Right Atrial Dose Is Associated with Worse Outcome in Patients Undergoing Definitive Stereotactic Body Radiation Therapy for Central Lung Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patient Population
2.2. Clinical Evaluation and Follow-Up
2.3. Patient Data
2.4. SBRT
2.5. Heart Substructures
2.6. Dosimetric Analysis
2.7. Statistics
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- NCCN Guidelines: Non-Small Cell Lung Cancer; Version 4—3 March 2021. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1450 (accessed on 11 January 2021).
- Zhang, T.W.; Snir, J.; Boldt, R.G.; Rodrigues, G.B.; Louie, A.V.; Gaede, S.; McGarry, R.C.; Urbanic, J.J.; Daly, M.E.; Palma, D.A. Is the Importance of Heart Dose Overstated in the Treatment of Non-Small Cell Lung Cancer? A Systematic Review of the Literature. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Wong, O.Y.; Yau, V.; Kang, J.; Glick, D.; Lindsay, P.; Le, L.W.; Sun, A.; Bezjak, A.; Cho, B.J.; Hope, A.; et al. Survival Impact of Cardiac Dose Following Lung Stereotactic Body Radiotherapy. Clin. Lung Cancer 2017, 19, e241–e246. [Google Scholar] [CrossRef] [PubMed]
- Loap, P.; Fourquet, A.; Kirova, Y. Should We Move Beyond Mean Heart Dose? Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 386–387. [Google Scholar] [CrossRef] [PubMed]
- Stam, B.; Peulen, H.; Guckenberger, M.; Mantel, F.; Hope, A.; Werner-Wasik, M.; Belderbos, J.; Grills, I.; O’Connell, N.; Sonke, J.-J. Dose to heart substructures is associated with non-cancer death after SBRT in stage I–II NSCLC patients. Radiother. Oncol. 2017, 123, 370–375. [Google Scholar] [CrossRef] [PubMed]
- McWilliam, A.; Kennedy, J.; Hodgson, C.; Osorio, E.M.V.; Faivre-Finn, C.; van Herk, M. Radiation dose to heart base linked with poorer survival in lung cancer patients. Eur. J. Cancer 2017, 85, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Thor, M.; Deasy, J.O.; Hu, C.; Gore, E.; Bar-Ad, V.; Robinson, C.; Wheatley, M.; Oh, J.H.; Bogart, J.; Garces, Y.I.; et al. Modeling the Impact of Cardiopulmonary Irradiation on Overall Survival in NRG Oncology Trial RTOG 0617. Clin. Cancer Res. 2020, 26, 4643–4650. [Google Scholar] [CrossRef] [PubMed]
- McWilliam, A.; Khalifa, J.; Osorio, E.V.; Banfill, K.; Abravan, A.; Faivre-Finn, C.; van Herk, M. Novel Methodology to Investigate the Effect of Radiation Dose to Heart Sub-structures on Overall Survival. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Vivekanandan, S.; Landau, D.; Counsell, N.; Warren, D.; Khwanda, A.; Rosen, S.; Parsons, E.; Ngai, Y.; Farrelly, L.; Hughes, L.; et al. The Impact of Cardiac Radiation Dosimetry on Survival After Radiation Therapy for Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. 2017, 99, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, J.D.; Hu, C.; Komaki, R.R.; Masters, G.A.; Blumenschein, G.R.; Schild, S.E.; Bogart, J.A.; Forster, K.M.; Magliocco, A.M.; Kavadi, V.S.; et al. Long-Term Results of NRG Oncology RTOG 0617: Standard-Versus High-Dose Chemo-radiotherapy With or Without Cetuximab for Unresectable Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2020, 38, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, M.; Ma, S.J.; Hennon, M.; Nwogu, C.; Dexter, E.; Picone, A.; Demmy, T.; Yendamuri, S.; Yu, H.; Fung-Kee-Fung, S.; et al. Exceeding Radiation Dose to Volume Parameters for the Proximal Airways with Stereotactic Body Radiation Therapy Is More Likely for Ultracentral Lung Tumors and Associated with Worse Outcome. Cancers 2021, 13, 3463. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, M.; Yu, H.; Singh, A.K.; Malhotra, H. Autosegmentation of cardiac substructures in respiratory-gated, non-contrasted computed tomography images. World J. Clin. Oncol. 2021, 12, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, M.K.; Jun, M.S.; Hennon, M.W.; Nwogu, C.E.; Dexter, E.U.; Picone, A.L.; Demmy, T.L.; Gomez-Suescun, J.A.; Fung-Kee-Fung, S.; Yendamuri, S.S.; et al. Prior Treatment for Non-small Cell Lung Cancer Is Associated With Improved Survival in Patients who Undergo Definitive Stereotactic Body Radiation Therapy for a Subsequent Lung Malignancy: A Ret-rospective Multivariate and Matched Pair Analysis. Am. J. Clin. Oncol. 2021, 44, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Gomez-Suescun, J.A.; Stephans, K.L.; Bogart, J.A.; Hermann, G.M.; Tian, L.; Groman, A.; Videtic, G.M. One Versus Three Fractions of Stereotactic Body Radiation Therapy for Peripheral Stage I to II Non-Small Cell Lung Cancer: A Randomized, Multi-Institution, Phase 2 Trial. Int. J. Radiat. Oncol. 2019, 105, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Moran, J.M.; Koelling, T.; Chughtai, A.; Chan, J.L.; Freedman, L.; Hayman, J.A.; Jagsi, R.; Jolly, S.; Larouere, J. Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezjak, A.; Paulus, R.; Gaspar, L.E.; Timmerman, R.D.; Straube, W.L.; Ryan, W.F.; Garces, Y.I.; Pu, A.T.; Singh, A.K.; Videtic, G.M.; et al. Safety and Efficacy of a Five-Fraction Stereotactic Body Radiotherapy Schedule for Cen-trally Located Non-Small-Cell Lung Cancer: NRG Oncology/RTOG 0813 Trial. J. Clin. Oncol. 2019, 37, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, M.; Mathew, A.S.; Bahig, H.; Bratman, S.; Filion, E.; Glick, D.; Louie, A.V.; Raman, S.; Swaminath, A.; Warner, A.; et al. SUNSET: Stereotactic Radiation for Ultracentral Non–Small-Cell Lung Cancer—A Safety and Efficacy Trial. Clin. Lung Cancer 2018, 19, e529–e532. [Google Scholar] [CrossRef] [PubMed]
- Speirs, C.K.; DeWees, T.A.; Rehman, S.; Molotievschi, A.; Velez, M.A.; Mullen, D.; Fergus, S.; Trovo, M.; Bradley, J.D.; Robinson, C.G. Heart Dose Is an Independent Dosimetric Predictor of Overall Survival in Locally Advanced Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, 293–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, S.L.; Liu, A.; Gomez, D.; Tang, L.L.; Allen, P.; Yang, J.; Liao, Z.; Grosshans, D. Impact of heart and lung dose on early survival in patients with non-small cell lung cancer treated with chemoradiation. Radiother. Oncol. 2016, 119, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Reshko, L.B.; Kalman, N.S.; Hugo, G.D.; Weiss, E. Cardiac radiation dose distribution, cardiac events and mortality in early-stage lung cancer treated with stereotactic body radiation therapy (SBRT). J. Thorac. Dis. 2018, 10, 2346–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Median (IQR) | n | % | ||
---|---|---|---|---|
Age (Years) | 73.1 (66.6–78.4) | |||
Sex | Male | 39 | 47.0% | |
Female | 44 | 53.0% | ||
Karnofsky Performance Status | 80–100 | 59 | 71.1% | |
<80 | 24 | 28.9% | ||
Tumor size | <2 cm | 57 | 68.7% | |
2–5 cm | 26 | 31.3% | ||
Ultracentral | No | 40 | 48.2% | |
Yes | 43 | 51.8% | ||
Laterality | Left | 44 | 53.0% | |
Right | 39 | 47.0% | ||
Nodal Sampling | No | 45 | 54.2% | |
Yes | 38 | 45.8% | ||
Tobacco pack years | <30 pack years | 23 | 27.7% | |
30+ pack years | 60 | 72.3% | ||
Diabetes | No | 65 | 78.3% | |
Yes | 18 | 21.7% | ||
Heart disease | No | 49 | 59.0% | |
Yes | 34 | 41.0% | ||
Prior treated lung cancer | No | 60 | 72.3% | |
Yes | 23 | 27.7% | ||
Dose (5 fractions) | 5000 | 37 | 44.6% | |
5250 | 7 | 8.4% | ||
5500 | 35 | 42.2% | ||
5750 | 2 | 2.4% | ||
6000 | 2 | 2.4% | ||
Technique | 3DCRT | 49 | 59.0% | |
VMAT | 34 | 41.0% | ||
Tumor motion Management | Respiratory Gating | 67 | 80.7% | |
Abdominal Compression | 16 | 19.3% | ||
GTV volume (cm3) | 9.1 (4.7–23.1) | |||
PTV volume (cm3) | 31.0 (18.0–53.3) | |||
Relapse | No | 53 | 63.9% | |
Yes | 30 | 36.1% | ||
Vital Status | Alive | 27 | 32.5% | |
Dead | 56 | 67.5% | ||
Follow-up (months) | 33.4 (14.9–52.4) |
Median (cGy) | 25th Percentile (cGy) | 75th Percentile (cGy) | Minimum (cGy) | Maximum (cGy) | |
---|---|---|---|---|---|
Large Vessels | |||||
Superior Vena Cava D2 cc | 600.13 | 144.27 | 1187.38 | 14.94 | 4330.72 |
Superior Vena Cava Dmax | 974.99 | 427.41 | 1823.43 | 11.82 | 6755.42 |
Pulmonary Artery D10 cc | 554.85 | 128.58 | 986.96 | 12.45 | 3018.34 |
Pulmonary Artery Dmax | 1393.26 | 613.5 | 2530.99 | 29.65 | 6349.85 |
Heart Chambers | |||||
Left Atrium D2 cc | 678.94 | 66.51 | 1552.71 | 25.12 | 4433.14 |
Left Atrium D45% | 77.11 | 32.67 | 536.6 | 12.3 | 1403.36 |
Right Atrium D2 cc | 419.61 | 41.52 | 1235.79 | 14.02 | 4909.75 |
Right Atrium D45% | 37.6 | 18.02 | 120.8 | 6.01 | 2124.36 |
Left Ventricle D2 cc | 368.04 | 42.06 | 1041.32 | 11.39 | 4488.94 |
Left Ventricle D45% | 32.97 | 13.75 | 85.65 | 4.69 | 1910.28 |
Right Ventricle D2 cc | 234.58 | 35.5 | 900.28 | 11.28 | 1903.36 |
Right Ventricle D45% | 25.59 | 11.09 | 83.05 | 4.62 | 1530.24 |
Heart Valves | |||||
Aortic valve D2 cc | 179.01 | 38.5 | 879.52 | 12.26 | 2308.88 |
Aortic valve Mean Dose | 87.1 | 28.64 | 500.68 | 13.32 | 1579.56 |
Pulmonary valve D2 cc | 108.12 | 32.23 | 498.07 | 13.31 | 2647.47 |
Pulmonary valve Mean Dose | 118.84 | 31.94 | 383.09 | 12.15 | 1845.57 |
Mitral valve D0.1 cc | 83.56 | 28.1 | 474.67 | 9.48 | 2446.96 |
Mitral valve Mean Dose | 54.41 | 24.64 | 244.7 | 7.7 | 2245.14 |
Tricuspid valve D0.1 cc | 36.39 | 15.1 | 332.02 | 6.43 | 1622.2 |
Tricuspid valve Mean Dose | 27.68 | 12.25 | 112.23 | 4.08 | 1471.19 |
Coronary Arteries | |||||
Left Main Coronary D0.1 cc | 120.13 | 38.78 | 560.59 | 18.34 | 2117.29 |
Left Main Coronary Mean Dose | 113.89 | 36.03 | 477.5 | 16.7 | 1783.02 |
LAD D0.1 cc | 293.01 | 46.09 | 1181.31 | 18.11 | 4953.49 |
LAD Mean Dose | 103.58 | 25.44 | 472.11 | 7.45 | 3739.5 |
Left Circumflex D0.1 cc | 293.1 | 40.59 | 909.36 | 16.04 | 2229.17 |
Left Circumflex Mean Dose | 129.48 | 35.11 | 580.32 | 7.7 | 1791.6 |
Right Coronary D0.1 cc | 63.11 | 23.76 | 756.12 | 9.85 | 2237.97 |
Right Coronary Mean Dose | 48.61 | 22.26 | 366 | 7.87 | 1625.13 |
Dose Constraint | p-Value |
---|---|
Left Circumflex D0.1 cc | 0.92 |
Left Circumflex Mean Dose | 0.99 |
LAD D0.1 cc | 0.42 |
LAD Mean Dose | 0.8 |
Left Main Coronary D0.1 cc | 0.85 |
Left Main Coronary Mean Dose | 0.76 |
Pulmonary Artery D10 cc | 0.85 |
Pulmonary Artery Dmax | 0.44 |
Right Coronary D0.1 cc | 0.27 |
Right Coronary Mean Dose | 0.14 |
Aortic valve D2 cc | 0.29 |
Aortic valve Mean Dose | 0.24 |
Left Atrium D2 cc | 0.53 |
Left Atrium D45% | 0.43 |
Right Atrium D2 cc | 0.21 |
Right Atrium D45% | 0.021 |
Heart/Pericardium D15 cc | 0.92 |
Heart/Pericardium Dmax | 0.57 |
Heart D10 cc | 0.44 |
Heart D45% | 0.46 |
Mitral valve D0.1 cc | 0.77 |
Mitral valve Mean Dose | 0.53 |
PTV Volume covered by 100% | 0.65 |
PTV Volume covered by 90% | 0.74 |
Pulmonary Artery D10 cc | 0.93 |
Pulmonary Artery Dmax | 0.85 |
Tricuspid valve D0.1 cc | 0.56 |
Tricuspid valve Mean Dose | 0.86 |
Superior Vena Cava D2 cc | 0.77 |
Superior Vena Cava Dmax | 0.92 |
Left Ventricle D2 cc | 0.34 |
Left Ventricle D45% | 0.97 |
Right Ventricle D2 cc | 0.44 |
Right Ventricle D45% | 0.012 |
Non-Cancer Associated Survival | Overall Survival | |||
---|---|---|---|---|
HR (95% CI for HR) | p-Value | HR (95% CI for HR) | p-Value | |
Gender (Female) | 0.50 (0.27–0.91) | 0.02 | ||
KPS (<80) | 4.1 (1.8–8.8) | <0.001 | 2.5 (1.4–4.6) | 0.003 |
Prior lung cancer | 0.2 (0.08–0.7) | 0.011 | 0.75 (0.37–1.5) | 0.42 |
History of diabetes | 2.6 (1.4–4.6) | 0.002 | ||
Heart disease | 1.2 (0.57–2.7) | 0.58 | 0.7 (0.38–1.3) | 0.27 |
PTV | 1.0 (0.99–1.02) | 0.14 | ||
Bronchus D4 cc | 2.1 (0.8–5.2) | 0.1 | 2.2 (0.93–5.1) | 0.074 |
Trachea D4 cc | 3.8 (1.0–11.1) | 0.015 | 2.7 (1.0–7.3) | 0.051 |
Right Atria D45% | 8.0 (1.0–62.5) | 0.048 | 7.4 (1.2–45.7) | 0.029 |
Right Ventricle D45% | 0.35 (0.04–3.3) | 0.36 | 0.31 (0.05–2.1) | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrugia, M.; Yu, H.; Ma, S.J.; Iovoli, A.J.; Pokharel, S.; Sharma, U.C.; Fung-Kee-Fung, S.; Malik, N.; Singh, A.K.; Malhotra, H. Right Atrial Dose Is Associated with Worse Outcome in Patients Undergoing Definitive Stereotactic Body Radiation Therapy for Central Lung Tumors. Cancers 2022, 14, 1391. https://doi.org/10.3390/cancers14061391
Farrugia M, Yu H, Ma SJ, Iovoli AJ, Pokharel S, Sharma UC, Fung-Kee-Fung S, Malik N, Singh AK, Malhotra H. Right Atrial Dose Is Associated with Worse Outcome in Patients Undergoing Definitive Stereotactic Body Radiation Therapy for Central Lung Tumors. Cancers. 2022; 14(6):1391. https://doi.org/10.3390/cancers14061391
Chicago/Turabian StyleFarrugia, Mark, Han Yu, Sung Jun Ma, Austin J. Iovoli, Saraswati Pokharel, Umesh C. Sharma, Simon Fung-Kee-Fung, Nadia Malik, Anurag K. Singh, and Harish Malhotra. 2022. "Right Atrial Dose Is Associated with Worse Outcome in Patients Undergoing Definitive Stereotactic Body Radiation Therapy for Central Lung Tumors" Cancers 14, no. 6: 1391. https://doi.org/10.3390/cancers14061391
APA StyleFarrugia, M., Yu, H., Ma, S. J., Iovoli, A. J., Pokharel, S., Sharma, U. C., Fung-Kee-Fung, S., Malik, N., Singh, A. K., & Malhotra, H. (2022). Right Atrial Dose Is Associated with Worse Outcome in Patients Undergoing Definitive Stereotactic Body Radiation Therapy for Central Lung Tumors. Cancers, 14(6), 1391. https://doi.org/10.3390/cancers14061391