Hypofractionated Whole Breast Irradiation and Boost-IOERT in Early Stage Breast Cancer (HIOB): First Clinical Results of a Prospective Multicenter Trial (NCT01343459)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Patients
2.2. Trial Design and Hypotheses, Definition of Primary and Secondary Endpoints
2.3. Treatment Schedule
2.4. Data Registration, Quality Assurance, and Follow-Up
3. Statistical Methods
4. Results
4.1. Primary Endpoint and Systemic Treatment
4.2. Secondary Endpoints
5. Discussion
Trial Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IOERT | intraoperative radiation with electrons |
HWBI | hypofractionated whole breast irradiation |
BCS | breast conserving surgery |
CO | cosmetic outcome |
IBR | in breast recurrence |
DCIS | ductal carcinoma in situ |
RCTs | randomized controlled trials |
HIOB | hypofractionated whole breast irradiation preceded by an intraoperative tumorbed boost with electrons |
SQRT | sequential ratio test |
FUP | follow-up |
WBI | whole breast irradiation |
RNI | regional node irradiation |
PTV | Planning Target Volume |
DFS | disease free survival |
MFS | metastases free survival |
DSS | disease specific survival |
OS | overall survival |
LC | overall local control |
LRC | locoregional control |
OPS | oncoplastic surgery |
IMRT | intensity modulated radiotherapy |
V20 | tissue volume which receives 20 Gy or more |
QA | quality assurance |
ISIORT | International Society of Intraoperative Radiotherapy |
CI | confidence interval |
itt | intention to treat |
pp | per protocol |
ET | endocrine therapy |
CTX | chemotherapy |
H0 | Null hypothesis |
Appendix A
Thorsten Fischer 1 | Karin Dagn 2 |
Beata Adamczyk 3 | Christoph Fussl 2 |
Piotr Milecki 8 | Sabine Gerum 2 |
Daniela di Cristino 4 | Brane Grambozov 2 |
Kyle Arneson 5 | Wolfgang Iglseder 2 |
Michaela Gruber 6 | Julia Kaiser 2 |
Anna Schiattarella 7 | Josef Karner 2 |
Vincenzo Fusco 9 | Andrea Kopp 2 |
Marina Alessandro 10 | Michael Kopp 2 |
Antonio Stefanelli 11 | Matthias Mattke 2 |
Elisabeth Bräutigam 12 | Falk Röder 2 |
Giovanni Battista Ivaldi 13 | Stefanie Windischbauer 2 |
Karl-Axel Hartmann 14 | Frank Wolf 2 |
Marco Krengli 15 | Franz Zehentmayr 2 |
Umberto Ricardi 16 |
References
- James, M.L.; Lehman, M.; Hider, P.N.; Jeffery, M.; Hickey, B.E.; Francis, D.P. Fraction size in radiation therapy for breast conservation in early breast cancer. Cochrane Database Syst. Rev. 2016, 7, Cd003860. [Google Scholar]
- Antonini, N.; Jones, H.; Horiot, J.C.; Poortmans, P.; Struikmans, H.; Van den Bogaert, W.; Barillot, I.; Fourquet, A.; Jager, J.; Hoogenraad, W.; et al. Effect of age and radiation dose on local control after breast conserving treatment: EORTC trial 22881-10882. Radiother. Oncol. 2007, 82, 265–271. [Google Scholar] [CrossRef]
- Bartelink, H.; Maingon, P.; Poortmans, P.; Weltens, C.; Fourquet, A.; Jager, J.; Schinagl, D.; Oei, B.; Rodenhuis, C.; Horiot, J.C.; et al. Whole-breast irradiation with or without a boost for patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised phase 3 trial. Lancet Oncol. 2015, 16, 47–56. [Google Scholar] [CrossRef]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burstein, H.J.; Curigliano, G.; Loibl, S.; Dubsky, P.; Gnant, M.; Poortmans, P.; Colleoni, M.; Denkert, C.; Piccart-Gebhart, M.; Regan, M.; et al. Estimating the benefits of therapy for early-stage breast cancer: The St. Gallen International Consensus Guidelines for the primary therapy of early breast cancer 2019. Ann. Oncol. 2019, 30, 1541–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, B.D.; Bellon, J.R.; Blitzblau, R.; Freedman, G.; Haffty, B.; Hahn, C.; Halberg, F.; Hoffman, K.; Horst, K.; Moran, J.; et al. Radiation therapy for the whole breast: Executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based guideline. Pract. Radiat. Oncol. 2018, 8, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Woeckel, A.; Festl, J.; Stueber, T.; Brust, K.; Krockenberger, M.; Heuschmann, P.U.; Jírů-Hillmann, S.; Albert, U.S.; Budach, W.; Follmann, M.; et al. Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017)—Part 2 with Recommendations for the Therapy of Primary, Recurrent and Advanced Breast Cancer. Geburtshilfe Frauenheilkd. 2018, 78, 1056–1088. [Google Scholar]
- Brouwers, P.J.; van Werkhoven, E.; Bartelink, H.; Fourquet, A.; Lemanski, C.; van Loon, J.; Maduro, J.H.; Russell, N.S.; Scheijmans, L.J.; Schinagl, D.A.; et al. Predictors for poor cosmetic outcome in patients with early stage breast cancer treated with breast conserving therapy: Results of the Young boost trial. Radiother. Oncol. 2018, 128, 434–441. [Google Scholar] [CrossRef]
- Strnad, V.; Major, T.; Polgar, C.; Lotter, M.; Guinot, J.L.; Gutierrez-Miguelez, C.; Galalae, R.; Van Limbergen, E.; Guix, B.; Niehoff, P.; et al. ESTRO-ACROP guideline: Interstitial multi-catheter breast brachytherapy as Accelerated Partial Breast Irradiation alone or as boost—GEC-ESTRO Breast Cancer Working Group practical recommendations. Radiother. Oncol. 2018, 128, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Fastner, G.; Gaisberger, C.; Kaiser, J.; Scherer, P.; Ciabattoni, A.; Petoukhova, A.; Sperk, E.; Poortmans, P.; Calvo, F.A.; Sedlmayer, F.; et al. ESTRO IORT Task Force/ACROP recommendations for intraoperative radiation therapy with electrons (IOERT) in breast cancer. Radiother. Oncol. 2020, 149, 150–157. [Google Scholar] [CrossRef]
- Wenz, F.; Blank, E.; Welzel, G.; Hofmann, F.; Astor, D.; Neumaier, C.; Herskind, C.; Gerhardt, A.; Suetterlin, M.; Kraus-Tiefenbacher, U. Intraoperative radiotherapy during breast-conserving surgery using a miniature x-ray generator (Intrabeam®): Theoretical and experimental background and clinical experience. Women’s Health 2012, 8, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pez, M.; Keller, A.; Welzel, G.; Abo-Madyan, Y.; Ehmann, M.; Tuschy, B.; Berlit, S.; Sütterlin, M.; Wenz, F.; Giordano, F.A.; et al. Long-term outcome after intraoperative radiotherapy as a boost in breast cancer. Strahlenther. Onkol. 2020, 196, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Sedlmayer, F.; Reitsamer, R.; Wenz, F.; Sperk, E.; Fussl, C.; Kaiser, J.; Ziegler, I.; Zehentmayr, F.; Deutschmann, H.; Kopp, P.; et al. Intraoperative radiotherapy (IORT) as boost in breast cancer. Radiat. Oncol. 2017, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.; Kronberger, C.; Moder, A.; Kopp, P.; Wallner, M.; Reitsamer, R.; Fischer, T.; Fussl, C.; Zehentmayr, F.; Sedlmayer, F.; et al. Intraoperative Tumor Bed Boost with Electrons in Breast Cancer of Clinical Stages I Through III: Updated 10-Year Results. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Belletti, B.; Vaidya, J.S.; D’Andrea, S.; Entschladen, F.; Roncadin, M.; Lovat, F.; Berton, S.; Perin, T.; Candiani, E.; Reccanello, S.; et al. Targeted intraoperative radiotherapy impairs the stimulation of breast cancer cell proliferation and invasion caused by surgical wounding. Clin. Cancer Res. 2008, 14, 1325–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldwijk, M.R.; Neumaier, C.; Gerhardt, A.; Giordano, F.A.; Sütterlin, M.; Herskind, C.; Wenz, F. Comparison of the proliferative and clonogenic growth capacity of wound fluid from breast cancer patients treated with and without intraoperative radiotherapy. Transl. Cancer Res. 2015, 4, 173–177. [Google Scholar]
- Herskind, C.; Wenz, F. Radiobiological aspects of intraoperative tumour-bed irradiation with low-energy X-rays (LEX-IORT). Transl. Cancer Res. 2014, 3, 3–17. [Google Scholar]
- Sologuren, I.R.-G.C.; Lara, P.D. Immune effects of high dose radiation treatment: Implications of ionizing radiation on the development of bystander and abscopal effects. Transl. Cancer Res. 2014, 3, 18–31. [Google Scholar]
- Kulcenty, K.; Piotrowski, I.; Wróblewska, J.P.; Wasiewicz, J.; Suchorska, A.W.M. The Composition of Surgical Wound Fluids from Breast Cancer Patients is Affected by Intraoperative Radiotherapy Treatment and Depends on the Molecular Subtype of Breast Cancer. Cancers 2019, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Kulcenty, K.; Piotrowski, I.; Zaleska, K.; Wichtowski, M.; Wróblewska, J.; Murawa, D.; Suchorska, W.M. Wound fluids collected postoperatively from patients with breast cancer induce epithelial to mesenchymal transition but intraoperative radiotherapy impairs this effect by activating the radiation-induced bystander effect. Sci. Rep. 2019, 9, 7891. [Google Scholar] [CrossRef] [PubMed]
- Kulcenty, K.I.; Piotrowski, I.; Zaleska, K.; Murawa, D.; Suchorska, W.M. Wound fluids collected from patients after IORT treatment activates extrinsic apoptotic pathway in MCF7 breast cancer cell line. Ginekol. Polska 2018, 89, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Reitsamer, R.; Sedlmayer, F.; Kopp, M.; Kametriser, G.; Menzel, C.; Deutschmann, H.; Nairz, O.; Hitzl, W.; Peintinger, F. The Salzburg concept of intraoperative radiotherapy for breast cancer: Results and considerations. Int. J. Cancer 2006, 118, 2882–2887. [Google Scholar] [CrossRef] [PubMed]
- Ciabattoni, A.; Gregucci, F.; Fastner, G.; Cavuto, S.; Spera, A.; Drago, S.; Ziegler, I.; Mirri, M.A.; Consorti, R.; Sedlmayer, F. IOERT versus external beam electrons for boost radiotherapy in stage I/II breast cancer: 10-year results of a phase III randomized study. Breast Cancer Res. BCR 2021, 23, 46. [Google Scholar] [CrossRef] [PubMed]
- Fastner, G.; Reitsamer, R.; Urbański, B.; Kopp, P.; Murawa, D.; Adamczyk, B.; Karzcewska, A.; Milecki, P.; Hager, E.; Reiland, J.; et al. Toxicity and cosmetic outcome after hypofractionated whole breast irradiation and boost-IOERT in early stage breast cancer (HIOB): First results of a prospective multicenter trial (NCT01343459). Radiother. Oncol. 2020, 146, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M.; Agrawal, R.K.; Aird, E.G.; Barrett, J.M.; Barrett-Lee, P.J.; Bentzen, S.M.; Bliss, J.M.; Brown, J.; Dewar, J.A.; Dobbs, H.J.; et al. The UK Standardisation of Breast Radiotherapy (START) Trial B of radiotherapy hypofractionation for treatment of early breast cancer: A randomised trial. Lancet 2008, 371, 1098–1107. [Google Scholar] [PubMed] [Green Version]
- Whelan, T.; MacKenzie, R.; Julian, J.; Levine, M.; Shelley, W.; Grimard, L.; Lada, B.; Lukka, H.; Perera, F.; Fyles, A.; et al. Randomized trial of breast irradiation schedules after lumpectomy for women with lymph node-negative breast cancer. J. Natl. Cancer Inst. 2002, 94, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Bartelink, H.; Horiot, J.C.; Poortmans, P.; Struikmans, H.; Van den Bogaert, W.; Barillot, I.; Fourquet, A.; Borger, J.; Jager, J.; Hoogenraad, W.; et al. Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N. Engl. J. Med. 2001, 345, 1378–1387. [Google Scholar] [CrossRef]
- Wald, A. Sequential Tests of Statistical Hypotheses. Ann. Math. Stat. 1945, 16, 117–186. [Google Scholar] [CrossRef]
- Trotti, A.; Byhardt, R.; Stetz, J.; Gwede, C.; Corn, B.; Fu, K.; Gunderson, L.; McCormick, B.; Morris, M.; Rich, T.; et al. Common toxicity criteria: Version 2.0. an improved reference for grading the acute effects of cancer treatment: Impact on radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 13–47. [Google Scholar] [CrossRef]
- Rubin, P.; Constine, L.S.; Fajardo, L.F., 3rd; Phillips, T.L.; Wasserman, T.H. EORTC Late Effects Working Group. Overview of late effects normal tissues (LENT) scoring system. Radiother. Oncol. 1995, 35, 9–10. [Google Scholar] [CrossRef]
- Pavy, J.J.; Denekamp, J.; Letschert, J.; Littbrand, B.; Mornex, F.; Bernier, J.; Gonzales-Gonzales, D.; Horiot, J.C.; Bolla, M.; Bartelink, H. EORTC Late Effects Working Group. Late effects toxicity scoring: The SOMA scale. Radiother. Oncol. 1995, 35, 11–15. [Google Scholar] [CrossRef]
- Van Limbergen, E.; van der Schueren, E.; Van Tongelen, K. Cosmetic evaluation of breast conserving treatment for mammary cancer. 1. Proposal of a quantitative scoring system. Radiother. Oncol. 1989, 16, 159–167. [Google Scholar] [CrossRef]
- Clough, K.B.; Kaufman, G.J.; Nos, C.; Buccimazza, I.; Sarfati, I.M. Improving breast cancer surgery: A classification and quadrant per quadrant atlas for oncoplastic surgery. Ann. Surg. Oncol. 2010, 17, 1375–1391. [Google Scholar] [CrossRef] [PubMed]
- McCulley, S.J.; Macmillan, R.D. Therapeutic mammaplasty--analysis of 50 consecutive cases. Br. J. Plast. Surg. 2005, 58, 902–907. [Google Scholar] [CrossRef]
- Krag, D.N.; Anderson, S.J.; Julian, T.B.; Brown, A.M.; Harlow, S.P.; Costantino, J.P.; Ashikaga, T.; Weaver, D.L.; Mamounas, E.P.; Jalovec, L.M.; et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: Overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010, 11, 927–933. [Google Scholar] [CrossRef] [Green Version]
- Giuliano, A.E.; Ballman, K.V.; McCall, L.; Beitsch, P.D.; Brennan, M.B.; Kelemen, P.R.; Ollila, D.W.; Hansen, N.M.; Whitworth, P.W.; Blumencranz, P.W.; et al. Effect of Axillary Dissection vs No Axillary Dissection on 10-Year Overall Survival Among Women with Invasive Breast Cancer and Sentinel Node Metastasis: The ACOSOG Z0011 (Alliance) Randomized Clinical Trial. Jama 2017, 318, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J.; Albain, K.S.; André, F.; Bergh, J.; et al. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef]
- Hammer, J.; Mazeron, J.J.; Van Limbergen, E. Breast boost—Why, how, when...? Strahlenther. Onkol. 1999, 175, 478–483. [Google Scholar] [CrossRef]
- Nairz, O.; Deutschmann, H.; Kopp, M.; Wurstbauer, K.; Kametriser, G.; Fastner, G.; Merz, F.; Reitsamer, R.; Menzel, C.; Sedlmayer, F. A dosimetric comparison of IORT techniques in limited-stage breast cancer. Strahlenther. Onkol. 2006, 182, 342–348. [Google Scholar] [CrossRef]
- Vaidya, J.S.; Baum, M.; Tobias, J.S.; Massarut, S.; Wenz, F.; Murphy, O.; Hilaris, B.; Houghton, J.; Saunders, C.; Corica, T.; et al. Targeted intraoperative radiotherapy (TARGIT) yields very low recurrence rates when given as a boost. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 1335–1338. [Google Scholar] [CrossRef]
- Vaidya, J.S.; Baum, M.; Tobias, J.S.; Wenz, F.; Massarut, S.; Keshtgar, M.; Hilaris, B.; Saunders, C.; Williams, N.R.; Brew-Graves, C.; et al. Long-term results of targeted intraoperative radiotherapy (Targit) boost during breast-conserving surgery. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Blank, E.; Kraus-Tiefenbacher, U.; Welzel, G.; Keller, A.; Bohrer, M.; Sütterlin, M.; Wenz, F. Single-center long-term follow-up after intraoperative radiotherapy as a boost during breast-conserving surgery using low-kilovoltage x-rays. Ann. Surg. Oncol. 2010, 17 (Suppl. S3), 352–358. [Google Scholar] [CrossRef] [PubMed]
- Wenz, F.; Welzel, G.; Blank, E.; Hermann, B.; Steil, V.; Sütterlin, M.; Kraus-Tiefenbacher, U. Intraoperative radiotherapy as a boost during breast-conserving surgery using low-kilovoltage X-rays: The first 5 years of experience with a novel approach. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Wenz, F.; Welzel, G.; Keller, A.; Blank, E.; Vorodi, F.; Herskind, C.; Tomé, O.; Sütterlin, M.; Kraus-Tiefenbacher, U. Early initiation of external beam radiotherapy (EBRT) may increase the risk of long-term toxicity in patients undergoing intraoperative radiotherapy (IORT) as a boost for breast cancer. Breast 2008, 17, 617–622. [Google Scholar] [CrossRef]
- Fowler, J.F. The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 1989, 62, 679–694. [Google Scholar] [CrossRef]
- Bentzen, S.M.; Agrawal, R.K.; Aird, E.G.; Barrett, J.M.; Barrett-Lee, P.J.; Bliss, J.M.; Brown, J.; Dewar, J.A.; Dobbs, H.J.; Haviland, J.S.; et al. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: A randomised trial. Lancet Oncol. 2008, 9, 331–341. [Google Scholar]
- Haviland, J.S.; Owen, J.R.; Dewar, J.A.; Agrawal, R.K.; Barrett, J.; Barrett-Lee, P.J.; Dobbs, H.J.; Hopwood, P.; Lawton, P.A.; Magee, B.J.; et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013, 14, 1086–1094. [Google Scholar] [CrossRef]
- Whelan, T.J.; Pignol, J.P.; Levine, M.N.; Julian, J.A.; MacKenzie, R.; Parpia, S.; Shelley, W.; Grimard, L.; Bowen, J.; Lukka, H.; et al. Long-term results of hypofractionated radiation therapy for breast cancer. N. Engl. J. Med. 2010, 362, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Polo, A.; Polgár, C.; Hannoun-Levi, J.M.; Guinot, J.L.; Gutierrez, C.; Galalae, R.; van Limbergen, E.; Strnad, V. Risk factors and state-of-the-art indications for boost irradiation in invasive breast carcinoma. Brachytherapy 2017, 16, 552–564. [Google Scholar] [CrossRef]
- Truong, P.T.; Jones, S.O.; Kader, H.A.; Wai, E.S.; Speers, C.H.; Alexander, A.S.; Olivotto, I.A. Patients with t1 to t2 breast cancer with one to three positive nodes have higher local and regional recurrence risks compared with node-negative patients after breast-conserving surgery and whole-breast radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 357–364. [Google Scholar] [CrossRef]
- Ivaldi, G.B.; Leonardi, M.C.; Orecchia, R.; Zerini, D.; Morra, A.; Galimberti, V.; Gatti, G.; Luini, A.; Veronesi, P.; Ciocca, M.; et al. Preliminary results of electron intraoperative therapy boost and hypofractionated external beam radiotherapy after breast-conserving surgery in premenopausal women. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Dierks, F.; Pietsch, E.; Dunst, J. Pembrolizumab as neoadjuvant treatment of early triple-negative breast cancer. Strahlenther. Onkol. 2020, 196, 841–843. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, M.C.; Maisonneuve, P.; Mastropasqua, M.G.; Morra, A.; Lazzari, R.; Rotmensz, N.; Sangalli, C.; Luini, A.; Veronesi, U.; Orecchia, R. How do the ASTRO consensus statement guidelines for the application of accelerated partial breast irradiation fit intraoperative radiotherapy? A retrospective analysis of patients treated at the European Institute of Oncology. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Correa, C.; Harris, E.E.; Leonardi, M.C.; Smith, B.D.; Taghian, A.G.; Thompson, A.M.; White, J.; Harris, J.R. Accelerated Partial Breast Irradiation: Executive summary for the update of an ASTRO Evidence-Based Consensus Statement. Pract. Radiat. Oncol. 2017, 7, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Strnad, V.; Krug, D.; Sedlmayer, F.; Piroth, M.D.; Budach, W.; Baumann, R.; Feyer, P.; Duma, M.N.; Haase, W.; Harms, W.; et al. DEGRO practical guideline for partial-breast irradiation. Strahlenther. Onkol. 2020, 196, 749–763. [Google Scholar] [CrossRef] [PubMed]
- Bush, D.A.; Do, S.; Lum, S.; Garberoglio, C.; Mirshahidi, H.; Patyal, B.; Grove, R.; Slater, J.D. Partial breast radiation therapy with proton beam: 5-year results with cosmetic outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Pasalic, D.; Strom, E.A.; Allen, P.K.; Williamson, T.D.; Poenisch, F.; Amos, R.A.; Woodward, W.A.; Stauder, M.C.; Shaitelman, S.F.; Smith, B.D.; et al. Proton Accelerated Partial Breast Irradiation: Clinical Outcomes at a Planned Interim Analysis of a Prospective Phase 2 Trial. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 441–448. [Google Scholar] [CrossRef]
- Mutter, R.W.; Choi, J.I.; Jimenez, R.B.; Kirova, Y.M.; Fagundes, M.; Haffty, B.G.; Amos, R.A.; Bradley, J.A.; Chen, P.Y.; Ding, X.; et al. Proton Therapy for Breast Cancer: A Consensus Statement from the Particle Therapy Cooperative Group Breast Cancer Subcommittee. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 337–359. [Google Scholar] [CrossRef]
Characteristics | n (%) | Characteristics | n (%) |
---|---|---|---|
histology | pathological tumorstage | ||
IDC | 656 (59) | T1 | 918 (82) |
NST | 214 (19) | T2 | 143 (13) |
ILC | 103 (9) | Tx | 5 (0.5) |
mixed | 88 (8) | pathological nodalstage | |
others | 58 (5) | N0 | 934 (83) |
EIC pos | N1 | 129 (12) | |
yes | 149 (13) | Nx | 3 (0.5) |
no | 970 (87) | y pathological tumorstage (NACT) | |
grading | T0 | 20 (1) | |
G1 | 268 (24) | T1 | 31 (3) |
G2 | 629 (56) | T2 | 2 (0.5) |
G3 | 168 (15) | y pathological nodalstage (NACT) | |
Gx | 54 (5) | N0 | 50 (3.9) |
Her2/neu status | N1 | 1 (0.1) | |
pos | 157 (14) | Nx | 2 (0.5) |
neg | 961 (85.9) | pCR | |
ns | 1 (0.1) | yes | 29 (55) |
HR-Status | no | 24 (45) | |
pos | 1020 (91) | Multifocality | |
neg | 98 (8.9) | Yes | 140 (13) |
ns | 1 (0.1) | No | 979 (87) |
KI67 (%) | systemic treatment | ||
<20% | 487 (44) | ET | 983 (88) |
≥20% | 494 (44) | Adj. CTX and/or Tra ± Per | 213 (19) |
ns | 138 (12) | NACT ± Tra ± Per | 53 (5) |
Age groups (y) | ET/CTX | 183 (16) | |
35–40 | 45 (4) | Tra/+-Per | 61 (5.5) |
41–50 | 285 (26) | Resection margins | Median (range) |
>50 | 789 (70) | distance (mm) | 5 (0.1–80) |
ns | 31 (3) |
(a) | ||||||||||
Acute Toxicity Grade RTOG-CTCAE Vers. 2 Ω | n = 1118: End of WBI % of eP n = 1097 | n = 1103: w 4 % of eP: n = 1042 | ||||||||
0 | 11 | 37.2 | ||||||||
1 | 80 | 56.2 | ||||||||
2 | 8.7 | 6.4 | ||||||||
3–4 | 0.3 | 0.2 | ||||||||
ns (%) | 1.9 | 5.5 | ||||||||
Late Toxicicty Grade LENT SOMA Scale Ω | m 4/5 n = 1091 | y 1 n = 1049 | y 2 n = 958 | y 3 n = 863 | y 4 n = 692 | y 5 n = 518 | y 6 n = 348 | y 7 n = 98 | y 8 n = 33 | y 9 n = 1 |
Pain | % of eP: n = 1033 | % of eP: n = 1000 | % of eP: n = 907 | % of eP: n = 828 | % of eP: n = 664 | % of eP: n = 497 | % of eP: n = 343 | % of eP: n = 97 | % of eP: n = 29 | n = 1 |
0 | 65.6 | 74 | 77.4 | 80.4 | 79.6 | 81.5 | 82.2 | 86.6 | 82.7 | 100 |
1 | 25.8 | 22.4 | 18.3 | 16.4 | 17.1 | 15 | 12.2 | 12.4 | 13.8 | 0 |
2 | 8 | 3.1 | 3.9 | 2.9 | 2.8 | 2.6 | 5.3 | 1 | 3.5 | 0 |
3–4 | 0.6 | 0.5 | 0.4 | 0.3 | 0.5 | 0.9 | 0.3 | 0 | 0 | 0 |
ns (%) | 58 (5) | 49 (5) | 51 (5) | 35 (4) | 28 (4) | 21 (4) | 5 (1) | 2 (2) | 4 (12) | 0 |
Breast edema | % of eP: n = 1031 | % of eP: n = 998 | % of eP: n = 908 | % of eP: n = 828 | % of eP: n = 660 | % of eP: n = 498 | % of eP: n = 342 | % of eP: n = 97 | % of eP: n = 29 | n = 1 |
0 | 75 | 85.7 | 91 | 95.2 | 95.3 | 96.2 | 95.9 | 97.9 | 100 | 100 |
1 | 22.4 | 12.4 | 8.1 | 4.5 | 4.2 | 3.8 | 3.8 | 2.1 | 0 | 0 |
2 | 2.6 | 1.9 | 0.9 | 0.3 | 0.5 | 0 | 0.3 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ns (%) | 60 (5) | 51 (5) | 50 (5) | 35 (4) | 32 (5) | 20 (4) | 6 (2) | 2 (2) | 4 (12) | 0 |
Fibrosis | % of eP: n = 1030 | % of eP: n = 1002 | % of eP: n = 908 | % of eP: n = 828 | % of eP: n = 660 | % of eP: n = 498 | % of eP: n = 343 | % of eP: n = 97 | % of eP: n = 29 | n = 1 |
0 | 59 | 59.3 | 59.8 | 60.6 | 61.3 | 59.8 | 56.3 | 53.6 | 51.7 | 0 |
1 | 32.9 | 34.3 | 33.4 | 32.1 | 30.3 | 31.1 | 32.9 | 37.1 | 34,5 | 100 |
2 | 7.3 | 5.6 | 5.8 | 6.3 | 7.6 | 8.2 | 9.9 | 9.3 | 13.8 | 0 |
3 | 0.8 | 0.8 | 1 | 1 | 0.8 | 0.9 | 0.9 | 0 | 0 | 0 |
ns (%) | 61(5) | 47 (4) | 50 (5) | 35 (4) | 32 (5) | 20 (4) | 5 (1) | 2 (2) | 4 (12) | 0 |
(b) | ||||||||||
Late Toxicicty Grade LENT SOMA Scale Ω | m 4/5 n = 1091 | y 1 n = 1049 | y 2 n = 958 | y 3 n = 863 | y 4 n = 692 | y 5 n = 518 | y 6 n = 348 | y 7 n = 98 | y 8 n = 33 | y 9 n = 1 |
Teleangiectasia | % of eP: n = 1030 | % of eP: n = 996 | % of eP: n = 904 | % of eP: n = 822 | % of eP: n = 661 | % of eP: n = 497 | % of eP: n = 343 | % of eP: n = 97 | % of eP: n = 29 | n = 1 |
0 | 96.2 | 95.9 | 95 | 94 | 94 | 94.2 | 91.8 | 92.8 | 89.6 | 100 |
1 | 3.1 | 3.6 | 3.3 | 3.5 | 3.6 | 2.8 | 5.5 | 4.1 | 10.4 | 0 |
2 | 0.6 | 0.5 | 1.7 | 2.4 | 2.2 | 2.8 | 2.1 | 3.1 | 0 | 0 |
3 | 0.1 | 0 | 0 | 0.1 | 0.2 | 0.2 | 0.6 | 0 | 0 | 0 |
ns (%) | 61(5) | 53 (5) | 54 (6) | 41 (5) | 31 (4) | 21 (4) | 5 (1) | 2 (2) | 4 (12) | 0 |
Arm lymphedema | % of eP: n = 1026 | % of eP: n = 989 | % of eP: n = 900 | % of eP: n = 823 | % of eP: n = 657 | % of eP: n = 497 | % of eP: n = 343 | % of eP: n = 97 | % of eP: n = 29 | n = 1 |
0 | 98.6 | 97.9 | 98.4 | 99.4 | 99.4 | 99.5 | 99.8 | 99 | 96.5 | 100 |
1 | 1.4 | 2 | 1.3 | 0.6 | 0.6 | 0.5 | 0.2 | 1 | 3.5 | 0 |
2 | 0 | 0.1 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3–4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ns (%) | 65 (6) | 60 (6) | 58 (6) | 40 (5) | 35 (5) | 21 (4) | 5 (1) | 2 (2) | 4 (12) | 0 |
Retraction/atrophy | % of eP: n = 1030 | % of eP: n = 994 | % of eP: n = 904 | % of eP: n = 818 | % of eP: n = 661 | % of eP: n = 498 | % of eP: n = 342 | % of eP: n = 97 | % of eP: n = 29 | n = 1 |
0 | 81.7 | 75.5 | 75.1 | 73.2 | 70.6 | 63.6 | 60.8 | 47.4 | 51.7 | 0 |
1 | 16.7 | 21.5 | 21.3 | 23.3 | 25.5 | 30.7 | 33.6 | 50.5 | 44.8 | 100 |
2 | 1.2 | 2.3 | 2.8 | 2.6 | 2.3 | 3.8 | 4.1 | 2.1 | 3.5 | 0 |
3–4 | 0.4 | 0.7 | 0.8 | 0.9 | 1.6 | 1.9 | 1.5 | 0 | 0 | 0 |
ns (%) | 61 (6) | 55 (5) | 54 (6) | 45 (5) | 31 (4) | 20 (4) | 6 (2) | 2 (2) | 4 (12) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fastner, G.; Reitsamer, R.; Gaisberger, C.; Hitzl, W.; Urbański, B.; Murawa, D.; Matuschek, C.; Budach, W.; Ciabattoni, A.; Reiland, J.; et al. Hypofractionated Whole Breast Irradiation and Boost-IOERT in Early Stage Breast Cancer (HIOB): First Clinical Results of a Prospective Multicenter Trial (NCT01343459). Cancers 2022, 14, 1396. https://doi.org/10.3390/cancers14061396
Fastner G, Reitsamer R, Gaisberger C, Hitzl W, Urbański B, Murawa D, Matuschek C, Budach W, Ciabattoni A, Reiland J, et al. Hypofractionated Whole Breast Irradiation and Boost-IOERT in Early Stage Breast Cancer (HIOB): First Clinical Results of a Prospective Multicenter Trial (NCT01343459). Cancers. 2022; 14(6):1396. https://doi.org/10.3390/cancers14061396
Chicago/Turabian StyleFastner, Gerd, Roland Reitsamer, Christoph Gaisberger, Wolfgang Hitzl, Bartosz Urbański, Dawid Murawa, Christiane Matuschek, Wilfried Budach, Antonella Ciabattoni, Juliann Reiland, and et al. 2022. "Hypofractionated Whole Breast Irradiation and Boost-IOERT in Early Stage Breast Cancer (HIOB): First Clinical Results of a Prospective Multicenter Trial (NCT01343459)" Cancers 14, no. 6: 1396. https://doi.org/10.3390/cancers14061396
APA StyleFastner, G., Reitsamer, R., Gaisberger, C., Hitzl, W., Urbański, B., Murawa, D., Matuschek, C., Budach, W., Ciabattoni, A., Reiland, J., Molnar, M., Vidali, C., Schumacher, C., Sedlmayer, F., & on behalf of the HIOB Trialist Group. (2022). Hypofractionated Whole Breast Irradiation and Boost-IOERT in Early Stage Breast Cancer (HIOB): First Clinical Results of a Prospective Multicenter Trial (NCT01343459). Cancers, 14(6), 1396. https://doi.org/10.3390/cancers14061396