Intracranial Response Rate in Patients with Breast Cancer Brain Metastases after Systemic Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Aim
3. HER2-Positive Breast Cancer
3.1. Monoclonal Antibodies
3.2. Antibody-Drug Conjugates
3.3. HER2- Targeted Tyrosine Kinase Inhibitors (TKIs)
3.4. Other Targeted Therapy
4. Luminal Breast Cancer
5. Triple-Negative Breast Cancer
6. Old Cytotoxic Drugs
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BBB | blood–brain barrier |
BTB | blood–tumor barrier |
CDK | cycline-dependent kinase |
CI | confidence interval |
CNS | central nervous system |
CR | complete response |
ER | estrogen receptor |
HER2 | human epidermal growth factor receptor 2 |
HR | hazard ratio |
iCBR | intracranial clinical benefit rate |
iORR | intracranial objective response rate |
OS | overall survival |
PARP | poly (ADP-ribose) polymerase |
PFS | progression-free survival |
PI3K | phosphoinositide 3-kinase |
PR | partial response |
RECIST 1.1 | Response Criteria in Solid Tumors 1.1 |
SD | stable disease |
SRS | stereotactic radiosurgery |
TKI | tyrosine kinase inhibitor |
TNBC | triple-negative breast cancer |
WBRT | whole-brain radiation therapy |
References
- Weil, R.J.; Palmieri, D.C.; Bronder, J.L.; Stark, A.M.; Steeg, P.S. Breast cancer metastases to the central nervous system. Am. J. Pathol. 2005, 167, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Kim, I.A. Evolving treatment strategies of brain metastases from breast cancer: Current status and future direction. Ther. Adv. Med. Oncol. 2020, 12, 1758835920936117. [Google Scholar] [CrossRef] [PubMed]
- Pestalozzi, B.C.; Holmes, E.; de Azambuja, E.; Metzger-Filhi, O.; Hogge, L.; Scullion, M.; Lang, I.; Wardley, A.; Lichinitser, M.; Sanchez, R.I.; et al. CNS relapses in patients with HER2-positive early breast cancer who have and have not received adjuvant trastuzumab: A retrospective substudy of the HERA trial (BIG 1-01). Lancet Oncol. 2013, 14, 244–248. [Google Scholar] [CrossRef]
- Raghunath, A.; Desai, K.; Ahluwalia, M.S. Current treatment options for breast cancer brain metastases. Curr. Treat. Options Oncol. 2019, 20, 19. [Google Scholar] [CrossRef]
- Kennecke, H.; Yerushalmi, R.; Woods, R.; Cheang, M.C.; Voduc, D.; Speers, C.H.; Nielsen, T.O.; Gelmon, K. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 2010, 28, 3271–3277. [Google Scholar] [CrossRef]
- Lin, N.U.; Vanderplas, A.; Hughes, M.E.; Theriault, R.L.; Edge, S.B.; Wong, Y.N.; Blayney, D.W.; Niland, J.C.; Winer, E.P.; Weeks, J.C. Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer 2012, 118, 5463–5472. [Google Scholar] [CrossRef] [Green Version]
- Gobbini, E.; Ezzalfani, M.; Dieras, V.; Bachelot, T.; Brain, E.; Debled, M.; Jacot, W.; Mouret-Reynier, M.A.; Goncalves, A.; Dalenc, F.; et al. Time trends of overall survival among metastatic breast cancer patients in real-life ESME cohort. Eur. J. Cancer 2018, 96, 17–24. [Google Scholar] [CrossRef]
- Darlix, A.; Louvel, G.; Fraisse, J.; Jacot, W.; Brain, E.; Debled, M.; Mouret-Reynier, M.A.; Goncalves, A.; Dalenc, F.; Delaloge, S.; et al. Impact of breast cancer molecular subtypes on the incidence, kinetics and prognosis of central nervous system metastases in a large multicenter real-life cohort. Br. J. Cancer 2019, 121, 991–1000. [Google Scholar] [CrossRef]
- Bailleux, C.; Eberst, L.; Bachelot, T. Treatment for breast cancer brain metastases. Br. J. Cancer 2021, 124, 142–155. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, D. Advances in decoding breast cancer brain metastasis. Cancer Metastasis Rev. 2016, 35, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.; Gill, N.; Rademaker, A.W.; Carneiro, B.A.; Chae, Y.K.; Kumthekar, P.; Gradishar, W.J.; Kurzrock, R.; Giles, F.J. Systematic analysis of early phase clinical studies for patients with breast cancer: Inclusion of patients with brain metastasis. Cancer Treat. Rev. 2017, 55, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Dijkers, E.C.; Oude Munnink, T.H.; Kosterink, J.G.; Brouwers, A.H.; Jager, P.L.; de Jong, J.R.; van Dongen, G.A.; Schröder, C.P.; Lub-de Hooge, M.N.; de Vries, E.G. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther. 2010, 89, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Arvanitis, C.D.; Ferraro, G.B.; Jain, R.K. The blood-brain barrier and blood-tumor barrier in brain tumours and metastases. Nat. Rev. Cancer 2020, 20, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Babak, M.V.; Zalutsky, M.R.; Balyasnikova, I.V. Heterogeneity and vascular permeability of breast cancer brain metastases. Cancer Lett. 2020, 489, 174–181. [Google Scholar] [CrossRef]
- Niwińska, A.; Murawska, M.; Pogoda, K. Breast cancer subtypes and response to systemic treatment after whole-brain radiotherapy in patients with brain metastases. Cancer 2010, 116, 4238–4247. [Google Scholar] [CrossRef]
- Niwinska, A.; Pogoda, K.; Murawska, M.; Niwinski, P. Factors influencing survival in patients with breast cancer and single or solitary brain metastasis. Eur. J. Surg. Oncol. 2011, 37, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Niwinska, A. Brain metastases as site of first and isolated recurrence of breast cancer: The role of systemic therapy after local treatment. Clin. Exp. Metastasis 2016, 33, 677–685. [Google Scholar] [CrossRef]
- Schroeder, T.; Bittrich, P.; Kuhne, J.F.; Noebel, C.; Leischner, H.; Fiehler, J.; Schroeder, J.; Schoen, G.; Gellißen, S. Mapping distribution of brain metastases: Does the primary tumor matter? J. Neurooncol. 2020, 147, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Cardinal, T.; Pangal, D.; Strickland, B.A.; Newton, P.; Mahmoodifar, S.; Mason, J.; Craig, D.; Simon, T.; Tew, B.Y.; Yu, M.; et al. Anatomical and topographical variations in the distribution of brain metastases based on primary cancer origin and molecular subtypes: A systematic review. Neurooncol. Adv. 2021, 4, vdab170. [Google Scholar] [CrossRef]
- Erickson, A.W.; Ghodrati, F.; Habbous, S.; Jerzak, K.J.; Sahgal, A.; Ahluwalia, M.S.; Das, S. HER2-targeted therapy prolongs survival in patients with HER2-positive breast cancer and intracranial metastatic disease: A systematic review and meta-analysis. Neurooncol. Adv. 2020, 2, vdaa136. [Google Scholar] [CrossRef]
- Swain, S.M.; Baselga, J.; Kim, S.B.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J.M.; Schneeweiss, A.; Heeson, S.; et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 2015, 19, 724–734. [Google Scholar] [CrossRef] [Green Version]
- Swain, S.M.; Baselga, J.; Miles, D.; Im, Y.H.; Quah, C.; Lee, L.F.; Cortés, J. Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, trastuzumab, and docetaxel: Results from the randomized phase III study CLEOPATRA. Ann. Oncol. 2014, 25, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.U.; Pegram, M.; Sahebjam, S.; Ibrahim, N.; Fung, A.; Cheng, A.; Nicholas, A.; Kirschbrown, W.; Kumthekar, P. Pertuzumab plus high dose trastuzumab in patients with progressive brain metastases and HER2-positive metastatic breast cancer: Primary analysis of a phase II study. J. Clin. Oncol. 2021, 39, 2667–2675. [Google Scholar] [CrossRef] [PubMed]
- Leone, J.P.; Lin, N.U. Systemic therapy of central nervous system metastases of breast cancer. Curr. Oncol. Rep. 2019, 21, 49. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.U.; Kumthekar, P.; Sahebjam, S.; Ibrahim, N.; Fung, A.; Cheng, A.; Nicholas, A.; Wang, B.; Pegram, M. Pertuzumab (P) plus high-dose trastuzumab (H) for the treatment of central nervous system (CNS) progression after radiotherapy (RT) in patients (pts) with HER2-positive metastatic breast cancer (MBC): Primary efficacy analysis results from the phase II PATRICIA study. Cancer Res. 2020, 80, P1-18-03. [Google Scholar] [CrossRef]
- Bartsch, R.; Berghoff, A.S.; Vogl, U.; Rudas, M.; Bergen, E.; Dubsky, P.; Dieckmann, K.; Pinker, K.; Bago-Horvath, Z.; Galid, A.; et al. Activity of T-DM1 in HER2-positive breast cancer brain metastases. Clin. Exp. Met. 2015, 32, 729–737. [Google Scholar] [CrossRef]
- Jacot, W.; Pons, E.; Frenel, J.S.; Guiu, S.; Levy, C.; Heudel, P.E.; Bachelot, T.; D’Hondt, V.; Darlix, A.; Firmin, N.; et al. Efficacy and safety of trastuzumab emtansine (T-DM1) in patients with HER2-positive breast cancer with brain metastases. Breast Cancer Res. Treat. 2016, 157, 307–318. [Google Scholar] [CrossRef]
- Fabi, A.; Alesini, D.; Valle, E.; Moscetti, L.; Caputo, R.; Caruso, M.; Carbognin, L.; Ciccarese, M.; La Verde, N.; Arpino, G.; et al. T-DM1 and brain metastases: Clinical outcome in HER2-positive metastatic breast cancer. Breast 2018, 41, 137–143. [Google Scholar] [CrossRef]
- Montemurro, F.; Ellis, P.; Anton, A.; Wuerstlein, R.; Delaloge, S.; Bonneterre, J.; Quenel-Tueux, N.; Linn, S.C.; Irahara, N.; Donica, M.; et al. Safety of trastuzumab emtansine (T-DM1) in patients with HER2-positive advanced breast cancer: Primary results from the KAMILLA study cohort 1. Eur. J. Cancer 2019, 109, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Montemurro, F.; Delaloge, S.; Barrios, C.H.; Wuerstlein, R.; Anton, A.; Brain, E.; Hatschek, T.; Kelly, C.M.; Peña-Murillo, C.; Yilmaz, M.; et al. Trastuzumab emtansine (T-DM1) in patients with HER2-positivemetastatic breast cancer and brain metastases: Exploratory final analysis of cohort 1 from KAMILLA, a single-arm phase IIIb clinical trials. Ann. Oncol. 2020, 10, 1350–1358. [Google Scholar] [CrossRef]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dieras, V.; Miles, D.; Verma, S.; Pegram, M.; Welslau, M.; Baselga, J.; Krop, I.E.; Blackwell, K.; Hoersch, S.; Xu, J.; et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): A descriptive analysis of final overall survival results from a randomized, open-labeled, phase 3 trial. Lancet Oncol. 2017, 18, 732–742. [Google Scholar] [CrossRef]
- Krop, I.E.; Lin, N.U.; Blackwell, K.; Guardino, E.; Huober, J.; Lu, M.; Miles, D.; Samant, M.; Welslau, M.; Diéras, V. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: A retrospective, exploratory analysis in EMILIA. Ann. Oncol. 2015, 26, 113–119. [Google Scholar] [CrossRef]
- Keam, S.J. Trastuzumab Deruxtecan: First Approval. Drugs 2020, 80, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Saura, C.; Yamashita, T.; Park, Y.H.; Kim, S.B.; Tamura, K.; Andre, F.; Iwata, H.; Ito, Y.; Tsurutani, J.; et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. 2020, 382, 610–621. [Google Scholar] [CrossRef]
- Jerusalem, G.; Park, Y.H.; Yamashita, T.; Hurvitz, S.A.; Chen, S.; Cathcart, J.; Lee, C.; Perrin, C. CNS metastases in HER2-positive metastatic breast cancer treated with trastuzumab deruxtecan: DESTINY-Breast 01 subgroup analyses. Ann. Oncol. 2020, 31 (Suppl. S2), S63–S64. [Google Scholar] [CrossRef]
- Hurvitz, S.; Kim, S.B.; Chung, W.P.; Im, S.A.; Park, Y.H.; Hegg, R.; Kim, M.H.; Tseng, L.M.; Petry, V.; Chung, C.F.; et al. Trastuzumab Deruxtecan (T-DXd; DS-8201a) vs. Trastuzumab Emtansine (T-DM1) in Patients (pts) with HER2+ Metastatic Breast Cancer (mBC): Subgroup Analyses from the Randomized Phase 3 Study DESTINY-Breast 03. In Proceedings of the San Antonio Breast Cancer Symposium 2021, San Antonio, TX, USA, 7–10 December 2021; Abstract GS3-01; Seagen Inc.: Bothell, WA, USA.
- Batista, M.V.; Cortez, P.; Ruiz, M.; Cejalvo, J.M.; de la Haba, J.; Garrigós, L.; Racca, F.; Servitja, S.; Blanch, S.; Teruel, I.; et al. Trastuzumab Deruxtecan (T-DXd; DS-8201a) in Patients with HER2-Positive or HER2-low-Expressing Advanced Breast Cancer and Central Nervous System Involvement: Preliminary Results from the DEBBRAH Phase II study. In Proceedings of the San Antonio Breast Cancer Symposium 2021, San Antonio, TX, USA, 7–10 December 2021; Abstract PD4-06; Seagen Inc.: Bothell, WA, USA.
- Lin, N.U.; Diéras, V.; Paul, D.; Lossignol, D.; Christodoulou, C.; Stemmler, H.J.; Roché, H.; Liu, M.C.; Greil, R.; Ciruelos, E.; et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin. Cancer Res. 2009, 15, 1452–1459. [Google Scholar] [CrossRef] [Green Version]
- Cetin, B.; Benekli, M.; Oksuzoglu, B.; Koral, L.; Ulas, A.; Dane, F.; Turker, I.; Kaplan, M.A.; Koca, D.; Boruban, C.; et al. Lapatinib plus capecitabine for brain metastases in patients with human epidermal growth factor receptor 2-positive advanced breast cancer: A review of the Anatolian Society of Medical Oncology (ASMO) experience. Oncologie 2012, 35, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, S.; Ashley, S.; Miles, D.; Chan, S.; Wardley, A.; Davidson, N.; Bhatti, R.; Shehata, M.; Nouras, H.; Camburn, T.; et al. Treatment of HER2-positive metastatic breast cancer with lapatinib and capecitabine in the lapatinib expanded access programme, including efficacy in brain metastases—the UK experience. Br. J. Cancer 2010, 102, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Ghidini, M.; Lonati, V.; Tomasello, G.; Borgonovo, K.; Ghilardi, M.; Cabiddu, M.; Barni, S. The efficacy of lapatinib and capecitabine in HER2-positive breast cancer with brain metastases: A systematic review and pooled analysis. Eur. J. Cancer 2017, 84, 141–148. [Google Scholar] [CrossRef]
- Bachelot, T.; Romieu, G.; Campone, M.; Diéras, V.; Cropet, C.; Dalenc, F.; Jimenez, M.; Le Rhun, E.; Pierga, J.Y.; Gonçalves, A.; et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): A single-group phase 2 study. Lancet Oncol. 2013, 14, 64–71. [Google Scholar] [CrossRef]
- de Azambuja, E.; Zardavas, D.; Lemort, M.; Rossari, J.; Moulin, C.; Buttice, A.; D’Hondt, V.; Lebrun, F.; Lalami, Y.; Cardoso, F.; et al. Phase I trial combining temozolomide plus lapatinib for the treatment of brain metastases in patients with HER2-positive metastatic breast cancer: The LAPTEM trial. Ann. Oncol. 2013, 24, 2985–2989. [Google Scholar] [CrossRef]
- Lin, N.U.; Eierman, W.; Greil, R.; Campone, M.; Kaufman, B.; Steplewski, K.; Lane, S.R.; Zembryki, D.; Rubin, S.D.; Winer, E.P. Randomized phase II study of lapatinib plus capecytabine or lapatinib plus topotecan for patients with HER2-positive breast cancer brain metastases. J. Neurooncol. 2011, 105, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Freedman, R.A.; Gelman, R.S.; Anders, C.K.; Melisko, M.E.; Parsons, H.A.; Cropp, A.M.; Silvestri, K.; Cotter, C.M.; Componeschi, K.P.; Marte, J.M.; et al. TBCRC 022: A phase II trial of neratinib and capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J. Clin. Oncol. 2019, 37, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Saura, C.; Oliveira, M.; Feng, Y.H.; Dai, M.S.; Chen, S.W.; Hurvitz, S.A.; Kim, S.B.; Moy, B.; Delaloge, S.; Gradishar, W.; et al. Neratinib + capecytabine versus lapatinib + capecytabine in HER2+ metastatic breast cancer previously treated with ≥2 HER2-directed regimens: Phase III NALA trial. J. Clin. Oncol. 2020, 38, 3138–3149. [Google Scholar] [CrossRef] [PubMed]
- Awada, A.; Colomer, R.; Inoue, K.; Bondarenko, I.; Badwe, R.A.; Demetriou, G.; Lee, S.C.; Mehta, A.O.; Kim, S.B.; Bachelot, T.; et al. Neratinib Plus Paclitaxel vs. Trastuzumab Plus Paclitaxel in Previously Untreated Metastatic ERBB2-Positive Breast Cancer: The NEfERT-T Randomized Clinical Trial. JAMA Oncol. 2016, 2, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Dieras, V.; Ro, J.; Barriere, J.; Bachelot, T.; Hurvitz, S.; Le Rhun, E.; Espié, M.; Kim, S.B.; Schneeweiss, A.; et al. Afatinib alone or afatinib plus vinorelbine versus investigator’s choice of treatment for HER2-positive breast cancer with progressive brain metastases after trastuzumab, lapatinib, or both (LUX-Breast 3): A randomized, open-label, multicentre, phase 2 trial. Lancet Oncol. 2015, 16, 1700–1710. [Google Scholar] [CrossRef]
- Murthy, R.; Borges, V.F.; Conlin, A.; Chaves, J.; Chamberlain, M.; Gray, T.; Vo, A.; Hamilton, E. Tucatinib with capectabine and trastuzumab in advanced HER2-positive metastatic breast cancer with and without brain metastases: A non-randomized, open-label, phase 1b study. Lancet Oncol. 2018, 19, 880–888. [Google Scholar] [CrossRef]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N. Engl. J. Med. 2020, 13, 597–609. [Google Scholar] [CrossRef]
- Lin, U.N.; Murthy, R.K.; Abramson, V.; Anders, C.; Bachelot, T.; Bedard, P.; Borges, V.; Cameron, D.; Carey, L.; Jo Chien, A.; et al. Updated Results of Tucatinib vs. Placebo Added to Trastuzumab and Capecitabine for Patients with Previously Treated HER2+ Metastatic Breast Cancer with Brain Metastases (HER2CLIMB). In Proceedings of the San Antonio Breast Cancer Symposium 2021, San Antonio, TX, USA, 7–10 December 2021; Abstract PD4-04; Seagen Inc.: Bothell, WA, USA.
- Xu, B.; Yan, M.; Ma, F.; Hu, X.; Feng, J.; Ouyang, Q.; Tong, Z.; Li, H.; Zhang, Q.; Sun, T.; et al. Updated Overall Survival (OS) Results from the Phase III PHOEBE Trial of Pyrotinib Versus Lapatinib in Combination with Capecitabine in Patients with HER2-Positive Metastatic Breast Cancer. In Proceedings of the San Antonio Breast Cancer Symposium 2021, San Antonio, TX, USA, 7–10 December 2021; Abstract GS3-02; Seagen Inc.: Bothell, WA, USA.
- Yan, M.; Ouyang, O.; Sun, T.; Niu, L.; Yang, J.; Li, L.; Song, Y.; Hao, C.; Chen, Z. Pyrotinib plus capecitabine for HER2-positive metastatic breast cancer with brain metastases (PERMEATE): A multicenter, single arm, phase II study. J. Clin. Oncol. 2021, 39 (Suppl. 15), 1037. [Google Scholar] [CrossRef]
- Macpherson, I.R.; Spiliopoulou, P.; Rafii, S.; Saggese, M.; Baird, R.D.; Garcia-Corbacho, J.; Italiano, A.; Bonneterre, J.; Campone, M.; Cresti, N.; et al. A phase I/II study of epertinib plus trastuzumab with or without chemotherapy in patients with HER2-positive metastatic breast cancer. Breast Cancer Res. 2019, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Leone, J.P.; Duda, D.G.; Hu, J.; Barry, W.T.; Trippa, L.; Gerstner, E.R.; Jain, R.K.; Tan, S.; Lawler, E.; Winer, E.P.; et al. A phase II study of cabozantinib alone or in combination with trastuzumab in breast cancer patients with brain metastases. Breast Cancer Res. Treat. 2019, 179, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.U.; Gelman, R.S.; Younger, J.W.; Sohl, J.; Freedman, R.A.; Gregory Sorensen, A.; Bullitt, E.; Harris, G.J.; Morganstern, D.; Schneider, B.P.; et al. Phase II trial of carboplatin (C) and bevacizumab (BEV) in patients (PTS) with breast cancer brain metastases (BCBM). J. Clin. Oncol. 2013, 31 (Suppl. S15), 513. [Google Scholar] [CrossRef]
- Lu, Y.S.; Chen, T.W.; Lin, C.H.; Yeh, D.C.; Tseng, L.M.; Wu, P.F.; Rau, K.M.; Chen, B.B.; Chao, T.C.; Huang, S.M.; et al. Bevacizumab preconditioning followed by etoposide and cisplatin is highly effective in treating brain metastases of breast cancer progressing from whole-brain radiotherapy. Clin. Cancer Res. 2015, 21, 1851–1858. [Google Scholar] [CrossRef] [Green Version]
- Pors, H.; von Eyben, F.E.; Sorensen, O.S.; Larsen, M. Longterm remission of multiple brain metastases with tamoxifen. J. Neurooncol. 1991, 10, 173–177. [Google Scholar] [CrossRef]
- Madhup, R.; Kirti, S.; Bhatt, M.L.; Srivastava, P.K.; Srivastava, M.; Kumar, S. Letrozol for brain and scalp metastases from breast cancers—A case report. Breast 2006, 15, 440–442. [Google Scholar] [CrossRef]
- Rusz, O.; Kószó, R.; Dobi, Á.; Csenki, M.; Valicsek, E.; Nikolényi, A.; Uhercsák, G.; Cserháti, A.; Kahán, Z. Clinical benefit of fulvestrant monotherapy in the multimodal treatment of hormone receptor and HER2 positive advanced breast cancer: A case series. Onco Targets Ther. 2018, 11, 5459–5463. [Google Scholar] [CrossRef] [Green Version]
- Van Swearingen, A.E.D.; Siegel, M.B.; Deal, A.M.; Sambade, M.J.; Hoyle, A.; Hayes, D.N.; Jo, H.; Little, P.; Dees, E.C.; Muss, H.; et al. A phase II study of everolimus, trastuzumab, and vinorelbine to treat progressive HER2-positive breast cancer brain metastases. Breast Cancer Res. Treat. 2018, 171, 637–648. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Sahebjam, S.; Le Rhun, E.; Bachelot, T.; Kabos, P.; Awada, A.; Yardley, D.; Chan, A.; Conte, P.; Diéras, V.; et al. A phase II study of abemacyklib in patients with brain metastases secondary to hormone receptor-positive breast cancer. Clin. Cancer Res. 2020, 26, 5310–5319. [Google Scholar] [CrossRef]
- Anders, C.; Deal, A.M.; Abramson, V.; Liu, M.C.; Storniolo, A.M.; Carpenter, J.T.; Puhalla, S.; Nanda, R.; Melhem-Bertrandt, A.; Lin, N.U.; et al. TBCRC 018: Phase II study of iniparib in combination with irinotecan to treat progressive triple negative breast cancer brain metastases. Breast Cancer Res. Treat. 2014, 146, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in patients with advanced breast cancer and germline BRCA mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Kumthekar, P.; Tang, S.C.; Brenner, A.J.; Kesari, S.; Piccioni, D.E.; Anders, C.; Carrillo, J.; Chalasani, P.; Kabos, P.; Puhalla, S.; et al. ANG1005, a brain-penetrating peptide-drug conjugate, shows activity in patients with breast cancer with leptomeningeal carcinomatosis and recurrent brain metastases. Clin. Cancer Res. 2020, 26, 2789–2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathy, D.; Tolaney, S.M.; Seidman, A.D.; Anders, C.K.; Ibrahim, N.; Rugo, H.S.; Twelves, C.; Dieras, V.; Müller, V.; Tagliaferri, M.; et al. ATTAIN: Phase III study of etirinotecan pegol versus treatment of physician’s choice in patients with metastatic breast cancer and brain metastases. Future Oncol. 2019, 15, 2211–2225. [Google Scholar] [CrossRef] [PubMed]
- Adamo, V.; Ricciardi, G.R.R.; Giuffrida, D.; Scandurra, G.; Russo, A.; Blasi, L.; Spadaro, P.; Iacono, C.; Soto Parra, H.J.; Savarino, A.; et al. Eribulin mesylate use as third-line therapy in patients with metastatic breast cancer (VESPRY): A prospective, multicenter, observational study. Ther. Adv. Med. Oncol. 2019, 11, 1758835919895755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diéras, V.; Weaver, R.; Tolaney, S.M.; Bardia, A.; Punie, K.; Brufsky, A.; Rugo, H.S.; Kalinsky, K.; Traina, T.; Klein, L.; et al. Subgroup analysis of patients with brain metastases from the phase III ASCENT study of sacituzumab govitecan versus chemotherapy in metastatic triple-negative breast cancer. Cancer Res. 2021, 81 (Suppl. S4), PD13-07. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.A.; Shaw Wright, G.; et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef]
- Du, W.; Sirbu, C.; Lucas, B.D., Jr.; Jubelirer, S.J.; Khalid, A.; Mei, L. A retrospective study of brain metastases from solid malignancies: The effect of immune checkpoint inhibitors. Front. Oncol. 2021, 11, 667847. [Google Scholar] [CrossRef]
- Ahmed, K.A.; Kim, Y.; Arrington, J.A.; Kim, S.; De Jesus, M.; Soyano, A.E.; Armaghani, A.J.; Costa, R.L.B.; Khong, H.T.; Loftus, L.S.; et al. Nivolumab and Stereotactic Radiosurgery for Patients with Breast Cancer Brain Metastases: A Nonrandomized, Open-Label Phase 1b Study. Adv. Radiat. Oncol. 2021, 6, 100798. [Google Scholar] [CrossRef]
- Boogerd, W.; Dalesio, O.; Bais, E.M.; van der Sande, J.J. Response of brain metastases from breast cancer to systemic therapy. Cancer 1992, 69, 972–980. [Google Scholar] [CrossRef]
- Cocconi, G.; Lottici, R.; Bisagni, G.; Bacchi, M.; Tonato, M.; Passalacqua, R.; Boni, C.; Belsanti, V.; Bassi, P. Combination therapy with platinum and etoposide of brain metastases from breast carcinoma. Cancer Investig. 1990, 8, 327–334. [Google Scholar] [CrossRef]
- Fabi, A.; Vidiri, A.; Ferretti, G.; Felici, A.; Papaldo, P.; Carlini, P.; Mirri, A.; Nuzzo, C.; Cognetti, F. Dramatic regression of multiple brain metastases from breast cancer with capecitabine: Another arrow at the bow? Cancer Investig. 2006, 24, 466–468. [Google Scholar] [CrossRef] [PubMed]
- Hikino, H.; Yamada, T.; Johbara, K.; Obayashi, N.; Ozaki, N. Potential role of chemo-radiation with oral capecitabine in a breast cancer patient with central nervous system relapse. Breast 2006, 15, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Yung, W.K.; Royce, M.E.; Schomer, D.F.; Theriault, R.L. Capecitabine for 5-fluorouracil-resistant brain metastases from breast cancer. Am. J. Clin. Oncol. 2001, 24, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Ekenel, M.; Hormigo, A.M.; Peak, S.; Deangelis, L.M.; Abrey, L.E. Capecitabine therapy of central nervous system metastases from breast cancer. J. Neurooncol. 2007, 85, 223–227. [Google Scholar] [CrossRef]
- Rivera, E.; Meyers, C.; Groves, M.; Valero, V.; Francis, D.; Arun, B.; Broglio, K.; Yin, G.; Hortobagyi, G.N.; Buchholz, T. Phase I study of capecitabine in combination with temozolomide in the treatment of patients with brain metastases from breast carcinoma. Cancer 2006, 107, 1348–1354. [Google Scholar] [CrossRef]
- Omuro, A.M.; Raizer, J.J.; Demopoulos, A.; Malkin, M.G.; Abrey, L.E. Vinorelbine combined with a protracted course of temozolomide for recurrent brain metastases: A phase I trial. J. Neurooncol. 2006, 78, 277–280. [Google Scholar] [CrossRef]
- Franciosi, V.; Cocconi, G.; Michiara, M.; Di Costanzo, F.; Fosser, V.; Tonato, M.; Carlini, P.; Boni, C.; Di Sarra, S. Front-line chemotherapy with cisplatin and etoposide for patients with brain metastases from breast carcinoma, nonsmall cell lung carcinoma, or malignant melanoma: A prospective study. Cancer 1999, 85, 1599–1605. [Google Scholar] [CrossRef]
- Ramakrishna, N.; Temin, S.; Chandarlapaty, S.; Crews, J.R.; Davidson, N.E.; Esteva, F.J.; Giordano, S.H.; Kirshner, J.J.; Krop, I.E.; Levinson, J.; et al. Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 2804–2807. [Google Scholar] [CrossRef]
- Le Rhun, E.; Guckenberger, M.; Smits, M.; Dummer, R.; Bachelot, T.; Sahm, F.; Galldiks, N.; de Azambuja, E.; Berghoff, A.S.; Metellus, P.; et al. EANO-ESMO Clinical Practice Giudelines for diagnosis, treatment and follow-up of patients with brain metastasis from solid tumours. Ann. Oncol. 2021, 32, 1332–1347. [Google Scholar] [CrossRef]
Main Agent | Type of Study | Number of Patients with Brain Metastases | Scheme of Treatment | Intracranial Response Rate * | Median PFS/OS (Months) |
---|---|---|---|---|---|
HER2-positive breast cancer brain metastases | |||||
Pertuzumab | PATRICIA phase II trial [23] | 39 | Pertuzumab + high dose trastuzumab | iORR 11% iCBR 68% 4 mo. iCBR 51%6 mo. | - |
Trastuzumab-emtansine (T-DM1) | Bartsch [26] retrospective | 10 | T-DM1 | iORR 30% iCBR 50% | PFS 5 |
Jacot [27] retrospective | 39 | T-DM1 | iORR 44% iORR 59% | PFS 6 | |
Fabi 2018 [28] retrospective | 70 | T-DM1 | iORR 24.5% | PFS 7 OS 14 | |
KAMILLA phase IIIb trial [30] | 398/126 | T-DM1 | iORR 21.4% iCBR 43% | PFS 5.5 OS 18.9 | |
DESTINY–Breast 03 [37] phase III trial | 39 | T-DM1 | iORR 33.4% iCR 2.8% iPR 30.6% | PFS 3 | |
Trastuzumab deruxtecan (T-DXd) | DESTINY–Breast 03 [37] phase III trial | 43 | T-DXd | iORR 63.9% iCR 27.8% iPR 36.1% | PFS 15 |
DESTINY–Breast 01 (Jerusalem [36] | 24 | T-DXd | iORR 58.3% iCR 4.2% iPR 54.2% iSD 33.3% | PFS 18 | |
DEBBRAH phase II trial [38] | 39 HER2+ or HER2−low | T-DXd | iORR 44% iCBR 55% | - | |
Lapatinib | Lin 2009 phase II trial [39] | 242 | Lapatinib alone | iORR 6% Volumetric reduction >= 20–21% | PFS 2.4 OS 6.4 |
Lin 2009 phase II trial [39] | 50 | Lapatinib plus capecitabine | iORR 20% | - | |
Cetin [40] retrospective study | 203/85 | Lapatinib plus capecitabine | iORR 27% iCR 2.4% iPR 24.7% | PFS 7 OS 13 | |
Sutherland 2010 [41] prospective study | 356/34 | Lapatinib plus capecitabine | iORR 21% | PFS 4.5 | |
Petrelli 2017 [42] pooled analysis | 799 | Lapatinib plus capecitabine | iORR 29.2% | PFS 4.1 OS 12.2 | |
Lin 2011 [45] phase II trial | 13 9 | Lapatinib plus capecitabine Lapatinib + topotecan | iORR 38% iCBR 84% iORR 0% | - | |
LANDSCAPE phase II trial [43] | 45 before WBRT | Lapatinib plus capecitabine | iORR 65.9% | - | |
LAPTEM phase I trial [44] | 16 | Lapatinib plus temozolomide | iORR 66.7% | PFS 2.6 OS 10.9 | |
Pyrotinib | PERMEATE [54] single-arm phase II study | 78 Cohort A (without RT) Cohort B (after RT) | Pyrotinib plus capecytabine | iORR 74.6% iORR 42% | PFS 11.3 PFS 5.6 |
Neratinib | TBCRC 022 phase II [46] | Arm 1: 40 | Neratinib alone | iORR 8% | - |
TBCRC 022 phase II non randomized [46] | Arm 3A: 35 | Neratinib plus capecitabine without previous lapatinib | iORR 49% | PFS 5.5 OS 13 | |
TBCRC 022 phase II [46] | Arm 3B:25 | Neratinib plus capecitabine after lapatinib | iORR 33% | PFS 3 OS 15 | |
Afatinib | LUX-Breast 2 phase II trial [49] | Arm A 40 | Afatinib alone | iCBR 30% | - |
LUX-Breast 2 phase II trial [49] | Arm B 38 | Afatinib plus vinorelbine | iCBR 34.2% | - | |
LUX-Breast 2 phase II trial [49] | Arm C 43 | Treatment of physician choice | iCBR 41.9% | - | |
Tucatinib | HER2CLIMB phase II trial [52] | 291 | Tucatinib plus trastuzumab plus capecitabine | iORR 47.3% | PFS 9.9 OS 21.6 |
Epertinib | Macpherson 2019 phase I/II trial [55] | 45/5 Arm A Arm B Arm C | Epertinib plus trastuzumabTrastuzumab plus vinorelbineTrastuzumab plus capecitabine | iORR 67% iORR 0% iORR 50% | - |
Bevacizumab | Lin 2013 phase II trial [57] | 38 | Bevacizumab plus carboplatin +/− trastuzumab | iORR 63% | - |
Cabozantinib | Leone 2020 phase II trial [56] | Cohort 1: 21 HER2+ Cohort 2: 7 ER + HER2- Cohort 3: 8 TNBC | Cabozantinib +/− trastuzumab | iORR 5% iORR 14% iORR 0% | - |
Everolimus | LCCC 1025 phase II trial [62] | 32 | Everolimus plus vinorelbine plus trastuzumab | iORR 4% iCBR3m. 65% iCBR6m. 27% | OS 12.2 |
Abemaciclib | JPBO [63] phase II trial | Cohort B | Abemaciclib plus trastuzumab | iORR 0% iCBR 11% | OS 10 |
Luminal breast cancer brain metastases | |||||
Abemaciclib | JPBO [63] phase II trial | Cohort A | Abemaciclib monotherapy or with endocrine therapy | iORR 5.2% iCBR 24% | OS 12.5 |
Triple-negative breast cancer brain metastases | |||||
PARP | TBCRC 018 phase II trial [64] | 34 | Iniparib plus irinotecan | iORR 12% iCBR 27% | TTP 2.1 OS 7.8 |
Ang1005 | Kumthecar 2020 [66] | 72 | ANG1005 alone | iORR 8% iCBR 77% | OS 8 |
Eribulin | Adamo 2019 [68] | 118 | Eribulin mesylate | iORR 16% | PFS 5.5 OS 31.8 |
Sacituzumab govitecan | ASCENT phase III trial [69] | 529/61 | Sacituzumab govitecan | iORR 3% iCBR 9.4% | PFS 2.8 OS 6.8 |
Main Agent | Scheme of the Treatment | iORR (CR + PR) |
---|---|---|
Pyrotinib [54] | Pyrotinib plus capecitabine before WBRT | 74.6% |
Lapatinib [43] | Lapatinib plus capecitabine before WBRT | 65.9% |
T-DXd [36,37] | T-DXd | 58.3–63.9% |
Neratinib [46] | Neratinib plus capecytabine without previous lapatinib | 49% |
Tucatinib [52] | Tucatinib plus trastuzumab plus capecitabine | 47.3% |
Neratinib [46] | Netatinib plus capecytabine after previous lapatinib | 33% |
T-DM1 [26,27,37] | T-DXd | 21–44% |
Afatinib [49] | Afatinib plus vinorelbine | 34% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niwinska, A.; Pogoda, K.; Jagiello-Gruszfeld, A.; Duchnowska, R. Intracranial Response Rate in Patients with Breast Cancer Brain Metastases after Systemic Therapy. Cancers 2022, 14, 965. https://doi.org/10.3390/cancers14040965
Niwinska A, Pogoda K, Jagiello-Gruszfeld A, Duchnowska R. Intracranial Response Rate in Patients with Breast Cancer Brain Metastases after Systemic Therapy. Cancers. 2022; 14(4):965. https://doi.org/10.3390/cancers14040965
Chicago/Turabian StyleNiwinska, Anna, Katarzyna Pogoda, Agnieszka Jagiello-Gruszfeld, and Renata Duchnowska. 2022. "Intracranial Response Rate in Patients with Breast Cancer Brain Metastases after Systemic Therapy" Cancers 14, no. 4: 965. https://doi.org/10.3390/cancers14040965
APA StyleNiwinska, A., Pogoda, K., Jagiello-Gruszfeld, A., & Duchnowska, R. (2022). Intracranial Response Rate in Patients with Breast Cancer Brain Metastases after Systemic Therapy. Cancers, 14(4), 965. https://doi.org/10.3390/cancers14040965