The Prognostic Role of CDK9 in Bladder Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
Cyclin-Dependent Kinase 9 (CDK 9)
2. Materials and Methods
2.1. Patients and Tissue Samples
2.2. Sample Staining
2.3. Image Acquisition and IHC Analysis
2.4. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. CDK9 Is Overexpressed in Bladder Cancer
3.3. CDK9 Expression Correlates with Disease Course in Bladder Cancer TMA Cohort
3.4. TCGA Urothelial Bladder Cancer Cohort
4. Discussion
4.1. The Prognostic Role of CDK9 in Cancers
4.2. CDK9 in Cell Differentiation and Carcinogenesis
4.3. CDK9 and Genome Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, V.G.; Oh, W.K.; Galsky, M.D. Treatment of Muscle-Invasive and Advanced Bladder Cancer in 2020. CA Cancer J. Clin. 2020, 70, 404–423. [Google Scholar] [CrossRef] [PubMed]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Padala, S.A.; Barsouk, A. Epidemiology of Bladder Cancer. Med. Sci. 2020, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cumberbatch, M.G.K.; Jubber, I.; Black, P.C.; Esperto, F.; Figueroa, J.D.; Kamat, A.M.; Kiemeney, L.; Lotan, Y.; Pang, K.; Silverman, D.T.; et al. Epidemiology of Bladder Cancer: A Systematic Review and Contemporary Update of Risk Factors in 2018. Eur. Urol. 2018, 74, 784–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mari, A.; D’Andrea, D.; Abufaraj, M.; Foerster, B.; Kimura, S.; Shariat, S.F. Genetic Determinants for Chemo- and Radiotherapy Resistance in Bladder Cancer. Transl. Androl. Urol. 2017, 6, 1081–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, F.; Giordano, A. Overview of CDK9 as a Target in Cancer Research. Cell Cycle 2016, 15, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, L.C.; Morales, F.; Boffo, S.; Giordano, A. CDK9: A Key Player in Cancer and Other Diseases. J. Cell. Biochem. 2018, 119, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Anshabo, A.T.; Milne, R.; Wang, S.; Albrecht, H. CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front. Oncol. 2021, 11, 678559. [Google Scholar] [CrossRef] [PubMed]
- Mandal, R.; Becker, S.; Strebhardt, K. Targeting CDK9 for Anti-Cancer Therapeutics. Cancers 2021, 13, 2181. [Google Scholar] [CrossRef]
- Simone, C.; Stiegler, P.; Bagella, L.; Pucci, B.; Bellan, C.; De Falco, G.; De Luca, A.; Guanti, G.; Puri, P.L.; Giordano, A. Activation of MyoD-Dependent Transcription by cdk9/cyclin T2. Oncogene 2002, 21, 4137–4148. [Google Scholar] [CrossRef] [Green Version]
- De Falco, G.; Bellan, C.; D’Amuri, A.; Angeloni, G.; Leucci, E.; Giordano, A.; Leoncini, L. Cdk9 Regulates Neural Differentiation and Its Expression Correlates with the Differentiation Grade of Neuroblastoma and PNET Tumors. Cancer Biol. Ther. 2005, 4, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Iankova, I.; Petersen, R.K.; Annicotte, J.-S.; Chavey, C.; Hansen, J.B.; Kratchmarova, I.; Sarruf, D.; Benkirane, M.; Kristiansen, K.; Fajas, L. Peroxisome Proliferator-Activated Receptor Gamma Recruits the Positive Transcription Elongation Factor B Complex to Activate Transcription and Promote Adipogenesis. Mol. Endocrinol. 2006, 20, 1494–1505. [Google Scholar] [CrossRef] [PubMed]
- Štětková, M.; Growková, K.; Fojtík, P.; Valčíková, B.; Palušová, V.; Verlande, A.; Jorda, R.; Kryštof, V.; Hejret, V.; Alexiou, P.; et al. CDK9 Activity Is Critical for Maintaining MDM4 Overexpression in Tumor Cells. Cell Death Dis. 2020, 11, 754. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liang, Y.; Tan, Y.; Tang, Y.; Song, H.; Wang, Z.; Li, Y.; Lu, M. CDK9 Inhibitors Reactivate p53 by Downregulating iASPP. Cell. Signal. 2020, 67, 109508. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Seebacher, N.A.; Hornicek, F.J.; Duan, Z. Cyclin-Dependent Kinase 9 (CDK9) Is a Novel Prognostic Marker and Therapeutic Target in Osteosarcoma. EBioMedicine 2019, 39, 182–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kretz, A.-L.; Schaum, M.; Richter, J.; Kitzig, E.F.; Engler, C.C.; Leithäuser, F.; Henne-Bruns, D.; Knippschild, U.; Lemke, J. CDK9 Is a Prognostic Marker and Therapeutic Target in Pancreatic Cancer. Tumour Biol. 2017, 39, 1010428317694304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boffo, S.; Damato, A.; Alfano, L.; Giordano, A. CDK9 Inhibitors in Acute Myeloid Leukemia. J. Exp. Clin. Cancer Res. 2018, 37, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itkonen, H.M.; Poulose, N.; Walker, S.; Mills, I.G. CDK9 Inhibition Induces a Metabolic Switch That Renders Prostate Cancer Cells Dependent on Fatty Acid Oxidation. Neoplasia 2019, 21, 713–720. [Google Scholar] [CrossRef]
- Lim, S.-L.; Xu, L.; Han, B.-C.; Shyamsunder, P.; Chng, W.-J.; Koeffler, H.P. Multiple Myeloma: Combination Therapy of BET Proteolysis Targeting Chimeric Molecule with CDK9 Inhibitor. PLoS ONE 2020, 15, e0232068. [Google Scholar] [CrossRef]
- Borowczak, J.; Szczerbowski, K.; Stec, E.; Grzanka, D.; Szylberg, Ł. CDK9: Therapeutic Perspective in HCC Therapy. Curr. Cancer Drug Targets 2020, 20, 318–324. [Google Scholar] [CrossRef]
- Buchholz, K.; Antosik, P.; Grzanka, D.; Gagat, M.; Smolińska, M.; Grzanka, A.; Gzil, A.; Kasperska, A.; Klimaszewska-Wiśniewska, A. Expression of the Body-Weight Signaling Players: GDF15, GFRAL and RET and Their Clinical Relevance in Gastric Cancer. J. Cancer 2021, 12, 4698–4709. [Google Scholar] [CrossRef]
- Uhlen, M.; Oksvold, P.; Fagerberg, L.; Lundberg, E.; Jonasson, K.; Forsberg, M.; Zwahlen, M.; Kampf, C.; Wester, K.; Hober, S.; et al. Towards a Knowledge-Based Human Protein Atlas. Nat. Biotechnol. 2010, 28, 1248–1250. [Google Scholar] [CrossRef] [PubMed]
- Varghese, F.; Bukhari, A.B.; Malhotra, R.; De, A. IHC Profiler: An Open Source Plugin for the Quantitative Evaluation and Automated Scoring of Immunohistochemistry Images of Human Tissue Samples. PLoS ONE 2014, 9, e96801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlafstein, A.J.; Withers, A.E.; Rudra, S.; Danelia, D.; Switchenko, J.M.; Mister, D.; Harari, S.; Zhang, H.; Daddacha, W.; Ehdaivand, S.; et al. CDK9 Expression Shows Role as a Potential Prognostic Biomarker in Breast Cancer Patients Who Fail to Achieve Pathologic Complete Response after Neoadjuvant Chemotherapy. Int. J. Breast Cancer 2018, 2018, 6945129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BLADDER UROTHELIAL CARCINOMA (BLCA)—Interactive Survival Scatter Plot & Survival Analysis. Available online: https://www.proteinatlas.org/ENSG00000136807-CDK9/pathology/urothelial+cancer/ (accessed on 10 November 2021).
- Wang, J.; Dean, D.C.; Hornicek, F.J.; Shi, H.; Duan, Z. Cyclin-Dependent Kinase 9 (CDK9) Is a Novel Prognostic Marker and Therapeutic Target in Ovarian Cancer. FASEB J. 2019, 33, 5990–6000. [Google Scholar] [CrossRef] [PubMed]
- Parvathareddy, S.K.; Siraj, A.K.; Masoodi, T.; Annaiyappanaidu, P.; Al-Badawi, I.A.; Al-Dayel, F.; Al-Kuraya, K.S. Cyclin-Dependent Kinase 9 (CDK9) Predicts Recurrence in Middle Eastern Epithelial Ovarian Cancer. J. Ovarian Res. 2021, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Berthet, C.; Kaldis, P. Cell-Specific Responses to Loss of Cyclin-Dependent Kinases. Oncogene 2007, 26, 4469–4477. [Google Scholar] [CrossRef] [Green Version]
- Berthet, C.; Kaldis, P. Cdk2 and Cdk4 Cooperatively Control the Expression of Cdc2. Cell Div. 2006, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.S.; Cortez, D. A Role for CDK9-Cyclin K in Maintaining Genome Integrity. Cell Cycle 2011, 10, 28–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanazawa, S.; Soucek, L.; Evan, G.; Okamoto, T.; Peterlin, B.M. C-Myc Recruits P-TEFb for Transcription, Cellular Proliferation and Apoptosis. Oncogene 2003, 22, 5707–5711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadhwa, N.; Mathew, B.B.; Jatawa, S.K.; Tiwari, A. Genetic Instability in Urinary Bladder Cancer: An Evolving Hallmark. J. Postgrad. Med. 2013, 59, 284–288. [Google Scholar] [CrossRef]
- Yu, D.S.; Zhao, R.; Hsu, E.L.; Cayer, J.; Ye, F.; Guo, Y.; Shyr, Y.; Cortez, D. Cyclin-Dependent Kinase 9-Cyclin K Functions in the Replication Stress Response. EMBO Rep. 2010, 11, 876–882. [Google Scholar] [CrossRef] [Green Version]
- Paulsen, R.D.; Soni, D.V.; Wollman, R.; Hahn, A.T.; Yee, M.-C.; Guan, A.; Hesley, J.A.; Miller, S.C.; Cromwell, E.F.; Solow-Cordero, D.E.; et al. A Genome-Wide siRNA Screen Reveals Diverse Cellular Processes and Pathways That Mediate Genome Stability. Mol. Cell 2009, 35, 228–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovejoy, C.A.; Xu, X.; Bansbach, C.E.; Glick, G.G.; Zhao, R.; Ye, F.; Sirbu, B.M.; Titus, L.C.; Shyr, Y.; Cortez, D. Functional Genomic Screens Identify CINP as a Genome Maintenance Protein. Proc. Natl. Acad. Sci. USA 2009, 106, 19304–19309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowles, M.A. Molecular Subtypes of Bladder Cancer: Jekyll and Hyde or Chalk and Cheese? Carcinogenesis 2006, 27, 361–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaish, M.; Mandhani, A.; Mittal, R.D.; Mittal, B. Microsatellite Instability as Prognostic Marker in Bladder Tumors: A Clinical Significance. BMC Urol. 2005, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanel, W.; Moll, U.M. Links between Mutant p53 and Genomic Instability. J. Cell. Biochem. 2012, 113, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Schlichtholz, B.; Presler, M.; Matuszewski, M. Clinical Implications of p53 Mutation Analysis in Bladder Cancer Tissue and Urine Sediment by Functional Assay in Yeast. Carcinogenesis 2004, 25, 2319–2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berggren, P.; Steineck, G.; Adolfsson, J.; Hansson, J.; Jansson, O.; Larsson, P.; Sandstedt, B.; Wijkström, H.; Hemminki, K. p53 Mutations in Urinary Bladder Cancer. Br. J. Cancer 2001, 84, 1505–1511. [Google Scholar] [CrossRef] [Green Version]
- Uchida, T.; Wada, C.; Ishida, H.; Wang, C.; Egawa, S.; Yokoyama, E.; Kameya, T.; Koshiba, K. p53 Mutations and Prognosis in Bladder Tumors. J. Urol. 1995, 153, 1097–1104. [Google Scholar] [CrossRef]
- Wu, G.; Wang, F.; Li, K.; Li, S.; Zhao, C.; Fan, C.; Wang, J. Significance of TP53 Mutation in Bladder Cancer Disease Progression and Drug Selection. PeerJ 2019, 7, e8261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claudio, P.P.; Cui, J.; Ghafouri, M.; Mariano, C.; White, M.K.; Safak, M.; Sheffield, J.B.; Giordano, A.; Khalili, K.; Amini, S.; et al. Cdk9 Phosphorylates p53 on Serine 392 Independently of CKII. J. Cell. Physiol. 2006, 208, 602–612. [Google Scholar] [CrossRef]
- Baek, K.; Brown, R.S.; Birrane, G.; Ladias, J.A.A. Crystal Structure of Human Cyclin K, a Positive Regulator of Cyclin-Dependent Kinase 9. J. Mol. Biol. 2007, 366, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Yeo, C.Q.X.; Alexander, I.; Lin, Z.; Lim, S.; Aning, O.A.; Kumar, R.; Sangthongpitag, K.; Pendharkar, V.; Ho, V.H.B.; Cheok, C.F. p53 Maintains Genomic Stability by Preventing Interference between Transcription and Replication. Cell Rep. 2016, 15, 132–146. [Google Scholar] [CrossRef] [Green Version]
- Hurst, C.D.; Knowles, M.A. Mutational Landscape of Non-Muscle-Invasive Bladder Cancer. Urol. Oncol. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simoneau, M.; Aboulkassim, T.O.; LaRue, H.; Rousseau, F.; Fradet, Y. Four Tumor Suppressor Loci on Chromosome 9q in Bladder Cancer: Evidence for Two Novel Candidate Regions at 9q22.3 and 9q31. Oncogene 1999, 18, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simoneau, M.; LaRue, H.; Aboulkassim, T.O.; Meyer, F.; Moore, L.; Fradet, Y. Chromosome 9 Deletions and Recurrence of Superficial Bladder Cancer: Identification of Four Regions of Prognostic Interest. Oncogene 2000, 19, 6317–6323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falco, G.D.; Giordano, A. CDK9: From Basal Transcription to Cancer and AIDS. Cancer Biol. Ther. 2002, 1, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Kimura, F.; Florl, A.R.; Seifert, H.H.; Louhelainen, J.; Maas, S.; Knowles, M.A.; Schulz, W.A. Destabilization of Chromosome 9 in Transitional Cell Carcinoma of the Urinary Bladder. Br. J. Cancer 2001, 85, 1887–1893. [Google Scholar] [CrossRef] [PubMed]
- Expression of CDK9 in Lung Cancer—The Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000136807-CDK9/pathology/lung+cancer (accessed on 3 March 2022).
- Wheeler, D.A.; Wang, L. From Human Genome to Cancer Genome: The First Decade. Genome Res. 2013, 23, 1054–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhi, X.; Chen, S.; Shen, X.; Chen, C.; Yuan, L.; Guo, J.; Meng, D.; Chen, M.; Yao, L. CDK9 Inhibitor CDKI-73 Is Synergetic Lethal with PARP Inhibitor Olaparib in BRCA1 Wide-Type Ovarian Cancer. Am. J. Cancer Res. 2020, 10, 1140–1155. [Google Scholar] [PubMed]
- Storch, K.; Cordes, N. The Impact of CDK9 on Radiosensitivity, DNA Damage Repair and Cell Cycling of HNSCC Cancer Cells. Int. J. Oncol. 2016, 48, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.-Y.; Xu, S.; Sun, Y.-N.; Xu, Y.; Guo, Q.-L.; Wei, L.-B. Novel CDK9 Inhibitor Oroxylin A Promotes Wild-Type P53 Stability and Prevents Hepatocellular Carcinoma Progression by Disrupting Both MDM2 and SIRT1 Signaling. Acta Pharmacol. Sin. 2021. [Google Scholar] [CrossRef] [PubMed]
Variables | n (%) | |
---|---|---|
Age | Mean | 71.5 years (range 45–88 years) |
Sex | Female | 11 (15.28%) |
Male | 61 (84.72%) | |
Grade | low | 34/72 (47.22%) |
high | 38/72 (52.78%) | |
Stage | T1 | 39/72 (54.17%) |
T2 | 20/72 (27.78%) | |
T3 | 9/72 (12.5%) | |
T4 | 4/72 (5.56%) | |
Tumor size | ≥3 cm | 39/72 (54.17%) |
<3 cm | 33/72 (45.83%) | |
Lymph node metastases | N0 | 61/72 (84.72%) |
N1–3 | 9/72 (12.5%) | |
Unknown | 2/72 (2.78%) | |
Distant metastasis | No | 62/72 (86.11%) |
Yes | 7/72 (9.72%) | |
Unknown | 3/72 (4.17%) | |
Invasiveness | NMIBC | 36/72 (50%) |
MIBC | 35/72 (48.61%) | |
Unknown | 1/72 (1.39%) | |
Progression | Yes | 17 (23.61%) |
No | 34 (47.22%) | |
Unknown | 21 (29.17%) | |
Recurrence | Yes | 26 (36.11%) |
No | 8 (11.11%) | |
Unknown | 38 (52.78%) | |
Mean recurrence time | 21.07 months | |
Type of procedure | TURBT | 35 (48.61%) |
PC | 31 (43.06%) | |
Unknown | 6 (8.33% | |
Disease course | Alive | 29/72 (40.28%) |
Dead | 43/72 (59.72%) | |
Median follow-up time | 60 months (range 5–60 months) |
Clinical Data | Total N | Median CDK9 Expression (Min–Max) | Q1 | Q3 | Statistical Differences between Groups (p < 0.05) | CDK 9 Expression Correlation (Spearman’s Correlation Coefficient) |
---|---|---|---|---|---|---|
Cancer group | 72 | 204 (57–258) | 184 | 222 | - | |
Low grade | 34 | 208 (122–258) | 197 | 229 | p = 0.04 | −0.283 (p < 0.05) |
High grade | 38 | 198.5 (57–244) | 180 | 216 | ||
T1 | 39 | 210 (122–258) | 199 | 230 | p = 0.0001 | −0.35 (p < 0.05) |
T2–T4 | 33 | 194 (57–241) | 168 | 213 | ||
NMIBC | 36 | 206 (122–258) | 198 | 229 | p = 0.0075 | −0.34 (p < 0.05) |
MIBC | 35 | 195 (57–241) | 176 | 214 | ||
N0 | 61 | 206 (57–258) | 190 | 225 | p = 0.31 | 0.05 (p > 0.05) |
N1-3 | 9 | 184 (69–246) | 167 | 218 | ||
M0 | 62 | 204.5 (57–258) | 181 | 224 | p = 0.91 | 0.026 (p > 0.05) |
M1 | 7 | 205 (69–244) | 184 | 225 | ||
Progression | 17 | 195 (69–244) | 197 | 226 | p = 0.19 | 0.16 (p > 0.05) |
Lack of progression | 35 | 210 (115–258) | 184 | 212 |
Viable | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
RR | 95% CI | p-Value | RR | 95% CI | p-Value | |
Age (<70 vs. >70) | 0.45 | 0.17–1.2 | 0.112 | - | - | - |
Sex (M vs. F) | 0.64 | 0.19–2.13 | 0.47 | - | - | - |
Stage (T1 vs. T2–T4) | 0.16 | 0.06–0.4 | 0.0001 | 0.36 | 0.02–8.55 | 0.53 |
Grade (low vs. high) | 0.17 | 0.06–0.45 | 0.0003 | 0.85 | 0.14–5.26 | 0.86 |
Invasiveness (NMIBC vs. MIBC) | 0.13 | 0.05–0.34 | 0.00004 | 0.65 | 0.06–6.81 | 0.72 |
Lymph node metastasis (N0 vs. N1–3) | 0.26 | 0.11–0.63 | 0.003 | 1.1 | 0.21–5.74 | 0.91 |
Distant metastasis (M0 vs. M1) | 0.17 | 0.07–0.42 | 0.0001 | 0.35 | 0.08–1.56 | 0.17 |
Tumor size (<3 cm vs. >3 cm) | 0.30 | 0.13–0.72 | 0.007 | 0.43 | 0.12–1.57 | 0.2 |
Recurrence (Y/N) | 0.35 | 0.05–2.5 | 0.295 | - | - | - |
Progression (Y/N) | 22 | 6.08–79.48 | 0.000002 | 7.96 | 1.48–42.5 | 0.015 |
CDK9 (low vs. high) | 2.7 | 0.93–7.82 | 0.06 | - | - | - |
Clinical Data | n (%) | |
---|---|---|
Age (years) | 68.1 (range 34–90) | |
Median follow-up time | 1.44 years | |
Sex | male | 299/406 (73.65%) |
female | 107/406 (26.35%) | |
Stage | I | 2/406 (0.49%) |
II | 129/406 (31.77%) | |
III | 140/406 (34.48%) | |
IV | 133/406 (32.76%) | |
Disease course | Alive | 227/406 (55.91%) |
Dead | 179/406 (44.09%) |
Variable | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
RR | 95% CI | p-Value | RR | 95% CI | p-Value | |
Age (<70 vs. >70) | 0.63 | 0.47–0.85 | 0.002 | 0.64 | 0.48–0.86 | 0.003 |
Sex (M vs. F) | 1.16 | 0.83–1.6 | 0.38 | - | - | - |
Stage (T1 vs. T2–T4) | 0.46 | 0.32–0.67 | 0.00004 | 0.48 | 0.33–0.69 | 0.00008 |
CDK9 (low vs. high) | 1.61 | 1.11–2.33 | 0.01 | 1.60 | 1.1–2.33 | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowczak, J.; Szczerbowski, K.; Maniewski, M.; Zdrenka, M.; Słupski, P.; Antosik, P.; Kołodziejska, S.; Sekielska-Domanowska, M.; Dubiel, M.; Bodnar, M.; et al. The Prognostic Role of CDK9 in Bladder Cancer. Cancers 2022, 14, 1492. https://doi.org/10.3390/cancers14061492
Borowczak J, Szczerbowski K, Maniewski M, Zdrenka M, Słupski P, Antosik P, Kołodziejska S, Sekielska-Domanowska M, Dubiel M, Bodnar M, et al. The Prognostic Role of CDK9 in Bladder Cancer. Cancers. 2022; 14(6):1492. https://doi.org/10.3390/cancers14061492
Chicago/Turabian StyleBorowczak, Jędrzej, Krzysztof Szczerbowski, Mateusz Maniewski, Marek Zdrenka, Piotr Słupski, Paulina Antosik, Sylwia Kołodziejska, Marta Sekielska-Domanowska, Mariusz Dubiel, Magdalena Bodnar, and et al. 2022. "The Prognostic Role of CDK9 in Bladder Cancer" Cancers 14, no. 6: 1492. https://doi.org/10.3390/cancers14061492
APA StyleBorowczak, J., Szczerbowski, K., Maniewski, M., Zdrenka, M., Słupski, P., Antosik, P., Kołodziejska, S., Sekielska-Domanowska, M., Dubiel, M., Bodnar, M., & Szylberg, Ł. (2022). The Prognostic Role of CDK9 in Bladder Cancer. Cancers, 14(6), 1492. https://doi.org/10.3390/cancers14061492