Molecular Correlates of Venous Thromboembolism (VTE) in Ovarian Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. RNA Sequencing
2.2. Whole Exome Sequencing
2.3. Multiplexed, Quantitative Proteomic Data Analysis Using Tandem Mass Tags (TMT) and Data Processing Pipeline for Global Proteome Analyses
2.4. Immune Profiling Analysis
3. Results
3.1. Patient Data
3.2. Whole Exome Sequencing (WES)
3.3. RNA-Seq Identification of Differentially Expressed Genes
3.4. Differential and Integrated Analysis of Proteomic Data
3.5. Deconvolution Analysis of Immune Cell Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, A.Y.Y.; Levine, M.N.; Butler, G.; Webb, C.; Costantini, L.; Chushu, G.U.; Julian, J.A. Incidence, Risk Factors, and Outcomes of Catheter-Related Thrombosis in Adult Patients with Cancer. J. Clin. Oncol. 2006, 24, 1404–1408. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, R.L.; Fry, D.J.; Swindell, R.; McGurk, A.; Clamp, A.R.; Jayson, G.C.; Hasan, J. Thrombosis in ovarian cancer: A case control study. Br. J. Cancer. 2014, 110, 1118–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horsted, F.; West, J.; Grainge, M.J. Risk of venous thromboembolism in patients with cancer: A systematic review and meta-analysis. PLoS Med. 2012, 9, e1001275. [Google Scholar] [CrossRef] [PubMed]
- Trousseau, A. Phlegmasia alba dolens. In Clinique Medicale de l’Hotel-Dieu de Paris; Baillière: London, UK, 1865; pp. 654–712. [Google Scholar]
- Rumbaut, R.E.; Thiagarajan, P. Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis; Morgan & Claypool: San Rafael, CA, USA, 2010. [Google Scholar]
- Sørensen, H.T.; Mellemkjær, L.; Olsen, J.H.; Baron, J.A. Prognosis of Cancers Associated with Venous Thromboembolism. N. Engl. J. Med. 2000, 343, 1846–1850. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer 2007, 110, 2339–2346. [Google Scholar] [CrossRef]
- Greco, P.S.; Bazzi, A.A.; McLean, K.; Reynolds, R.K.; Spencer, R.J.; Johnston, C.M.; Liu, J.R.; Uppal, S. Incidence and Timing of Thromboembolic Events in Patients with Ovarian Cancer Undergoing Neoadjuvant Chemotherapy. Obstet. Gynecol. 2017, 129, 979–985. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, C.; Shen, Z.; Zhang, T.; Li, M.; Zhu, J.; Qin, J.; Xie, Y.; Zhang, W.; Chen, R.; et al. Incidence and potential predictors of thromboembolic events in epithelial ovarian carcinoma patients during perioperative period. Eur. J. Surg. Oncol. 2020, 46, 855–861. [Google Scholar] [CrossRef]
- Abu Saadeh, F.; Norris, L.; O’Toole, S.; Gleeson, N. Venous thromboembolism in ovarian cancer: Incidence, risk factors and impact on survival. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 214–218. [Google Scholar] [CrossRef]
- Oxley, S.G.; Achampong, Y.A.; Sambandan, N.; Hughes, D.J.; Thomas, M.; Lockley, M.; Olaitan, A. Venous thromboembolism in women with ovarian cancer undergoing neoadjuvant chemotherapy prior to cytoreductive surgery: A retrospective study. Acta Obstet. Gynecol. Scand. 2021, 100, 2091–2096. [Google Scholar] [CrossRef]
- Uno, K.; Homma, S.; Yoshikawa, H.; Aonuma, K.; Satoh, T.; Nakanishi, K.; Abe, D.; Matsumoto, K.; Oki, A.; Tsunoda, H.; et al. Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer. Br. J. Cancer 2007, 96, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Swier, N.; Versteeg, H.H. Reciprocal links between venous thromboembolism, coagulation factors and ovarian cancer progression. Thromb. Res. 2016, 150, 8–18. [Google Scholar] [CrossRef]
- Karnezis, A.N.; Cho, K.R.; Gilks, C.B.; Pearce, C.L.; Huntsman, D.G. The disparate origins of ovarian cancers: Pathogenesis and prevention strategies. Nat. Rev. Cancer 2017, 17, 65–74. [Google Scholar] [CrossRef]
- Dunbar, A.; Bolton, K.L.; Devlin, S.M.; Sanchez-Vega, F.; Gao, J.; Mones, J.V.; Wills, J.; Kelly, D.; Farina, M.; Cordner, K.B.; et al. Genomic profiling identifies somatic mutations predicting thromboembolic risk in patients with solid tumors. Blood 2021, 137, 2103–2113. [Google Scholar] [CrossRef] [PubMed]
- Weeks, K.S.; Herbach, E.; McDonald, M.; Charlton, M.; Schweizer, M.L. Meta-Analysis of VTE Risk: Ovarian Cancer Patients by Stage, Histology, Cytoreduction, and Ascites at Diagnosis. Obstet. Gynecol. Int. 2020, 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- De Cicco, M. The prothrombotic state in cancer: Pathogenic mechanisms. Crit. Rev. Oncol. Hematol. 2004, 50, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Oki, A.; Homma, S.; Yoshikawa, H.; Uno, K.; Sakurai, M.; Ochi, H.; Okada, S.; Minami, R.; Matsumoto, K.; et al. High incidence of silent venous thromboembolism before treatment in ovarian cancer. Br. J. Cancer 2007, 97, 1053–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poitevin, S.; Garnotel, R.; Antonicelli, F.; Gillery, P.; Nguyen, P. Type 1 collagen induces tissue factor expression and MMP-9 production in human primary monocytes through a redox-sensitive pathway. J. Thromb. Haemost. 2008, 6, 1586–1594. [Google Scholar] [CrossRef]
- Salinaro, J.; Zhang, Y.; Buckingham, L.; Clark, L.; Havrilesky, L.; Davidson, B. Khorana score stratification and incidence of venous thromboembolism among women with ovarian cancer receiving neoadjuvant chemotherapy. Gynecol. Oncol. 2021, 162, S194. [Google Scholar] [CrossRef]
- Fleming, N.D.; Molin, G.Z.D.; Fellman, B.; Cain, K.E.; Taylor, J.S.; Schmeler, K.; Coleman, R.L.; Afshar-Kharghan, V.; Westin, S.N.; Sood, A.K. Lack of utility of the Khorana score for predicting VTE in advanced ovarian cancer. Gynecol. Oncol. 2020, 159, 111. [Google Scholar] [CrossRef]
- Marcus, E.; Kuo, D.Y.S.; Nevadunsky, N.S.; Gressel, G.M. Association of the Khorana Score with development of venous thromboembolism in ovarian cancer. J. Clin. Oncol. 2021, 39, 5555. [Google Scholar] [CrossRef]
- Alsulaim, A.Y.; Azam, F.; Sebastian, T.; Mahdi Hassan, F.; Abdul Azeez, S.; Borgio, J.F.; Alzahrani, F.M. The association between two genetic polymorphisms in ITGB3 and increase risk of venous thromboembolism in cancer patients in Eastern Province of Saudi Arabia. Saudi J. Biol. Sci. 2022, 29, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, S.; Kim, T.B.; Lin, Y.Y.; Iqbal, R.; Wang, Z.; Mohanty, V.; Sircar, K.; Karam, J.A.; Wendl, M.C.; et al. Integrated transcriptomic-genomic tool Texomer profiles cancer tissues. Nat. Methods 2019, 16, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Zhao, L.; Rojas, C.; Bateman, N.W.; Yao, H.; Lara, O.D.; Celestino, J.; Morgan, M.B.; Nguyen, T.V.; Conrads, K.A.; et al. Molecular Analysis of Clinically Defined Subsets of High-Grade Serous Ovarian Cancer. Cell Rep. 2020, 31, 107502. [Google Scholar] [CrossRef] [PubMed]
- Von Brühl, M.-L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef] [PubMed]
- Wypasek, E.; Padjas, A.; Szymańska, M.; Plens, K.; Siedlar, M.; Undas, A. Non-classical and intermediate monocytes in patients following venous thromboembolism: Links with inflammation. Adv. Clin. Exp. Med. 2018, 28, 51–58. [Google Scholar] [CrossRef]
- Shahneh, F.; Grill, A.; Klein, M.; Frauhammer, F.; Bopp, T.; Schäfer, K.; Raker, V.K.; Becker, C. Specialized regulatory T cells control venous blood clot resolution through SPARC. Blood 2021, 137, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Kasthuri, R.S.; Taubman, M.B.; Mackman, N. Role of Tissue Factor in Cancer. J. Clin. Oncol. 2009, 27, 4834–4838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farndale, R.W.; Sixma, J.J.; Barnes, M.J.; De Groot, P.G. The role of collagen in thrombosis and hemostasis. J. Thromb. Haemost. 2004, 2, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Bager, C.; Willumsen, N.; Leeming, D.; Smith, V.; Karsdal, M.; Dornan, D.; Bay-Jensen, A. Collagen degradation products measured in serum can separate ovarian and breast cancer patients from healthy controls: A preliminary study. Cancer Biomark. 2015, 15, 783–788. [Google Scholar] [CrossRef] [Green Version]
- Willumsen, N.; Bager, C.L.; Kehlet, S.N.; Dragsbaek, K.; Neergaard, J.S.; Hansen, H.B.; Bay-Jensen, A.-C.; Leeming, D.J.; Lipton, A.; Christiansen, C.; et al. Excessive matrix metalloprotease-mediated degradation of interstitial tissue (type I collagen) independently predicts short-term survival in an observational study of postmenopausal women diagnosed with cancer. Oncotarget 2017, 8, 52501–52510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Wang, J.; Wang, C.; Xia, L.; Xu, J.; Xie, X.; Lu, W. Microenvironment remodeled by tumor and stromal cells elevates fibroblast-derived COL1A1 and facilitates ovarian cancer metastasis. Exp. Cell Res. 2020, 394, 112153. [Google Scholar] [CrossRef] [PubMed]
- Willumsen, N.; Ali, S.M.; Leitzel, K.; Drabick, J.J.; Yee, N.; Polimera, H.V.; Nagabhairu, V.; Krecko, L.; Ali, A.; Maddukuri, A.; et al. Collagen fragments quantified in serum as measures of desmoplasia associate with survival outcome in patients with advanced pancreatic cancer. Sci. Rep. 2019, 9, 19761. [Google Scholar] [CrossRef] [PubMed]
Variable | Control (Non-VTE) | VTE | p-Value |
---|---|---|---|
Age, mean (SD), years | 59 (10.4) | 66 (10.1) | 0.09 |
BMI, mean (SD) | 25.7 (6.6) | 25.9 (6.3) | 0.92 |
Baseline platelet count, mean (SD) | 301 (101) | 343 (151) | 0.39 |
VTE timing, n (%) | N/A | 16 (100) | - |
At time of ovarian cancer diagnosis | 9 (56) | - | |
During neoadjuvant chemotherapy | 2 (13) | - | |
VTE within 28 days of surgery or during adjuvant therapy | 5 (31) | - | |
Tissue source, n (%) | - | ||
Primary tumor | 7 (44) | 7 (44) | 1.0 |
Metastases | 9 (56) | 9 (56) | - |
Overall survival | 2.17 | NYR * | - |
Hazard ratio VTE vs. control | 4.37 | 0.01 |
Symbol | VTE vs. Control (Protein, log1.5FC) | Protein Name | Location | Drug(s) |
---|---|---|---|---|
PDGFB | 3.089 | platelet derived growth factor subunit B | Extracellular Space | sunitinib |
COL3A1 | 2.428 | collagen type III alpha 1 chain | Extracellular Space | collagenase clostridium histolyticum |
COL1A1 | 2.236 | collagen type I alpha 1 chain | Extracellular Space | collagenase clostridium histolyticum |
COL1A2 | 2.007 | collagen type I alpha 2 chain | Extracellular Space | collagenase clostridium histolyticum |
CXCL12 | 1.805 | C-X-C motif chemokine ligand 12 | Extracellular Space | NOX-A12 |
APCS | 1.772 | amyloid P component, serum | Extracellular Space | dezamizumab |
COL16A1 | 1.719 | collagen type XVI alpha 1 chain | Extracellular Space | collagenase clostridium histolyticum |
TNFSF13 | 1.703 | TNF superfamily member 13 | Extracellular Space | BION-1301 |
COL8A1 | 1.658 | collagen type VIII alpha 1 chain | Extracellular Space | collagenase clostridium histolyticum |
COL5A2 | 1.522 | collagen type V alpha 2 chain | Extracellular Space | collagenase clostridium histolyticum |
COL14A1 | 1.521 | collagen type XIV alpha 1 chain | Extracellular Space | collagenase clostridium histolyticum |
MMP28 | 1.481 | matrix metallopeptidase 28 | Extracellular Space | marimastat |
TTR | 1.233 | transthyretin | Extracellular Space | tafamidis |
APOC3 | 1.166 | apolipoprotein C3 | Extracellular Space | volanesorsen |
COL6A1 | 1.154 | collagen type VI alpha 1 chain | Extracellular Space | collagenase clostridium histolyticum |
AOC3 | 1.152 | amine oxidase copper containing 3 | Plasma Membrane | ASP8232 |
DPP4 | 0.919 | dipeptidyl peptidase 4 | Plasma Membrane | saxagliptin |
APOA1 | 0.903 | apolipoprotein A1 | Extracellular Space | ISIS 681257 |
PDGFRB | 0.875 | platelet derived growth factor receptor beta | Plasma Membrane | midostaurin |
COL6A3 | 0.803 | collagen type VI alpha 3 chain | Extracellular Space | collagenase clostridium histolyticum |
BST1 | 0.803 | bone marrow stromal cell antigen 1 | Plasma Membrane | MEN1112 |
COL6A2 | 0.791 | collagen type VI alpha 2 chain | Extracellular Space | collagenase clostridium histolyticum |
ABCB1 | 0.609 | ATP binding cassette subfamily B member 1 | Plasma Membrane | dofequidar |
PTGS1 | −0.876 | prostaglandin-endoperoxide synthase 1 | Cytoplasm | sulindac/tamoxifen |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glassman, D.; Bateman, N.W.; Lee, S.; Zhao, L.; Yao, J.; Tan, Y.; Ivan, C.; Rangel, K.M.; Zhang, J.; Conrads, K.A.; et al. Molecular Correlates of Venous Thromboembolism (VTE) in Ovarian Cancer. Cancers 2022, 14, 1496. https://doi.org/10.3390/cancers14061496
Glassman D, Bateman NW, Lee S, Zhao L, Yao J, Tan Y, Ivan C, Rangel KM, Zhang J, Conrads KA, et al. Molecular Correlates of Venous Thromboembolism (VTE) in Ovarian Cancer. Cancers. 2022; 14(6):1496. https://doi.org/10.3390/cancers14061496
Chicago/Turabian StyleGlassman, Deanna, Nicholas W. Bateman, Sanghoon Lee, Li Zhao, Jun Yao, Yukun Tan, Cristina Ivan, Kelly M. Rangel, Jianhua Zhang, Kelly A. Conrads, and et al. 2022. "Molecular Correlates of Venous Thromboembolism (VTE) in Ovarian Cancer" Cancers 14, no. 6: 1496. https://doi.org/10.3390/cancers14061496
APA StyleGlassman, D., Bateman, N. W., Lee, S., Zhao, L., Yao, J., Tan, Y., Ivan, C., Rangel, K. M., Zhang, J., Conrads, K. A., Hood, B. L., Abulez, T., Futreal, P. A., Fleming, N. D., Afshar-Kharghan, V., Maxwell, G. L., Conrads, T. P., Chen, K., & Sood, A. K. (2022). Molecular Correlates of Venous Thromboembolism (VTE) in Ovarian Cancer. Cancers, 14(6), 1496. https://doi.org/10.3390/cancers14061496