Expression of PD-1, PD-L1 and PD-L2 in Lymphomas in Patients with Pre-Existing Rheumatic Diseases—A Possible Association with High Rheumatoid Arthritis Disease Activity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of Study Subjects
2.2. Clinical Information
2.3. Lymphoma Subtyping and Analysis of Epstein–Barr Virus Status
2.4. Tissue Samples
2.5. Immunohistochemical Stainings
2.6. Evaluation of Immunohistochemical Stainings
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. PD-1, PD-L1, PD-L2 and Lymphoma Subtypes
3.3. Clinical and Lymphoma Characteristics in RA-DLBCL
3.4. PD-1, PD-L1, PD-L2 and Overall Survival in RA-DLBCL and DLBCL Controls
3.5. Comparison of PD-1, PD-L1 and PD-L2 in DLBCLs
4. Discussion
4.1. RA Disease Severity and PD-L1 Expression in RA-DLBCL
4.2. Expression of PD-1 and PD-L1 in Relation to Clinicopathological Parameters in RA-DLBCL
4.3. PD-1, PD-L1 and Overall Survival in RA-DLBCL and Comparison with Previous Studies
4.4. PD-1 and PD-L1 in RA-DLBCL, SLE-DLBCL and DLBCL Controls
4.5. Comparison of PD-1, PD-L1 and PD-L2 between Various Lymphoma Subtypes
4.6. Strengths and Weaknesses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamamoto, R.; Nishikori, M.; Kitawaki, T.; Sakai, T.; Hishizawa, M.; Tashima, M.; Kondo, T.; Ohmori, K.; Kurata, M.; Hayashi, T.; et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 2008, 111, 3220–3224. [Google Scholar] [CrossRef] [Green Version]
- Koh, Y.W.; Jeon, Y.K.; Yoon, D.H.; Suh, C.; Huh, J. Programmed death 1 expression in the peritumoral microenvironment is associated with a poorer prognosis in classical Hodgkin lymphoma. Tumour. Biol. 2016, 37, 7507–7514. [Google Scholar] [CrossRef] [PubMed]
- Hollander, P.; Kamper, P.; Smedby, K.E.; Enblad, G.; Ludvigsen, M.; Mortensen, J.; Amini, R.-M.; Hamilton-Dutoit, S.; D’Amore, F.; Molin, D.; et al. High proportions of PD-1+ and PD-L1+ leukocytes in classical Hodgkin lymphoma microenvironment are associated with inferior outcome. Blood Adv. 2017, 1, 1427–1439. [Google Scholar] [CrossRef]
- Muenst, S.; Hoeller, S.; Dirnhofer, S.; Tzankov, A. Increased programmed death-1+ tumor-infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum. Pathol. 2009, 40, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Roemer, M.G.; Advani, R.H.; Ligon, A.H.; Natkunam, Y.; Redd, R.A.; Homer, H.; Connelly, C.F.; Sun, H.H.; Daadi, S.E.; Freeman, G.J.; et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J. Clin. Oncol. 2016, 34, 2690–2697. [Google Scholar] [CrossRef] [Green Version]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armand, P.; Shipp, M.A.; Ribrag, V.; Michot, J.M.; Zinzani, P.L.; Kuruvilla, J.; Snyder, E.S.; Ricart, A.D.; Balakumaran, A.; Rose, S.; et al. Programmed Death-1 Blockade With Pembrolizumab in Patients With Classical Hodgkin Lymphoma After Brentuximab Vedotin Failure. J. Clin. Oncol. 2016, 34, 3733–3739. [Google Scholar] [CrossRef] [PubMed]
- Armand, P.; Rodig, S.; Melnichenko, V.; Thieblemont, C.; Bouabdallah, K.; Tumyan, G.; Ozcan, M.; Portino, S.; Fogliatto, L.; Caballero, M.D.; et al. Pembrolizumab in Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma. J. Clin. Oncol. 2019, 37, 3291–3299. [Google Scholar] [CrossRef] [PubMed]
- Lesokhin, A.M.; Ansell, S.M.; Armand, P.; Scott, E.C.; Halwani, A.; Gutierrez, M.; Millenson, M.M.; Cohen, A.D.; Schuster, S.J.; Lebovic, D.; et al. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J. Clin. Oncol. 2016, 34, 2698–2704. [Google Scholar] [CrossRef] [Green Version]
- Ansell, S.M.; Minnema, M.C.; Johnson, P.; Timmerman, J.M.; Armand, P.; Shipp, M.A.; Rodig, S.J.; Ligon, A.H.; Roemer, M.G.M.; Reddy, N.; et al. Nivolumab for Relapsed/Refractory Diffuse Large B-Cell Lymphoma in Patients Ineligible for or Having Failed Autologous Transplantation: A Single-Arm, Phase II Study. J. Clin. Oncol. 2019, 37, 481–489. [Google Scholar] [CrossRef]
- Smedby, K.E.; Baecklund, E.; Askling, J. Malignant lymphomas in autoimmunity and inflammation: A review of risks, risk factors, and lymphoma characteristics. Cancer Epidemiol. Biomark. Prev. 2006, 15, 2069–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theander, E.; Henriksson, G.; Ljungberg, O.; Mandl, T.; Manthorpe, R.; Jacobsson, L.T. Lymphoma and other malignancies in primary Sjogren’s syndrome: A cohort study on cancer incidence and lymphoma predictors. Ann. Rheum. Dis. 2006, 65, 796–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theander, E.; Vasaitis, L.; Baecklund, E.; Nordmark, G.; Warfvinge, G.; Liedholm, R.; Brokstad, K.; Jonsson, R.; Jonsson, M.V. Lymphoid organisation in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjogren’s syndrome. Ann. Rheum. Dis. 2011, 70, 1363–1368. [Google Scholar] [CrossRef] [PubMed]
- Zintzaras, E.; Voulgarelis, M.; Moutsopoulos, H.M. The risk of lymphoma development in autoimmune diseases: A meta-analysis. Arch. Intern. Med. 2005, 165, 2337–2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Schans, S.A.; van Spronsen, D.J.; Hooijkaas, H.; Janssen-Heijnen, M.L.; Coebergh, J.W. Excess of autoimmune and chronic inflammatory disorders in patients with lymphoma compared with all cancer patients: A cancer registry-based analysis in the south of the Netherlands. Autoimmun. Rev. 2011, 10, 228–234. [Google Scholar] [CrossRef]
- Dias, C.; Isenberg, D.A. Susceptibility of patients with rheumatic diseases to B-cell non-Hodgkin lymphoma. Nat. Rev. Rheumatol. 2011, 7, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Ferreiros-Vidal, I.; Gomez-Reino, J.J.; Barros, F.; Carracedo, A.; Carreira, P.; Gonzalez-Escribano, F.; Liz, M.; Martin, J.; Ordi, J.; Vicario, J.L.; et al. Association of PDCD1 with susceptibility to systemic lupus erythematosus: Evidence of population-specific effects. Arthritis Rheum. 2004, 50, 2590–2597. [Google Scholar] [CrossRef]
- Prokunina, L.; Castillejo-López, C.; Oberg, F.; Gunnarsson, I.; Berg, L.; Magnusson, V.; Brookes, A.J.; Tentler, D.; Kristjansdóttir, H.; Gröndal, G.; et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat. Genet. 2002, 32, 666–669. [Google Scholar] [CrossRef]
- Lin, S.C.; Yen, J.H.; Tsai, J.J.; Tsai, W.C.; Ou, T.T.; Liu, H.W.; Chen, C.J. Association of a programmed death 1 gene polymorphism with the development of rheumatoid arthritis, but not systemic lupus erythematosus. Arthritis Rheum. 2004, 50, 770–775. [Google Scholar] [CrossRef]
- Kong, E.K.; Prokunina-Olsson, L.; Wong, W.H.; Lau, C.S.; Chan, T.M.; Alarcón-Riquelme, M.; Lau, Y.L. A new haplotype of PDCD1 is associated with rheumatoid arthritis in Hong Kong Chinese. Arthritis Rheum. 2005, 52, 1058–1062. [Google Scholar] [CrossRef]
- Bradley, J.R. TNF-mediated inflammatory disease. J. Pathol. 2008, 214, 149–160. [Google Scholar] [CrossRef]
- Choy, E.H.; De Benedetti, F.; Takeuchi, T.; Hashizume, M.; John, M.R.; Kishimoto, T. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 2020, 16, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Ronnblom, L.; Eloranta, M.L. The interferon signature in autoimmune diseases. Curr. Opin. Rheumatol. 2013, 25, 248–253. [Google Scholar] [CrossRef]
- Ju, X.; Zhang, H.; Zhou, Z.; Chen, M.; Wang, Q. Tumor-associated macrophages induce PD-L1 expression in gastric cancer cells through IL-6 and TNF-ɑ signaling. Exp. Cell Res. 2020, 396, 112315. [Google Scholar] [CrossRef]
- Sebastiani, G.D.; Scirocco, C.; Galeazzi, M. Rheumatic immune related adverse events in patients treated with checkpoint inhibitors for immunotherapy of cancer. Autoimmun Rev. 2019, 18, 805–813. [Google Scholar] [CrossRef]
- Baecklund, E.; Iliadou, A.; Askling, J.; Ekbom, A.; Backlin, C.; Granath, F.; Catrina, A.I.; Rosenquist, R.; Feltelius, N.; Sundström, C.; et al. Association of chronic inflammation, not its treatment, with increased lymphoma risk in rheumatoid arthritis. Arthritis Rheum. 2006, 54, 692–701. [Google Scholar] [CrossRef]
- Lofstrom, B.; Backlin, C.; Sundstrom, C.; Ekbom, A.; Lundberg, I.E. A closer look at non-Hodgkin’s lymphoma cases in a national Swedish systemic lupus erythematosus cohort: A nested case-control study. Ann. Rheum. Dis. 2007, 66, 1627–1632. [Google Scholar] [CrossRef] [Green Version]
- Löfström, B.; Backlin, C.; Pettersson, T.; Lundberg, I.E.; Baecklund, E. Expression of APRIL in Diffuse Large B Cell Lymphomas from Patients with Systemic Lupus Erythematosus and Rheumatoid Arthritis. J. Rheumatol. 2011, 38, 1891–1897. [Google Scholar] [CrossRef]
- Mattsson, B.; Wallgren, A. Completeness of the Swedish Cancer Register. Non-notified cancer cases recorded on death certificates in 1978. Acta Radiol. Oncol. 1984, 23, 305–313. [Google Scholar] [CrossRef]
- Swerdlow, S.H. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2016. [Google Scholar]
- Berglund, M.; Thunberg, U.; Amini, R.M.; Book, M.; Roos, G.; Erlanson, M.; Linderoth, J.; Dictor, M.; Jerkeman, M.; Cavallin-Ståhl, E.; et al. Evaluation of immunophenotype in diffuse large B-cell lymphoma and its impact on prognosis. Mod. Pathol. 2005, 18, 1113–1120. [Google Scholar] [CrossRef]
- Hans, C.P.; Weisenburger, D.D.; Greiner, T.C.; Gascoyne, R.D.; Delabie, J.; Ott, G.; Muller-Hermelink, H.K.; Campo, E.; Braziel, R.M.; Jaffe, E.S.; et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004, 103, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.L.; Chen, Y.Y.; Shibata, D.; Weiss, L.M. Description of an in situ hybridization methodology for detection of Epstein-Barr virus RNA in paraffin-embedded tissues, with a survey of normal and neoplastic tissues. Diagn. Mol. Pathol. 1992, 1, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, K.M.; Sun, H.; Liao, X.; Hua, P.; Callea, M.; Greenfield, E.A.; Hodi, F.S.; Sharpe, A.H.; Signoretti, S.; Rodig, S.J.; et al. PD-L1 Antibodies to Its Cytoplasmic Domain Most Clearly Delineate Cell Membranes in Immunohistochemical Staining of Tumor Cells. Cancer Immunol. Res. 2015, 3, 1308–1315. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.; Li, J.; Chen, Z.; Zhang, J.; Shen, H.; Miao, X.; Zhou, Y.; Xu, X.; He, S. Expression and Prognostic Significance of PD-L2 in Diffuse Large B-Cell Lymphoma. Front. Oncol. 2021, 11, 664032. [Google Scholar] [CrossRef]
- Matsuda, K.; Miyoshi, H.; Hiraoka, K.; Hamada, T.; Yoshida, S.; Ishibashi, Y.; Haraguchi, T.; Shiba, N.; Ohshima, K. Clinicopathological value of programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression in synovium of patients with rheumatoid arthritis. Clin. Exp. Med. 2018, 18, 487–494. [Google Scholar] [CrossRef]
- Kiyasu, J.; Miyoshi, H.; Hirata, A.; Arakawa, F.; Ichikawa, A.; Niino, D.; Sugita, Y.; Yufu, Y.; Choi, I.; Abe, Y.; et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood J. Am. Soc. Hematol. 2015, 126, 2193–2201. [Google Scholar] [CrossRef]
- Jiang, X.N.; Yu, B.H.; Yan, W.H.; Lee, J.; Zhou, X.Y.; Li, X.Q. Epstein-Barr virus-positive diffuse large B-cell lymphoma features disrupted antigen capture/presentation and hijacked T-cell suppression. Oncoimmunology 2020, 9, 1683346. [Google Scholar] [CrossRef] [Green Version]
- Green, M.R.; Rodig, S.; Juszczynski, P.; Ouyang, J.; Sinha, P.; O’Donnell, E.; Neuberg, D.; Shipp, M.A. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: Implications for targeted therapy. Clin. Cancer Res. 2012, 18, 1611–1618. [Google Scholar] [CrossRef] [Green Version]
- Hatachi, S.; Iwai, Y.; Kawano, S.; Morinobu, S.; Kobayashi, M.; Koshiba, M.; Saura, R.; Kurosaka, M.; Honjo, T.; Kumagai, S. CD4+ PD-1+ T cells accumulate as unique anergic cells in rheumatoid arthritis synovial fluid. J. Rheumatol. 2003, 30, 1410–1419. [Google Scholar]
- Grillo, F.; Bruzzone, M.; Pigozzi, S.; Prosapio, S.; Migliora, P.; Fiocca, R.; Mastracci, L. Immunohistochemistry on old archival paraffin blocks: Is there an expiry date? J. Clin. Pathol. 2017, 70, 988–993. [Google Scholar] [CrossRef]
- Green, M.R.; Monti, S.; Rodig, S.J.; Juszczynski, P.; Currie, T.; O’Donnell, E.; Chapuy, B.; Takeyama, K.; Neuberg, D.; Golub, T.R.; et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 2010, 116, 3268–3277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorfman, D.M.; Brown, J.A.; Shahsafaei, A.; Freeman, G.J. Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am. J. Surg. Pathol. 2006, 30, 802–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Entire Cohort | cHL | DLBCL | FL | LPL | MZBL | CLL | HGBCL | LGBCL | MCL | TCL | Burkitt Lymphoma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
All patients, n (%) | 215 (100) | 16 (100) | 116 (100) | 32 (100) | 5 (100) | 5 (100) | 13 (100) | 8 (100) | 7 (100) | 5 (100) | 5 (100) | 3 (100) |
Age at lymphoma diagnosis in years: mean (range) | 68.0 (31–88) | 63.4 (46–80) | 68.9 (31–87) | 66.8 (46–88) | 70.4 (57–82) | 49.8 (35–67) | 69.7 (43–87) | 71.4 (57–80) | 74.6 (68–80) | 70.6 (56–78) | 64.8 (48–73) | 67.0 (59–75) |
Duration of rheumatic disease until lymphoma diagnosis in years: mean (range) | 19.7 (1–59) | 12.1 (1–33) | 19.3 (2–50) | 21.3 (2–53) | 7.3 (4–10) | 14.3 (2–33) | 24.4 (4–50) | 23.5 (3–52) | 30.3 (10–59) | 21.8 (13–26) | 37.0 (37) | 22.0 (7–47) |
Missing, n (%) | 18 (8) | 2 (13) | 1 (1) | 4 (13) | 1 (20) | 2 (40) | 2 (15) | 0 (0) | 1 (14) | 1 (20) | 4 (80) | 0 (0) |
Sex, n (%) | ||||||||||||
Women | 134 (62) | 8 (50) | 74 (64) | 19 (60) | 2 (40) | 5 (100) | 9 (69) | 7 (88) | 2 (29) | 3 (60) | 4 (80) | 1 (33) |
Men | 81 (38) | 8 (50) | 42 (36) | 13 (40) | 3 (60) | 0 (0) | 4 (31) | 1 (12) | 5 (71) | 2 (40) | 1 (20) | 2 (67) |
Ann Arbor stage, n (%) | ||||||||||||
I–II | 69 (32) | 5 (31) | 37 (32) | 15 (47) | 1 (20) | 4 (80) | 1 (8) | 3 (37) | 3 (43) | 0 (0) | 0 (0) | 0 (0) |
III–IV | 123 (57) | 8 (50) | 74 (64) | 13 (41) | 2 (40) | 1 (20) | 10 (77) | 5 (63) | 3 (43) | 4 (80) | 1 (20) | 2 (67) |
Missing | 23 (11) | 3 (19) | 5 (4) | 4 (13) | 2 (40) | 0 (0) | 2 (15) | 0 (0) | 1 (14) | 1 (20) | 4 (80) | 1 (33) |
EBV status, n (%) | ||||||||||||
Positive | 22 (10) | 7 (44) | 10 (9) | 0 (0) | 2 (40) | 1 (20) | 0 (0) | 2 (25) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Negative | 182 (84) | 9 (66) | 103 (89) | 30 (94) | 2 (40) | 3 (60) | 11 (85) | 5 (63) | 7 (100) | 4 (80) | 4 (80) | 3 (100) |
Missing | 12 (6) | 0 (0) | 3 (3) | 2 (6) | 1 (20) | 1 (20) | 2 (15) | 1 (13) | 0 (0) | 1 (20) | 1 (20) | 0 (0) |
Rheumatic disease, n (%) | ||||||||||||
RA | 188 (87) | 15 (94) | 103 (89) | 30 (94) | 3 (60) | 2 (40) | 11 (85) | 7 (88) | 7 (100) | 5 (100) | 2 (40) | 3 (100) |
SLE | 18 (8) | 1 (6) | 12 (10) | 1 (3) | 1 (20) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 3 (60) | 0 (0) |
PSS | 9 (4) | 0 (0) | 1 (1) | 1 (3) | 1 (20) | 3 (60) | 2 (15) | 1 (12) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
RA-DLBCL, n = 103 | DLBCL Controls, n = 74 | p-Value ** | |
---|---|---|---|
Sex, n (%) | 0.12 | ||
Women | 61 (59) | 35 (47) | |
Men | 42 (41) | 39 (53) | |
Age at lymphoma diagnosis in years: | 0.75 *** | ||
median (range) | 71 (31–87) | 71 (32–90) | |
Age ≥ 60 years, n (%) | 0.37 | ||
Yes | 85 (83) | 57 (77) | |
No | 18 (17) | 17 (33) | |
Decade of lymphoma diagnosis, n (%) | <0.001 | ||
1990s–2000s | 34 (33) | 66 (85) | |
1960s–1980s | 69 (67) | 11 (15) | |
Survival after lymphoma diagnosis in months, all RA-DLBCL | <0.001 *** | ||
Median (range) | 6.8 (0–376) | 40 (0.5–253) | |
Missing, n (%) | 2 (2) | 0 (0) | |
DLBCL subtype, n (%) | 0.008 | ||
GCB | 30 (29) | 35 (47) | |
non-GCB | 69 (67) | 34 (46) | |
Missing | 4 (4) | 5 (7) | |
Ann Arbor stage, n (%) | 0.26 | ||
I–II | 34 (33) | 30 (41) | |
III–IV | 65 (63) | 42 (57) | |
Missing | 4 (4) | 2 (3) | |
B-symptoms, n (%) | 0.02 | ||
Yes | 21 (20) | 30 (41) | |
No | 62 (61) | 39 (54) | |
Missing | 20 (19) | 4 (5) | |
Extranodal involvement *, n (%) | 0.03 | ||
Yes | 58 (57) | 29 (39) | |
No | 43 (41) | 42 (57) | |
Missing | 2 (2) | 3 (4) | |
Bone marrow involvement, n (%) | NA | ||
Yes | 15 (15) | NA | |
No | 83 (81) | NA | |
Missing | 5 (5) | NA | |
Increased LDH, n (%) | 0.55 | ||
Yes | 20 (19) | 40 (54) | |
No | 8 (8) | 22 (30) | |
Missing | 75 (73) | 12 (16) | |
EBV status, n (%) | NA | ||
Positive | 9 (9) | NA | |
Negative | 92 (91) | NA | |
Missing | 2 (2) | NA | |
Lymphoma treatment, n (%) | <0.001 | ||
No active treatment | 25 (24) | 0 (0) | |
CT +/- radiotherapy | 55 (54) | 67 (96) | |
Radiotherapy | 12 (12) | 3 (0) | |
Surgery | 2 (2) | 1 (0) | |
Surgery + radiotherapy | 6 (6) | 0 (0) | |
Missing | 4 (4) | 3 (4) |
Entire Cohort | PD-L1 in Tumor Cells ≥ 17% | PD-L1 in Tumor Cells < 17% | p-Value * | PD-L1 in TILs ≥ 10% | PD-L1 in TILs < 10% | p-Value * | PD-1 in TILs ≥ 21/HPF | PD-1 in TILs < 21/HPF | p-Value * | |
---|---|---|---|---|---|---|---|---|---|---|
All patients, n (%) | 103 (100) | 11 (100) | 89 (100) | 51(100) | 49 (100) | 64 (100) | 35 (100) | |||
Sex, n (%) | 0.70 | 0.14 | 0.43 | |||||||
Women | 61 (59) | 6 (55) | 54 (61) | 27 (53) | 33 (67) | 40 (63) | 19 (54) | |||
Men | 42 (41) | 5 (45) | 35 (39) | 24 (47) | 16 (33) | 24 (38) | 16 (46) | |||
Age in years, n (%) | 0.68 | 0.93 | 0.28 | |||||||
≥60 | 85 (83) | 10 (91) | 72(81) | 42 (82) | 40 (82) | 50 (78) | 31 (89) | |||
<60 | 18 (19) | 1(9) | 17 (19) | 9 (18) | 9 (18) | 14 (22) | 4 (11) | |||
DLBCL subtype, n (%) | 0.35 | 0.19 | 0.27 | |||||||
GCB | 30 (29) | 2 (18) | 27 (30) | 12 (24) | 17 (35) | 21 (33) | 8 (23) | |||
Non-GCB | 69 (67) | 9 (82) | 57 (64) | 37 (73) | 29 (59) | 40 (63) | 26 (74) | |||
Missing | 4 (4) | 0 (0) | 5 (6) | 2 (4) | 3 (6) | 3 (4) | 1 (3) | |||
Ann Arbor stage, n (%) | 0.31 | 0.12 | 0.21 | |||||||
I–II | 34 (33) | 5 (45) | 29 (33) | 21 (41) | 13 (27) | 25 (39) | 9 (26) | |||
III–IV | 65 (63) | 5 (45) | 57 (64) | 28 (55) | 34 (69) | 37 (58) | 24 (68) | |||
Missing | 4 (4) | 1 (10) | 3 (3) | 2 (4) | 2 (4) | 2 (3) | 2 (6) | |||
EBV status, n (%) | <0.001 | 0.11 | 0.88 | |||||||
Positive | 9 (9) | 4 (36) | 5 (6) | 7 (14) | 2 (4) | 6 (9) | 3 (9) | |||
Negative | 92 (89) | 7 (64) | 82(92) | 44 (86) | 45 (92) | 57 (89) | 32 (91) | |||
Missing | 2 (2) | 0 (0) | 2 (2) | 0 (0) | 2 (4) | 1 (2) | 0 (0) | |||
RA highest disease severity group, n (%) | 0.04 | 0.81 | 0.84 | |||||||
Yes | 25 (25) | 5 (45) | 18 (20) | 12 (23) | 11 (22) | 15 (23) | 9 (26) | |||
No | 74 (72) | 5 (45) | 68 (77) | 36 (71) | 37 (76) | 46 (72) | 25 (71) | |||
Missing | 4 (4) | 1 (10) | 3 (3) | 3 (6) | 1 (2) | 3 (5) | 1 (3) | |||
Active RA treatment, n (%) ** | 0.96 | 0.84 | 0.02 | |||||||
Yes | 39 (38) | 4 (36) | 34 (38) | 20 (39) | 18 (37) | 29 (45) | 8 (23) | |||
No | 61 (59) | 6 (55) | 53 (60) | 29 (57) | 30 (61) | 32 (50) | 27 (77) | |||
Missing | 3 (3) | 1 (10) | 2 (2) | 2 (4) | 1 (2) | 3 (5) | 0 (0) | |||
Type of RA treatment, n (%) | 0.66 | 0.76 | 0.46 | |||||||
Corticoteroids monotherapy | 16 (16) | 2 (18) | 14 (16) | 9 (18) | 7 (14) | 10 (16) | 5 (14) | |||
DMARD monotherapy | 14 (14) | 2 (18) | 12 (13) | 6 (12) | 8 (16) | 12 (19) | 2 (6) | |||
Corticosteroids + DMARD | 9 (9) | 0 (0) | 8 (9) | 5 (10) | 3 (6) | 7 (11) | 1 (3) | |||
Year of lymphoma diagnosis, n (%) | 0.89 | 0.31 | 0.09 | |||||||
<1987 | 49 (48) | 5 (45) | 43 (48) | 27 (53) | 21 (43) | 27 (42) | 21 (60) | |||
≥1987 | 54 (52) | 6 (55) | 46 (52) | 24 (47) | 28 (57) | 37 (58) | 14 (40) |
RA Highest Disease Activity Group | RA Lower Disease Activity Group | p-Value * | |
---|---|---|---|
Entire group, n (%) | 25 (100) | 74 (100) | |
Sex, n (%) | |||
Women | 19 (76) | 39 (53) | 0.04 |
Men | 6 (24) | 35 (47) | |
Year of lymphoma diagnosis: median (range) | 1987 (1967–1995) | 1987 (1966–1997) | 0.67 ** |
Age at lymphoma diagnosis: median (range) | 71 (47–84) | 71 (31–87) | 0.59 ** |
Age in years, n (%) | 0.75 | ||
≥60 | 22 (88) | 62 (84) | |
<60 | 3 (12) | 12 (16) | |
DLBCL subtype, n (%) | 0.28 | ||
GCB | 5 (14) | 24 (30) | |
non-GCB | 18 (78) | 47 (66) | |
Missing | 2 (8) | 3 (4) | |
Ann Arbor stage, n (%) | 0.57 | ||
I–II | 7 (28) | 24 (29) | |
III–IV | 18 (72) | 46 (66) | |
Missing | 0 (0) | 4 (5) | |
EBV status, n (%) | 0.99 | ||
Positive | 2 (8) | 6 (8) | |
Negative | 22 (88) | 67 (91) | |
Missing | 1 (4) | 1 (1) | |
Active RA treatment, n (%) *** | 0.94 | ||
Yes | 10 (40) | 29 (39) | |
No | 15 (60) | 45 (61) | |
Any DMARD, n (%) | 0.92 | ||
Yes | 6 (24) | 17 (23) | |
No | 19 (76) | 72 (77) | |
Corticosteroids for RA, n (%) | 0.48 | ||
Yes | 5 (20) | 20 (27) | |
No | 20 (80) | 54 (73) |
RA-DLBCL | DLBCL Controls | |||||
---|---|---|---|---|---|---|
Exposure | N | Univariate | Multivariable | N | Univariate | Multivariable |
tPD-L1 ≥ 17% | 70 | 2.43: 1.07–5.50, 0.03 | 4.62: 1.55–13.71, 0.006 | 74 | 1.28: 0.68–2.41, 0.50 | - |
lPD-L1 ≥ 10% | 70 | 1.46: 0.90–2.37, 0.10 | - | 74 | 0.69: 0.40–1.20, 0.20 | - |
lPD-1 ≥ 21/HPF | 69 | 0.58: 0.35–0.98, 0.04 | 0.82: 0.45–1.50, 0.52 | 73 | 0.40: 0.23–0.69, 0.001 | 0.41: 0.25–0.80, 0.007 |
tPD-L2 ≥ 8% | 70 | 0.53: 0.19–1.47, 0.23 | - | 74 | 0.63: 0.23–1.73, 0.40 | - |
lPD-L2 ≥ 2% | 70 | 0.80: 0.46–1.39, 0.42 | - | 74 | 0.95: 0.56–1.63, 0.90 | - |
Age in years ≥ 60 | 73 | 3.48: 1.69–7.17, <0.001 | 3.16: 1.45–6.90, 0.004 | 74 | 2.04: 1.16–3.60, 0.01 | 1.79: 0.98–3.28, 0.06 |
Male | 73 | 1.50: 0.92–2.44, 0.10 | - | 74 | 1.32: 0.83–2.10, 0.20 | - |
Ann Arbor stage III-IV | 73 | 2.70: 1.58–4.60, <0.001 | 3.10: 1.55–6.19, 0.001 | 74 | 2.47:1.50–4.08, <0.001 | 1.97: 1.09–3.57, 0.03 |
B symptoms | 67 | 1.65: 0.89–3.06, 0.11 | - | 70 | 1.78: 1.09–2.91, 0.02 | 1.49: 0.81–2.71, 0.20 |
Non-GCB | 68 | 1.82: 1.06–3.11, 0.03 | 1.85: 0.999–3.43, 0.0502 | 69 | 2.00: 1.23–3.28, 0.006 | 1.78: 1.05–3.04, 0.03 |
EBV positive | 71 | 2.57: 1.00–6.63, 0.049 | 1.23: 0.43–3.54, 0.70 | NA | - | - |
RA highest disease activity group | 73 | 1.51: 0.88–2.60, 0.14 | - | NA | - | - |
RA-DLBCL | SLE-DLBCL | DLBCL Controls | p-Value *, RA-DLBCL vs. DLBCL Controls | p-Value *, SLE-DLBCL vs. DLBCL Controls | p-Value *, RA-DLBCL vs. SLE-DLBCL | |
---|---|---|---|---|---|---|
All patients, n (%) | 103 (100) | 12 (100) | 74 (100) | |||
tPD-L1 ≥ 17%, n (%) | 0.26 | 0.38 | 0.12 | |||
Yes | 11 (11) | 3 (25) | 12 (16) | |||
No | 89 (86) | 8 (67) | 61 (82) | |||
Missing | 3 (3) | 1 (8) | 1 (1) | |||
lPD-L1 ≥ 10%, n (%) | <0.001 | 0.09 | 0.82 | |||
Yes | 51 (50) | 6 (50) | 57 (77) | |||
No | 49 (48) | 5 (42) | 16 (22) | |||
Missing | 3 (3) | 1 (8) | 1 (1) | |||
lPD1 ≥ 21/HPF, n (%) | 0.19 | 0.47 | 0.98 | |||
Yes | 64 (65) | 7 (58) | 54 (73) | |||
No | 35 (35) | 4 (33) | 19 (26) | |||
Missing | 4 (4) | 1 (8) | 1 (1) | |||
tPD-L2 ≥ 8%, n (%) | 0.87 | 0.63 | 0.73 | |||
Yes | 6 (6) | 1 (8) | 4 (5) | |||
No | 94 (91) | 10 (83) | 70 (95) | |||
Missing | 3 (3) | 1 (8) | 0 (0) | |||
lPD-L2 ≥ 2%, n (%) | <0.001 | 0.057 | <0.001 | |||
Yes | 24 (23) | 11 (92) | 55 (74) | |||
No | 76 (74) | 0 (0) | 19 (26) | |||
Missing | 3 (3) | 1 (8) | 0 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellbacher, E.; Sundström, C.; Molin, D.; Baecklund, E.; Hollander, P. Expression of PD-1, PD-L1 and PD-L2 in Lymphomas in Patients with Pre-Existing Rheumatic Diseases—A Possible Association with High Rheumatoid Arthritis Disease Activity. Cancers 2022, 14, 1509. https://doi.org/10.3390/cancers14061509
Hellbacher E, Sundström C, Molin D, Baecklund E, Hollander P. Expression of PD-1, PD-L1 and PD-L2 in Lymphomas in Patients with Pre-Existing Rheumatic Diseases—A Possible Association with High Rheumatoid Arthritis Disease Activity. Cancers. 2022; 14(6):1509. https://doi.org/10.3390/cancers14061509
Chicago/Turabian StyleHellbacher, Erik, Christer Sundström, Daniel Molin, Eva Baecklund, and Peter Hollander. 2022. "Expression of PD-1, PD-L1 and PD-L2 in Lymphomas in Patients with Pre-Existing Rheumatic Diseases—A Possible Association with High Rheumatoid Arthritis Disease Activity" Cancers 14, no. 6: 1509. https://doi.org/10.3390/cancers14061509
APA StyleHellbacher, E., Sundström, C., Molin, D., Baecklund, E., & Hollander, P. (2022). Expression of PD-1, PD-L1 and PD-L2 in Lymphomas in Patients with Pre-Existing Rheumatic Diseases—A Possible Association with High Rheumatoid Arthritis Disease Activity. Cancers, 14(6), 1509. https://doi.org/10.3390/cancers14061509