Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists’ Performance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Breast MRI Technique
2.3. Imaging Evaluation and Processing
2.4. Radiomics Analysis
2.5. Reference Standard
2.6. Statistical Analysis and Predictive Model Building
3. Results
3.1. Patient Sample and Breast Lesion Characteristics
3.2. Radiomics Analysis for Breast Lesion Differentiation
3.3. Radiologist Performance vs Radiomics Coupled with ML for Malignant vs. Benign Classification for Mass Lesions
3.4. Radiologist Performance vs. Radiomics Coupled with ML for Malignant vs. Benign Classification for All Lesions (Mass and Non-Mass Lesions)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mann, R.M.; Kuhl, C.K.; Moy, L. Contrast-enhanced MRI for breast cancer screening. J. Magn. Reson. Imaging 2019, 50, 377–390. [Google Scholar] [CrossRef]
- Pinker, K.; Helbich, T.H.; Morris, E.A. The potential of multiparametric MRI of the breast. Br. J. Radiol. 2017, 90, 20160715. [Google Scholar] [CrossRef] [Green Version]
- Mann, R.M.; Cho, N.; Moy, L. Breast MRI: State of the art. Radiology 2019, 292, 520–536. [Google Scholar] [CrossRef]
- Mann, R.M.; Balleyguier, C.; Baltzer, P.A.; Bick, U.; Colin, C.; Cornford, E.; Evans, A.; Fallenberg, E.; Forrai, G.; Fuchsjäger, M.H.; et al. Breast MRI: EUSOBI recommendations for women’s information. Eur. Radiol. 2015, 25, 3669–3678. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ren, H. Meta-analysis of diagnostic accuracy of magnetic resonance imaging and mammography for breast cancer. J. Cancer Res. Ther. 2017, 13, 862–868. [Google Scholar] [CrossRef]
- Veenhuizen, S.G.A.; de Lange, S.V.; Bakker, M.F.; Pijnappel, R.M.; Mann, R.M.; Monninkhof, E.M.; Emaus, M.J.; de Koekkoek-Doll, P.K.; Bisschops, R.H.C.; Lobbes, M.B.I.; et al. Supplemental breast MRI for women with extremely dense breasts: Results of the second screening round of the DENSE trial. Radiology 2021, 299, 278–286. [Google Scholar] [CrossRef]
- Gao, Y.; Reig, B.; Heacock, L.; Bennett, D.L.; Heller, S.L.; Moy, L. Magnetic resonance imaging in screening of breast cancer. Radiol. Clin. N. Am. 2021, 59, 85–98. [Google Scholar] [CrossRef]
- Pinker, K.; Moy, L.; Sutton, E.J.; Mann, R.M.; Weber, M.; Thakur, S.B.; Jochelson, M.S.; Bago-Horvath, Z.; Morris, E.A.; Baltzer, P.A.; et al. Diffusion-weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a stand-alone parameter: Comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging. Investig. Radiol. 2018, 53, 587–595. [Google Scholar] [CrossRef]
- Daimiel Naranjo, I.; Lo Gullo, R.; Saccarelli, C.; Thakur, S.B.; Bitencourt, A.; Morris, E.A.; Jochelson, M.S.; Sevilimedu, V.; Martinez, D.F.; Pinker-Domenig, K. Diagnostic value of diffusion-weighted imaging with synthetic b-values in breast tumors: Comparison with dynamic contrast-enhanced and multiparametric MRI. Eur. Radiol. 2020, 31, 356–367. [Google Scholar] [CrossRef]
- Iima, M.; Honda, M.; Sigmund, E.E.; Ohno Kishimoto, A.; Kataoka, M.; Togashi, K. Diffusion MRI of the breast: Current status and future directions. J. Magn. Reson. Imaging 2020, 52, 70–90. [Google Scholar] [CrossRef]
- Partridge, S.C.; Nissan, N.; Rahbar, H.; Kitsch, A.E.; Sigmund, E.E. Diffusion-weighted breast MRI: Clinical applications and emerging techniques. J. Magn. Reson. Imaging 2017, 45, 337–355. [Google Scholar] [CrossRef]
- Dijkstra, H.; Dorrius, M.D.; Wielema, M.; Pijnappel, R.M.; Oudkerk, M.; Sijens, P.E. Quantitative DWI implemented after DCE-MRI yields increased specificity for BI-RADS 3 and 4 breast lesions. J. Magn. Reson. Imaging 2016, 44, 1642–1649. [Google Scholar] [CrossRef]
- Pinker, K.; Bogner, W.; Baltzer, P.; Gruber, S.; Bickel, H.; Brueck, B.; Trattnig, S.; Weber, M.; Dubsky, P.; Bago-Horvath, Z.; et al. Improved diagnostic accuracy with multiparametric magnetic resonance imaging of the breast using dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and 3-dimensional proton magnetic resonance spectroscopic imaging. Investig. Radiol. 2014, 49, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Pinker, K.; Bickel, H.; Helbich, T.H.; Gruber, S.; Dubsky, P.; Pluschnig, U.; Rudas, M.; Bago-Horvath, Z.; Weber, M.; Trattnig, S.; et al. Combined contrast-enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the “breast imaging reporting and data system” for multiparametric 3-t imaging of breast lesions. Eur. Radiol. 2013, 23, 1791–1802. [Google Scholar] [CrossRef]
- Clauser, P.; Krug, B.; Bickel, H.; Dietzel, M.; Pinker, K.; Neuhaus, V.-F.; Marino, M.A.; Moschetta, M.; Troiano, N.; Helbich, T.H.; et al. Diffusion-weighted imaging allows for downgrading MR BI-RADS 4 lesions in contrast-enhanced MRI of the breast to avoid unnecessary biopsy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 1941–1948. [Google Scholar] [CrossRef]
- Zhang, M.; Horvat, J.V.; Bernard-Davila, B.; Marino, M.A.; Leithner, D.; Ochoa-Albiztegui, R.E.; Helbich, T.H.; Morris, E.A.; Thakur, S.; Pinker, K. Multiparametric MRI model with dynamic contrast-enhanced and diffusion-weighted imaging enables breast cancer diagnosis with high accuracy. J. Magn. Reson. Imaging 2019, 49, 864–874. [Google Scholar] [CrossRef]
- Baltzer, P.; Mann, R.M.; Iima, M.; Sigmund, E.E.; Clauser, P.; Gilbert, F.J.; Martincich, L.; Partridge, S.C.; Patterson, A.; Pinker, K.; et al. Diffusion-weighted imaging of the breast—A consensus and mission statement from the EUSOBI international breast diffusion-weighted imaging working group. Eur. Radiol. 2020, 30, 1436–1450. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Shin, H.J.; Moon, W.K. Diffusion-weighted magnetic resonance imaging of the breast: Standardization of image acquisition and interpretation. Korean J. Radiol. 2021, 22, 9–22. [Google Scholar] [CrossRef]
- Leithner, D.; Bernard-Davila, B.; Martinez, D.F.; Horvat, J.V.; Jochelson, M.S.; Marino, M.A.; Avendano, D.; Ochoa-Albiztegui, R.E.; Sutton, E.J.; Morris, E.A.; et al. Radiomic signatures derived from diffusion-weighted imaging for the assessment of breast cancer receptor status and molecular subtypes. Mol. Imaging Biol. 2020, 22, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Bitencourt, A.G.; Gibbs, P.; Rossi Saccarelli, C.; Daimiel, I.; Lo Gullo, R.; Fox, M.J.; Thakur, S.; Pinker, K.; Morris, E.; Morrow, M.; et al. MRI-Based Machine Learning Radiomics Can Predict HER2 Expression Level and Pathologic Response after Neoadjuvant Therapy in HER2 Overexpressing Breast Cancer; SSRN Scholarly Paper ID 3582723; Social Science Research Network: Rochester, NY, USA, 2020. [Google Scholar] [CrossRef]
- Dong, Y.; Feng, Q.; Yang, W.; Lu, Z.; Deng, C.; Zhang, L.; Lian, Z.; Liu, J.; Luo, X.; Pei, S.; et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI. Eur. Radiol. 2018, 28, 582–591. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Qu, J.; Zhang, R.; Zhou, X.; Li, L.; Sun, K.; Tang, Z.; Jiang, H.; Li, H.; et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: A multicenter study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 3538–3547. [Google Scholar] [CrossRef] [Green Version]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to radiomics. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Lo Gullo, R.; Daimiel, I.; Morris, E.A.; Pinker, K. Combining molecular and imaging metrics in cancer: Radiogenomics. Insights Imaging 2020, 11, 1–17. [Google Scholar] [CrossRef]
- Tagliafico, A.S.; Piana, M.; Schenone, D.; Lai, R.; Massone, A.M.; Houssami, N. Overview of radiomics in breast cancer diagnosis and prognostication. Breast Edinb. Scotl. 2020, 49, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Bickelhaupt, S.; Jaeger, P.F.; Laun, F.B.; Lederer, W.; Daniel, H.; Kuder, T.A.; Wuesthof, L.; Paech, D.; Bonekamp, D.; Radbruch, A.; et al. Radiomics based on adapted diffusion kurtosis imaging helps to clarify most mammographic findings suspicious for cancer. Radiology 2018, 287, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Bickelhaupt, S.; Paech, D.; Kickingereder, P.; Steudle, F.; Lederer, W.; Daniel, H.; Götz, M.; Gählert, N.; Tichy, D.; Wiesenfarth, M.; et al. Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography. J. Magn. Reson. Imaging 2017, 46, 604–616. [Google Scholar] [CrossRef]
- Ibrahim, A.; Primakov, S.; Beuque, M.; Woodruff, H.C.; Halilaj, I.; Wu, G.; Refaee, T.; Granzier, R.; Widaatalla, Y.; Hustinx, R.; et al. Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework. Methods 2021, 188, 20–29. [Google Scholar] [CrossRef]
- Rogers, W.; Thulasi Seetha, S.; Refaee, T.A.G.; Lieverse, R.I.Y.; Granzier, R.W.Y.; Ibrahim, A.; Keek, S.A.; Sanduleanu, S.; Primakov, S.P.; Beuque, M.P.L.; et al. Radiomics: From qualitative to quantitative imaging. Br. J. Radiol. 2020, 93, 20190948. [Google Scholar] [CrossRef]
- Daimiel Naranjo, I.; Gibbs, P.; Reiner, J.S.; Lo Gullo, R.; Sooknanan, C.; Thakur, S.B.; Jochelson, M.S.; Sevilimedu, V.; Morris, E.A.; Baltzer, P.A.T.; et al. Radiomics and machine learning with multiparametric breast MRI for improved diagnostic accuracy in breast cancer diagnosis. Diagnostics 2021, 11, 919. [Google Scholar] [CrossRef]
- Apte, A.P.; Iyer, A.; Crispin-Ortuzar, M.; Pandya, R.; van Dijk, L.V.; Spezi, E.; Thor, M.; Um, H.; Veeraraghavan, H.; Oh, J.H.; et al. Technical note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research. Med. Phys. 2018, 45, 3713–3720. [Google Scholar] [CrossRef]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical bayes methods. Biostat. Oxf. Engl. 2007, 8, 118–127. [Google Scholar] [CrossRef]
- McDonald, E.S.; Romanoff, J.; Rahbar, H.; Kitsch, A.E.; Harvey, S.M.; Whisenant, J.G.; Yankeelov, T.E.; Moy, L.; DeMartini, W.B.; Dogan, B.E.; et al. Mean apparent diffusion coefficient is a sufficient conventional diffusion-weighted MRI metric to improve breast MRI diagnostic performance: Results from the ECOG-ACRIN cancer research group A6702 diffusion imaging trial. Radiology 2021, 298, 60–70. [Google Scholar] [CrossRef]
- Rahbar, H.; Zhang, Z.; Chenevert, T.L.; Romanoff, J.; Kitsch, A.E.; Hanna, L.G.; Harvey, S.M.; Moy, L.; DeMartini, W.B.; Dogan, B.; et al. Utility of diffusion-weighted imaging to decrease unnecessary biopsies prompted by breast MRI: A trial of the ECOG-ACRIN cancer research group (A6702). Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 1756–1765. [Google Scholar] [CrossRef]
- Avendano, D.; Marino, M.A.; Leithner, D.; Thakur, S.; Bernard-Davila, B.; Martinez, D.F.; Helbich, T.H.; Morris, E.A.; Jochelson, M.S.; Baltzer, P.A.T.; et al. Limited role of DWI with apparent diffusion coefficient mapping in breast lesions presenting as non-mass enhancement on dynamic contrast-enhanced MRI. Breast Cancer Res. 2019, 21, 136. [Google Scholar] [CrossRef]
- Sutton, E.J.; Huang, E.P.; Drukker, K.; Burnside, E.S.; Li, H.; Net, J.M.; Rao, A.; Whitman, G.J.; Zuley, M.; Ganott, M.; et al. Breast MRI radiomics: Comparison of computer- and human-extracted imaging phenotypes. Eur. Radiol. Exp. 2017, 1, 22. [Google Scholar] [CrossRef]
- Truhn, D.; Schrading, S.; Haarburger, C.; Schneider, H.; Merhof, D.; Kuhl, C. Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 2018, 290, 290–297. [Google Scholar] [CrossRef]
- Lo Gullo, R.; Daimiel, I.; Rossi Saccarelli, C.; Bitencourt, A.; Gibbs, P.; Fox, M.J.; Thakur, S.B.; Martinez, D.F.; Jochelson, M.S.; Morris, E.A.; et al. Improved characterization of sub-centimeter enhancing breast masses on MRI with radiomics and machine learning in BRCA mutation carriers. Eur. Radiol. 2020, 30, 6721–6731. [Google Scholar] [CrossRef]
- Mao, Y.-J.; Lim, H.-J.; Ni, M.; Yan, W.-H.; Wong, D.W.-C.; Cheung, J.C.-W. Breast tumour classification using ultrasound elastography with machine learning: A systematic scoping review. Cancers 2022, 14, 367. [Google Scholar] [CrossRef]
Mass Lesions | Non-Mass Lesions |
---|---|
Internal enhancement Homogeneous Heterogeneous Rim enhancement Internal septa | Distribution Focal Lineal Regional Segmental Diffuse |
Margins Circumscribed Irregular Spiculated | Internal enhancement Homogeneous Heterogeneous Clumped Clustered |
Shape Oval Round Irregular | Enhancing kinetics Persistent Plateau Wash-out |
Enhancing kinetics Persistent Plateau Wash-out |
Patient Characteristics | Number (Percentage) |
---|---|
Mean age (years; SD) | 49 years ± 12 years |
Menopausal status | |
Pre-menopausal | 55 (59.1%) |
Post-menopausal | 38 (40.9%) |
Breast Findings | |
Benign | 58 (55.8%) |
Malignant | 46 (44.2%) |
Benign Lesions | Malignant Lesions | ||
---|---|---|---|
Mass | 50 (86.2%) | Mass | 35 (76%) |
NME | 8 (13.8%) | NME | 11 (24%) |
Histopathology | Histopathology | ||
Fibroadenoma or fibro-adenomatoid change | 30 (51.8%) | IDC | Histological Grade 1: 4 (8.6%) |
Phyllodes tumor | 1 (1.7%) | Histological Grade 2: 18 (39·2%) | |
Adenosis, stromal fibrosis, ductal ectasia, or normal breast parenchyma | 10 (17.3%) | Histological Grade 3: 20 (43·6%) | |
FCC | 5 (8.6%) | ||
ADH or ALH | 4 (6.9%) | ILC | 2 (4.3%) |
PASH | 3 (5.2%) | ||
Papilloma | 2 (3.4%) | ||
Hamartoma | 1 (1.7%) | ||
Fat necrosis | 1 (1.7%) | DCIS | 2 (4.3%) |
Epithelial intraductal proliferation without atypia | 1 (1.7%) |
Assessment type | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | Accuracy (95% CI) | AUC (95% CI) |
---|---|---|---|---|---|---|
DWI score * | 66.7 (50.5–80.4) | 83.3 (68.6–93.0) | 80.0 (66.3–89.1) | 71.4 (61.5–79.7) | 75.0 (64.4–83.8) | 0.76 (0.65–0.87) |
ADC value * | 82.9 (66.4–93.4) | 67.4 (52.5–80.1) | 64.4 (54.1–73.6) | 84.6 (72.1–92.1) | 73.8 (63.1–82.8) | 0.83 (0.75–0.92) |
BI-RADS * (Classic DCE-MRI) | 100 (90.0–100) | 51.0 (36.3–65.6) | 59.3 (52.3–66.0) | 100 (90.0–100) | 71.4 (60.5–80.8) | 0.85 (0.78–0.93) |
Radiomics DWI data | 62.9 (44.9–78.5) | 89.8 (77.8–96.6) | 81.5 (64.9–91.3) | 77.2 (68.5–84.0) | 78.6 (68.3–86.8) | 0.83 (0.73–0.92) |
Radiomics DWI data with DWI score | 68.6 (50.7–83.2) | 85.7 (72.8–94.1) | 77.4 (62.5–87.6) | 79.3 (69.8–86.3) | 78.6 (68.3–86.8) | 0.86 (0.78–0.94) |
Radiomics DWI data with ADC value | 80.0 (63.1–91.6) | 83.7 (70.3–92.7) | 77.8 (64.5–87.1) | 85.4 (74.9–92.0) | 82.1 (72.3–89.7) | 0.89 (0.82–0.96) |
Radiomics model using individual BI-RADS descriptors for masses | 80.0 (63.1–91.6) | 91.8 (80.4–97.7) | 87.5 (73.0–94.8) | 86.5 (76.7–92.6) | 86.9 (77.8–93.3) | 0.93 (0.88–0.99) |
Radiomics DCE data | 54.3 (36.7–71.2) | 83.7 (70.3–92.7) | 70.4 (54.0–82.8) | 71.9 (63.6–79.0) | 71.4 (60.5–80.8) | 0.76 (0.65–0.86) |
Radiomics DCE data with BI-RADS | 74.3 (56.7–87.5) | 79.6 (65.7–89.8) | 72.2 (59.1–82.4) | 81.3 (70.8–88.6) | 77.4 (67.0–85.8) | 0.86 (0.78–0.94) |
Radiomics DCE data with individual BI-RADS descriptors for masses | 80.0 (63.1–91.6) | 91.8 (80.4–97.7) | 87.5 (73.0–94.8) | 86.5 (76.7–92.6) | 86.9 (77.8–93.3) | 0.95 (0.90–0.99) |
Multiparametric MRI (ADC value with BI-RADS) * | 82.9 (66.4–93.4) | 89.8 (77.8–96.6) | 85.3 (71.4–93.1) | 88.0 (77.9–93.9) | 86.9 (77.8–93.3) | 0.93 (0.87–0.99) |
Multiparametric radiomics (DWI and DCE data) | 65.7 (47.8–80.9) | 89.8 (77.8–96.6) | 82.1 (66.0–91.6) | 78.6 (69.7–85.4) | 79.8 (69.6–87.8) | 0.89 (0.82–0.96) |
Multiparametric radiomics with DWI score and BI-RADS | 91.4 (76.9–98.2) | 83.7 (70.3–92.7) | 80.0 (67.8–88.4) | 93.2 (82.1–97.6) | 86.9 (77.8–93.3) | 0.93 (0.87–0.98) |
Multiparametric radiomics with ADC values and individual BI-RADS descriptors for masses | 88.6 (73.3–96.8) | 93.9 (83.1–98.7) | 91.2 (77.4–96.9) | 92.0 (82.0–96.7) | 91.7 (83.6–96.6) | 0.96 (0.92–1.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daimiel Naranjo, I.; Gibbs, P.; Reiner, J.S.; Lo Gullo, R.; Thakur, S.B.; Jochelson, M.S.; Thakur, N.; Baltzer, P.A.T.; Helbich, T.H.; Pinker, K. Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists’ Performance. Cancers 2022, 14, 1743. https://doi.org/10.3390/cancers14071743
Daimiel Naranjo I, Gibbs P, Reiner JS, Lo Gullo R, Thakur SB, Jochelson MS, Thakur N, Baltzer PAT, Helbich TH, Pinker K. Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists’ Performance. Cancers. 2022; 14(7):1743. https://doi.org/10.3390/cancers14071743
Chicago/Turabian StyleDaimiel Naranjo, Isaac, Peter Gibbs, Jeffrey S. Reiner, Roberto Lo Gullo, Sunitha B. Thakur, Maxine S. Jochelson, Nikita Thakur, Pascal A. T. Baltzer, Thomas H. Helbich, and Katja Pinker. 2022. "Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists’ Performance" Cancers 14, no. 7: 1743. https://doi.org/10.3390/cancers14071743
APA StyleDaimiel Naranjo, I., Gibbs, P., Reiner, J. S., Lo Gullo, R., Thakur, S. B., Jochelson, M. S., Thakur, N., Baltzer, P. A. T., Helbich, T. H., & Pinker, K. (2022). Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists’ Performance. Cancers, 14(7), 1743. https://doi.org/10.3390/cancers14071743