis. Clin. Cancer Res. 2012, 18, 969–980. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Liu, J.; Jiang, B.; Chen, J.; Fu, Z.; Bai, F.; Jiang, J.; Tang, Z. MiR-199a-5p loss up-regulated, DDR1 aggravated colorectal cancer by activating epithelial-to-mesenchymal transition related signaling. Dig. Dis. Sci. 2014, 59, 2163–2172. [Google Scholar] [CrossRef]
- Romayor, I.; Badiola, I.; Olaso, E. Inhibition of DDR1 reduces invasive features of human A375 melanoma, HT29 colon carcinoma and K-HEP hepatoma cells. Cell Adhes. Migr. 2020, 14, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Cicinnati, V.R.; Zhang, X.; Iacob, S.; Weber, F.; Sotiropoulos, G.C.; Radtke, A.; Lu, M.; Paul, A.; Gerken, G.; et al. Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol. Cancer 2010, 9, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toy, K.A.; Valiathan, R.R.; Núñez, F.; Kidwell, K.M.; Gonzalez, M.E.; Fridman, R.; Kleer, C.G. Tyrosine kinase discoidin domain receptors DDR1 and DDR2 are coordinately deregulated in triple-negative breast cancer. Breast Cancer Res. Treat. 2015, 150, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clinicopathological Features | Total (%) n = 292 |
---|---|
Gender | |
Male | 166(57) |
Female | 126 (43) |
Age (Mean ± standard deviation) years | 70.8 ± 10.8 |
UICC stage | |
Stage I | 34 (11.8) |
Stage II | 109 (37.8) |
Stage III | 72 (24.9) |
Stage IV | 74 (25.6) |
Tumor location | |
Left colon | 164 (56) |
Right colon | 123 (42) |
Multifocal | 5 (2) |
Occlusion | |
Yes | 34 (12) |
No | 258 (88) |
Tumor perforation | |
Yes | 17 (6) |
No | 275 (94) |
Differentiation grade | |
Grade 1–2 | 245 (84) |
Grade 3 | 47 (16) |
Annexin A10 | |
Positive | 36 (12) |
Negative | 255 (88) |
KRAS status | |
Wild type | 95 (67) |
Mutant | 46 (33) |
BRAF status | |
Wild type | 246 (86) |
Mutant | 40 (14) |
Microsatellite status | |
MSS | 250 (87) |
MSI | 37 (13) |
CIMP status | |
No CIMP | 20 (35.7) |
CIMP-Low | 30 (53.5) |
CIMP-High | 6 (10.7) |
Patients and Tumors Characteristics | n | DDR1 | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|---|
High | Low | p-Value | OR [IC 95%] | p-Value | ||
n (%) | n (%) | |||||
Age (Years) | 70.23 ± 10.6 | 73.59 ± 11.2 | 0.052 * | |||
Gender | 0.0195 ‡ | n.s | ||||
Female | 126 | 96 (40) | 30 (57.7) | |||
Male | 166 | 144 (60) | 22 (42.3) | |||
Tumor location | 0.0114 ‡ | n.s | ||||
Left colon | 164 | 143 (59.6) | 21 (40.4) | |||
Right colon | 128 | 97 (40.4) | 31 (59.6) | |||
UICC stage | 0.3240 ‡ | |||||
I | 34 | 30 (12.5) | 4 (8) | |||
II | 109 | 90 (37.7) | 19 (38) | |||
III | 72 | 55 (23) | 17 (34) | |||
IV | 74 | 64 (26.8) | 10 (20) | |||
Differentiation grade | 0.0540 ‡ | |||||
1–2 | 245 | 206 (85.8) | 39 (75) | |||
3 | 47 | 34 (14.2) | 13 (25) | |||
Vascular invasion | 0.2694 ‡ | |||||
Yes | 115 | 90 (38.3) | 15 (30) | |||
No | 180 | 145 (61.7) | 35 (70) | |||
Perineural invasion | 0.6 ‡ | |||||
Yes | 71 | 60 (25.5) | 11 (22) | |||
No | 214 | 175 (74.5) | 39 (78) | |||
Budding score | 1 † | |||||
High | 14 | 12 (5.4) | 2 (4.2) | |||
Low | 254 | 208 (94.5) | 46 (95.8) | |||
CDX2 | 0.0565 † | |||||
Positive | 268 | 223 (94.9) | 45 (86.5) | |||
Negative | 19 | 12 (5.1) | 7 (13.5) | |||
KRAS status | 0.0041 ‡ | n.s | ||||
Wild type | 95 | 69 (61.6) | 26 (89.7) | |||
Mutant | 46 | 43 (38.4) | 3 (10.3) | |||
BRAF status | <0.0001 ‡ | 7.5 [4.11–13.67] | <0.0001 | |||
Wild type | 246 | 212 (90.2) | 34 (66.7) | |||
Mutant | 40 | 23 (9.8) | 17 (33.3) | |||
Microsatellite status | 0.0909 † | |||||
MSS | 250 | 210 (89) | 40 (78.4) | |||
MSI | 36 | 25 (10.6) | 11 (21.6) | |||
CIMP status | 0.5488 † | |||||
No CIMP | 20 | 18 (39.1) | 2 (20) | |||
CIMP-L | 30 | 23 (50) | 7 (70) | |||
CIMP-H | 6 | 5 (10.88) | 1 (10) | |||
Annexine A10 | 0.0097 ‡ | n.s | ||||
Negative | 255 | 215 (90) | 40 (76.9) | |||
Positive | 36 | 24 (10) | 12 (23.1) |
Variables | n | Overall Survival | Event Free Survival |
---|---|---|---|
p-value | p-value | ||
Age | 281 | 0.0046 | 0.3824 |
Perforation (yes vs. no) | 281 | 0.0003 | <0.0001 |
Occlusion (yes vs. no) | 281 | <0.0001 | <0.0001 |
T4 (T4 vs. T1, T2, T3) | 281 | <0.0001 | <0.0001 |
N (0, 1a vs. 1b and N2) | 281 | <0.0001 | <0.0001 |
Vascular invasion (yes vs. no) | 274 | 0.0002 | <0.0001 |
Lymphatic invasion (yes vs. no) | 273 | 0.0622 | 0.0264 |
Stage UICC | 278 | <0.0001 | <0.0001 |
Differentiation grade (yes vs. no) | 283 | 0.0032 | 0.00018 |
CDX2 IHC expression (yes vs. no) | 276 | 0.0245 | 0.8486 |
Metastasis (M0 vs. M+) | 276 | <0.0001 | <0.0001 |
KRAS mutation (yes vs. no) | 135 | 0.0689 | 0.0010 |
BRAF mutation (yes vs.no) | 276 | 0.7616 | 0.2882 |
CIMP status (low vs. High) | 53 | 0.0644 | 0.0003 |
Microsatellite status (MSS vs. MSI) | 72 | 0.4009 | 0.2294 |
DDR1 IHC tumor score (low vs. High) | 281 | 0.5832 | 0.0391 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Arfi, K.; Schneider, C.; Bennasroune, A.; Bouland, N.; Wolak-Thierry, A.; Collin, G.; Le, C.C.; Toussaint, K.; Hachet, C.; Lehrter, V.; et al. Discoidin Domain Receptor 1 Expression in Colon Cancer: Roles and Prognosis Impact. Cancers 2022, 14, 928. https://doi.org/10.3390/cancers14040928
Ben Arfi K, Schneider C, Bennasroune A, Bouland N, Wolak-Thierry A, Collin G, Le CC, Toussaint K, Hachet C, Lehrter V, et al. Discoidin Domain Receptor 1 Expression in Colon Cancer: Roles and Prognosis Impact. Cancers. 2022; 14(4):928. https://doi.org/10.3390/cancers14040928
Chicago/Turabian StyleBen Arfi, Kaouther, Christophe Schneider, Amar Bennasroune, Nicole Bouland, Aurore Wolak-Thierry, Guillaume Collin, Cuong Cao Le, Kevin Toussaint, Cathy Hachet, Véronique Lehrter, and et al. 2022. "Discoidin Domain Receptor 1 Expression in Colon Cancer: Roles and Prognosis Impact" Cancers 14, no. 4: 928. https://doi.org/10.3390/cancers14040928
APA StyleBen Arfi, K., Schneider, C., Bennasroune, A., Bouland, N., Wolak-Thierry, A., Collin, G., Le, C. C., Toussaint, K., Hachet, C., Lehrter, V., Dedieu, S., Bouché, O., Morjani, H., Boulagnon-Rombi, C., & Appert-Collin, A. (2022). Discoidin Domain Receptor 1 Expression in Colon Cancer: Roles and Prognosis Impact. Cancers, 14(4), 928. https://doi.org/10.3390/cancers14040928