A Review of Nuclear Medicine Approaches in the Diagnosis and the Treatment of Gynecological Malignancies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cervical Cancer
Hypoxia Imaging Radiopharmaceuticals for Cervical Cancer
3. Ovarian Cancer
3.1. DNA Synthesis and Proliferation Imaging Radiopharmaceuticals for Ovarian Cancer
3.2. Estrogen Receptor Imaging Radiopharmaceuticals for Ovarian Cancer
3.3. Endometrial Cancer
4. Vulvar Cancer
5. Vaginal Cancer
6. Recent Advances of [68Ga]Ga-FAPI in Various Gynecological Cancers
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Q.; Peng, H.; Qi, X.; Wu, M.; Zhao, X. Targeted therapies in gynecological cancers: A comprehensive review of clinical evidence. Signal. Transduct. Target. Ther. 2020, 5, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Li, T.; Niu, M.; Luo, S.; Chu, Q.; Wu, K. Epidemiological trends of women’s cancers from 1990 to 2019 at the global, regional, and national levels: A population-based study. Biomark. Res. 2021, 9, 1–12. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.I.; Catalano, O.A.; Dehdashti, F. Evaluation of Gynecologic Cancer with MR Imaging, 18F-FDG PET/CT, and PET/MR Imaging. J. Nucl. Med. 2015, 56, 436–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bristow, R.E.; del Carmen, M.G.; Pannu, H.K.; Cohade, C.; Zahurak, M.L.; Fishman, E.K.; Wahl, R.L.; Montz, F. Clinically occult recurrent ovarian cancer: Patient selection for secondary cytoreductive surgery using combined PET/CT. Gynecol. Oncol. 2003, 90, 519–528. [Google Scholar] [CrossRef]
- Stokkel, M.P.M.; Draisma, A.; Pauwels, E.K.J. Positron emission tomography with 2-[18F]-fluoro-2-deoxy-D-glucose in oncology. J. Cancer Res. Clin. Oncol. 2001, 127, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Cohade, C.; Wahl, R.L. PET scanning and measuring the impact of treatment. Cancer J. 2002, 8, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.; Robichaud, N.; Hulea, L.; Sonenberg, N.; Pelletier, J.; Topisirovic, I. Targeting the translation machinery in cancer. Nat. Rev. Drug Discov. 2015, 14, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Kozak, M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 1983, 47, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Y. An Overview of PET radiopharmaceuticals in clinical use: Regulatory, quality and pharmacopeia monographs of the United States and Europe. Nucl. Med. Phys. 2019, 35–58. [Google Scholar] [CrossRef] [Green Version]
- Momose, T.; Nariai, T.; Kawabe, T.; Inaji, M.; Tanaka, Y.; Watanabe, S.; Maehara, T.; Oda, K.; Ishii, K.; Ishiwata, K.; et al. Clinical benefit of 11C methionine PET imaging as a planning modality for radiosurgery of previously irradiated recurrent brain metastases. Clin. Nucl. Med. 2014, 39, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, M.; Bober, B.; Saracyn, M.; Kamiński, G. The role of Pet/Ct with 11c-methionine in contemporary nuclear medicine. Wiadomości Lek. 2020, 73, 2076–2079. [Google Scholar] [CrossRef]
- Santoni, M.; Berardi, R.; Bittoni, A.; Paccapelo, A.; Nanni, C.; Fanti, S.; Burattini, L.; Cascinu, S. Clinical impact of [11C]-Methionine positron emission tomography on the treatment of primary and recurrent gliomas. Ann. Oncol. 2012, 23, ix148. [Google Scholar] [CrossRef]
- Lapela, M.; Leskinen-Kallio, S.; Varpula, M.; Grenman, S.; Alanen, K.; Någren, K.; Lehikoinen, P.; Ruotsalainen, U.; Teräs, M.; Joensuu, H. Imaging of uterine carcinoma by carbon-11-methionine and PET. J. Nucl. Med. 1994, 35, 1618–1623. [Google Scholar]
- Nuñez, R.; Macapinlac, H.A.; Yeung, H.W.D.; Akhurst, T.; Cai, S.; Osman, I.; Gonen, M.; Riedel, E.; Scher, H.I.; Larson, S.M. Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J. Nucl. Med. 2002, 43, 46–55. [Google Scholar]
- Wood, K.; Hoskin, P.; Saunders, M. Positron emission tomography in oncology: A review. Clin. Oncol. 2007, 19, 237–255. [Google Scholar] [CrossRef]
- Skanjeti, A.; Dhomps, A.; Paschetta, C.; Tordo, J.; Giammarile, F. Sentinel node mapping in gynecologic cancers: A comprehensive review. In Seminars in Nuclear Medicine; WB Saunders: Philadelphia, PA, USA, 2019; Volume 49, pp. 521–533. [Google Scholar]
- Giammarile, F.; Bozkurt, M.F.; Cibula, D.; Pahisa, J.; Oyen, W.J.; Paredes, P.; Olmos, R.V.; Sicart, S.V. The EANM clinical and technical guidelines for lymphoscintigraphy and sentinel node localization in gynaecological cancers. Eur. J. Pediatr. 2014, 41, 1463–1477. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [Green Version]
- Parkin, D.M.; Pisani, P.; Ferlay, J. Estimates of the worldwide incidence of eighteen major cancers in 1985. Int. J. Cancer 1993, 54, 594–606. [Google Scholar] [CrossRef]
- Gandy, N.; Arshad, M.A.; Park, W.-H.E.; Rockall, A.; Barwick, T.D. FDG-PET imaging in cervical cancer. In Seminars in Nuclear Medicine; WB Saunders: Philadelphia, PA, USA, 2019; Volume 49, pp. 461–470. [Google Scholar]
- Zhang, X.; Zeng, Q.; Cai, W.; Ruan, W. Trends of cervical cancer at global, regional, and national level: Data from the global burden of disease study 2019. BMC Public Health 2021, 21, 1–10. [Google Scholar] [CrossRef]
- Hull, R.; Mbele, M.; Makhafola, T.; Hicks, C.; Wang, S.M.; Reis, R.M.; Mehrotra, R.; Mkhize Kwitshana, Z.; Kibiki, G.; Bates, D.O. Cervical cancer in low and middle income countries. Oncol. Lett. 2020, 20, 2058–2074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, H.; Zhang, L.; Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. 2020, 32, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Herrera, F.G.; Prior, J.O. The role of PET/CT in cervical cancer. Front. Oncol. 2013, 3, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawar, A.A.; Patil, D.B.; Patel, S.; Mankad, M.; Dave, P. Role of PET–CT Scan in Gynaeconcology. J. Obstet. Gynecol. India 2016, 66, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.Z.; Jones, E.L.; Coleman, R.E. Positron emission tomography with 2-deoxy-2-[18F]fluoro-D-glucose for evaluating local and distant disease in patients with cervical cancer. Mol. Imaging Biol. 2004, 6, 55–62. [Google Scholar] [CrossRef]
- Chou, H.-H.; Chang, T.-C.; Yen, T.-C.; Ng, K.-K.; Hsueh, S.; Ma, S.-Y.; Chang, C.-J.; Huang, H.-J.; Chao, A.; Wu, T.-I.; et al. Low Value of [18F]-Fluoro-2-Deoxy-d-Glucose positron emission tomography in primary staging of early-stage cervical cancer before radical hysterectomy. J. Clin. Oncol. 2006, 24, 123–128. [Google Scholar] [CrossRef]
- Metser, U.; Golan, O.; Levine, C.D.; Even-Sapir, E. Tumor lesion detection: When is integrated positron emission tomography/computed tomography more accurate than side-by-side interpretation of positron emission tomography and computed tomography? J. Comput. Assist. Tomogr. 2005, 29, 554–559. [Google Scholar] [CrossRef] [Green Version]
- Belhocine, T.Z.; Urbain, J.-L.; Yen, T.-C.; Grigsby, P.W. Cervical cancer and nuclear medicine: From bench to bedside. Curr. Res. Cancer ISSN 2007, 1, 123–144. [Google Scholar]
- Fyles, A.; Milosevic, M.; Hedley, D.; Pintilie, M.; Levin, W.; Manchul, L.; Hill, R. Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. J. Clin. Oncol. 2002, 20, 680–687. [Google Scholar] [CrossRef]
- Lyng, H.; Sundfør, K.; Tropé, C.; Rofstad, E.K. Disease control of uterine cervical cancer: Relationships to tumor oxygen tension, vascular density, cell density, and frequency of mitosis and apoptosis measured before treatment and during radiotherapy. Clin. Cancer Res. 2000, 6, 1104–1112. [Google Scholar]
- Telarovic, I.; Wenger, R.H.; Pruschy, M. Interfering with tumor hypoxia for radiotherapy optimization. J. Exp. Clin. Cancer Res. 2021, 40, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Thomlinson, R.H.; Gray, L.H. The Histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 1955, 9, 539–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucignani, G. PET imaging with hypoxia tracers: A must in radiation therapy. Eur. J. Pediatr. 2008, 35, 838–842. [Google Scholar] [CrossRef]
- Thomlinson, R. Tumour anoxia and the response to radiation. Sci. Basis Med. Annu. Rev. 1965, 87, 74–90. [Google Scholar]
- Barbera, L.; Thomas, G. Management of Early and Locally Advanced Cervical Cancer. In Seminars in Oncology; WB Saunders: Philadelphia, PA, USA, 2009; Volume 36, pp. 155–169. [Google Scholar]
- Varghese, A.J.; Whitmore, G.F. Binding to cellular macromolecules as a possible mechanism for the cytotoxicity of misonidazole. Cancer Res. 1980, 40, 2165–2169. [Google Scholar] [PubMed]
- Nordsmark, M.; Loncaster, J.; Aquino-Parsons, C.; Chou, S.-C.; Ladekarl, M.; Havsteen, H.; Lindegaard, J.C.; Davidson, S.; Varia, M.; West, C.; et al. Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiother. Oncol. 2003, 67, 35–44. [Google Scholar] [CrossRef]
- Nordsmark, M.; Loncaster, J.; Aquino-Parsons, C.; Chou, S.-C.; Gebski, V.; West, C.; Lindegaard, J.C.; Havsteen, H.; Davidson, S.E.; Hunter, R.; et al. The prognostic value of pimonidazole and tumour pO2 in human cervix carcinomas after radiation therapy: A prospective international multi-center study. Radiother. Oncol. 2006, 80, 123–131. [Google Scholar] [CrossRef]
- Pinker, K.; Andrzejewski, P.; Baltzer, P.; Polanec, S.; Sturdza, A.; Georg, D.; Helbich, T.H.; Karanikas, G.; Grimm, C.; Polterauer, S.; et al. Multiparametric [18F]Fluorodeoxyglucose/[18F]Fluoromisonidazole positron emission tomography/magnetic resonance imaging of locally advanced cervical cancer for the non-invasive detection of tumor heterogeneity: A pilot study. PLoS ONE 2016, 11, e0155333. [Google Scholar] [CrossRef]
- Lyng, H.; Malinen, E. Hypoxia in cervical cancer: From biology to imaging. Clin. Transl. Imaging 2017, 5, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Zhao, W.; Huang, Y.; Yu, Q.; Zhu, S.; Wang, S.; Zhao, S.; Hu, X.; Yu, J.; Yuan, S. A comparative study of noninvasive hypoxia imaging with 18F-fluoroerythronitroimidazole and 18F-fluoromisonidazole PET/CT in patients with lung cancer. PLoS ONE 2016, 11, e0157606. [Google Scholar] [CrossRef]
- Rajendran, J.; Mankoff, D. Positron emission tomography imaging of hypoxia and blood flow in tumors. Cancer Drug Discov. Dev. Vivo Imaging Cancer 2006, 4, 47–71. [Google Scholar]
- Thureau, S.; Piton, N.; Gouel, P.; Modzelewski, R.; Dujon, A.; Baste, J.-M.; Melki, J.; Rinieri, P.; Peillon, C.; Rastelli, O.; et al. First comparison between [18F]-FMISO and [18F]-Faza for preoperative pet imaging of hypoxia in lung cancer. Cancers 2021, 13, 4101. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, M.; Schmid, M.P.; Pötter, R.; Kommata, S.; Georg, D.; Lukic, D.; Dudczak, R.; Kletter, K.; Dimopoulos, J.; Karanikas, G.; et al. Evaluating repetitive 18 F-fluoroazomycin-arabinoside ( 18 FAZA) PET in the setting of MRI guided adaptive radiotherapy in cervical cancer. Acta Oncol. 2010, 49, 941–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wack, L.J.; Mönnich, D.; Van Elmpt, W.; Zegers, C.M.; Troost, E.G.; Zips, D.; Thorwarth, D. Comparison of [18F]-FMISO, [18F]-FAZA and [18F]-HX4 for PET imaging of hypoxia–a simulation study. Acta Oncol. 2015, 54, 1370–1377. [Google Scholar] [CrossRef]
- Peeters, S.G.; Zegers, C.M.; Lieuwes, N.G.; van Elmpt, W.; Eriksson, J.; van Dongen, G.A.; Dubois, L.; Lambin, P. A Comparative Study of the Hypoxia PET Tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a preclinical tumor model. Int. J. Radiat. Oncol. 2015, 91, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Sanduleanu, S.; Van Der Wiel, A.M.A.; Lieverse, R.I.Y.; Marcus, D.; Ibrahim, A.; Primakov, S.; Wu, G.; Theys, J.; Yaromina, A.; Dubois, L.J.; et al. Hypoxia PET Imaging with [18F]-HX4—A promising next-generation tracer. Cancers 2020, 12, 1322. [Google Scholar] [CrossRef]
- Lewis, J.S.; Laforest, R.; Dehdashti, F.; Grigsby, P.W.; Welch, M.J.; Siegel, B.A. An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J. Nucl. Med. 2008, 49, 1177–1182. [Google Scholar] [CrossRef] [Green Version]
- Kralj, L. Kinetic Modeling in Positron Emission Tomography (PET). Q. J. Nucl. Med. 2002, 46, 70–85. [Google Scholar]
- Colombié, M.; Gouard, S.; Frindel, M.; Vidal, A.; Chérel, M.; Kraeber-Bodéré, F.; Rousseau, C.; Bourgeois, M. Focus on the Controversial aspects of 64Cu-ATSM in tumoral hypoxia mapping by PET imaging. Front. Med. 2015, 2, 58. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Nemieboka, B.; Sala, E.; Lewis, J.S.; Zeglis, B.M. Molecular imaging of ovarian cancer. J. Nucl. Med. 2016, 57, 827–833. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.; Lis, C.G. Role of CA125 in predicting ovarian cancer survival-a review of the epidemiological literature. J. Ovarian Res. 2009, 2, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyners, A.K.L.; Broekman, K.E.; Glaudemans, A.W.J.M.; Brouwers, A.H.; Arts, H.J.G.; van der Zee, A.G.J.; de Vries, E.G.E.; Jalving, M. Molecular imaging in ovarian cancer. Ann. Oncol. 2016, 27, i23–i29. [Google Scholar] [CrossRef] [PubMed]
- Park, T.; Lee, S.; Park, S.; Lee, E.; Pahk, K.; Rhee, S.; Cho, J.; Kim, C.; Eo, J.S.; Choe, J.G.; et al. Value of 18F-FDG PET/CT in the detection of ovarian malignancy. Nucl. Med. Mol. Imaging 2014, 49, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomar, A.; Nanni, C.; Castellucci, P.; Ambrosini, V.; Montini, G.C.; Allegri, V.; Pettinato, C.; Nahhas, A.; Soriano, Á.; Grassetto, G.; et al. Value of FDG PET/CT in patients with treated ovarian cancer and raised CA125 serum levels. Mol. Imaging Biol. 2011, 14, 123–129. [Google Scholar] [CrossRef]
- Peng, N.-J.; Liou, W.-S.; Liu, R.-S.; Hu, C.; Tsay, D.-G.; Liu, C.-B. Early detection of recurrent ovarian cancer in patients with low-level increases in serum CA-125 levels by 2-[F-18]Fluoro-2-Deoxy-d-Glucose-Positron emission tomography/computed tomography. Cancer Biother. Radiopharm. 2011, 26, 175–181. [Google Scholar] [CrossRef]
- Gu, P.; Pan, L.-L.; Wu, S.-Q.; Sun, L.; Huang, G. CA 125, PET alone, PET–CT, CT and MRI in diagnosing recurrent ovarian carcinoma: A systematic review and meta-analysis. Eur. J. Radiol. 2009, 71, 164–174. [Google Scholar] [CrossRef]
- Rusu, D.; Carlier, T.; Colombié, M.; Goulon, D.; Fleury, V.; Rousseau, N.; Berton-Rigaud, D.; Jaffre, I.; Kraeber-Bodéré, F.; Campion, L. Clinical and survival impact of FDG PET in patients with suspicion of recurrent ovarian cancer: A 6-year follow-up. Front. Med. 2015, 2, 46. [Google Scholar] [CrossRef] [Green Version]
- Caobelli, F.; Young AIMN Working Group; Alongi, P.; Evangelista, L.; Picchio, M.; Saladini, G.; Rensi, M.; Geatti, O.; Castello, A.; Laghai, I.; et al. Predictive value of 18F-FDG PET/CT in restaging patients affected by ovarian carcinoma: A multicentre study. Eur. J. Pediatr. 2015, 43, 404–413. [Google Scholar] [CrossRef]
- Chung, H.H.; Kwon, H.W.; Kang, K.W.; Park, N.-H.; Song, Y.-S.; Chung, J.-K.; Kang, S.-B.; Kim, J.W. Prognostic value of preoperative metabolic tumor volume and total lesion glycolysis in patients with epithelial ovarian cancer. Ann. Surg. Oncol. 2011, 19, 1966–1972. [Google Scholar] [CrossRef]
- Martoni, A.A.; Fanti, S.; Zamagni, C.; Rosati, M.; De Iaco, P.; Grigioni, A.D.; Castellucci, P.; Quercia, S.; Musto, A.; Maccarini, L.R.; et al. [18F]FDG-PET/CT monitoring early identifies advanced ovarian cancer patients who will benefit from prolonged neo-adjuvant chemotherapy. Q. J. Nucl. Med. Mol. Imaging Off. Publ. Ital. Assoc. Nucl. Med. (AIMN) Int. Assoc. Radiopharmacol. (IAR) Sect. Soc. 2010, 55, 81–90. [Google Scholar]
- Boers-Sonderen, M.J.; de Geus-Oei, L.-F.; Desar, I.M.; van der Graaf, W.T.; Oyen, W.J.; Ottevanger, P.B.; van Herpen, C.M. Temsirolimus and pegylated liposomal doxorubicin (PLD) combination therapy in breast, endometrial, and ovarian cancer: Phase Ib results and prediction of clinical outcome with FDG-PET/CT. Target. Oncol. 2014, 9, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Chalkidou, A.; Landau, D.; Odell, E.; Cornelius, V.; O’Doherty, M.; Marsden, P. Correlation between Ki-67 immunohistochemistry and 18F-Fluorothymidine uptake in patients with cancer: A systematic review and meta-analysis. Eur. J. Cancer 2012, 48, 3499–3513. [Google Scholar] [CrossRef] [PubMed]
- Perumal, M.; Stronach, E.A.; Gabra, H.; Aboagye, E.O. Evaluation of 2-Deoxy-2-[18F]Fluoro-D-glucose- and 3′-Deoxy-3′-[18F]Fluorothymidine–Positron emission tomography as biomarkers of therapy response in platinum-resistant ovarian cancer. Mol. Imaging Biol. 2012, 14, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.M.; Erichsen, K.D.; Björkling, F.; Madsen, J.; Jensen, P.B.; Sehested, M.; Højgaard, L.; Kjær, A. Imaging of treatment response to the combination of carboplatin and paclitaxel in human ovarian cancer xenograft tumors in mice using FDG and FLT PET. PLoS ONE 2013, 8, e85126. [Google Scholar] [CrossRef]
- Richard, S.D.; Bencherif, B.; Edwards, R.P.; Elishaev, E.; Krivak, T.C.; Mountz, J.M.; DeLoia, J.A. Noninvasive assessment of cell proliferation in ovarian cancer using [18F] 3′deoxy-3-fluorothymidine positron emission tomography/computed tomography imaging. Nucl. Med. Biol. 2011, 38, 485–491. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, C.; Hu, S.; Zhang, Y.; Yao, Z.; Li, J.; Guo, W.; Zhang, Y. 18F-FLT PET/CT imaging is not competent for the pretreatment evaluation of metastatic gastric cancer: A comparison with 18F-FDG PET/CT imaging. Nucl. Med. Commun. 2013, 34, 694–700. [Google Scholar] [CrossRef]
- Group, E.B.C.T.C. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005, 365, 1687–1717. [Google Scholar]
- Hasan, J.; Ton, N.; Mullamitha, S.; Clamp, A.; McNeilly, A.; Marshall, E.; Jayson, G.C. Phase II trial of tamoxifen and goserelin in recurrent epithelial ovarian cancer. Br. J. Cancer 2005, 93, 647–651. [Google Scholar] [CrossRef] [Green Version]
- Argenta, P.A.; Thomas, S.G.; Judson, P.L.; Downs Jr, L.S.; Geller, M.A.; Carson, L.F.; Jonson, A.L.; Ghebre, R. A phase II study of fulvestrant in the treatment of multiply-recurrent epithelial ovarian cancer. Gynecol. Oncol. 2009, 113, 205–209. [Google Scholar] [CrossRef]
- Papadimitriou, C.A.; Markaki, S.; Siapkaras, J.; Vlachos, G.; Efstathiou, E.; Grimani, I.; Hamilos, G.; Zorzou, M.; Dimopoulos, M. Hormonal Therapy with Letrozole for Relapsed Epithelial Ovarian Cancer. Oncology 2004, 66, 112–117. [Google Scholar] [CrossRef]
- Wilailak, S.; Linasmita, V.; Srisupundit, S. Phase II study of high-dose megestrol acetate in platinum-refractory epithelial ovarian cancer. Anti-Cancer Drugs 2001, 12, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Group, E.B.C.T.C. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet 2011, 378, 771–784. [Google Scholar]
- van Kruchten, M.; de Vries, E.G.E.; Brown, M.; de Vries, E.F.J.; Glaudemans, A.W.J.M.; Dierckx, R.A.J.O.; Schröder, C.P.; Hospers, G.A.P. PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol. 2013, 14, e465–e475. [Google Scholar] [CrossRef]
- Yoshida, Y.; Kurokawa, T.; Tsujikawa, T.; Okazawa, H.; Kotsuji, F. Positron emission tomography in ovarian cancer: 18F-deoxy-glucose and 16α-18F-fluoro-17β-estradiol PET. J. Ovarian Res. 2009, 2, 7–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Kruchten, M.; de Vries, E.; Arts, H.J.; Jager, N.M.; Bongaerts, A.H.; Glaudemans, A.W.; Hollema, H.; de Vries, E.G.; Hospers, G.; Reyners, A.K. Assessment of estrogen receptor expression in epithelial ovarian cancer patients using 16α-18F-Fluoro-17β-Estradiol PET/CT. J. Nucl. Med. 2015, 56, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Hilliard, T.S. The impact of mesothelin in the ovarian cancer tumor microenvironment. Cancers 2018, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Lamberts, L.E.; Williams, S.P.; Van Scheltinga, A.G.T.; Hooge, M.N.L.-D.; Schroeder, C.P.; Gietema, J.; Brouwers, A.H.; De Vries, E.G.E. Antibody positron emission tomography imaging in anticancer drug development. J. Clin. Oncol. 2015, 33, 1491–1504. [Google Scholar] [CrossRef]
- Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 2005, 55, 74–108. [Google Scholar] [CrossRef]
- Jemal, A.; Siegel, R.; Ward, E. Cervical cancer. CA Cancer J. Clin. 2007, 57, 43–66. [Google Scholar] [CrossRef]
- Haltia, U.-M.; Butzow, R.; Leminen, A.; Loukovaara, M. FIGO 1988 versus 2009 staging for endometrial carcinoma: A comparative study on prediction of survival and stage distribution according to histologic subtype. J. Gynecol. Oncol. 2014, 25, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Alberini, J.-L.; Edeline, V.; Giraudet, A.L.; Champion, L.; Paulmier, B.; Madar, O.; Poinsignon, A.; Bellet, D.; Pecking, A.P. Single photon emission tomography/computed tomography (SPET/CT) and positron emission tomography/computed tomography (PET/CT) to image cancer. J. Surg. Oncol. 2011, 103, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Amit, A.; Schink, J.; Reiss, A.; Lowenstein, L. PET/CT in gynecologic cancer: Present applications and future prospects—a clinician’s perspective. PET Clin. 2010, 5, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, K.; Murakami, K.; Kaji, Y.; Sakamoto, S.; Sugimura, K. Established, emerging and future applications of FDG-PET/CT in the uterine cancer. Clin. Radiol. 2011, 66, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.N.; Nazir, S.A.; Khan, Z.; Gleeson, F.V.; Bradley, K.M. 18F-FDG PET/CT of cervical carcinoma. Am. J. Roentgenol. 2011, 196, 1225–1233. [Google Scholar] [CrossRef]
- Chang, M.-C.; Chen, J.-H.; Liang, J.-A.; Yang, K.-T.; Cheng, K.-Y.; Kao, C.-H. 18F-FDG PET or PET/CT for detection of metastatic lymph nodes in patients with endometrial cancer: A systematic review and meta-analysis. Eur. J. Radiol. 2012, 81, 3511–3517. [Google Scholar] [CrossRef]
- Bollineni, V.R.; Ytre-Hauge, S.; Bollineni-Balabay, O.; Salvesen, H.B.; Haldorsen, I.S. High diagnostic value of 18F-FDG PET/CT in endometrial cancer: Systematic review and meta-analysis of the literature. J. Nucl. Med. 2016, 57, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Boonya-Ussadorn, T.; Choi, W.H.; Hyun, J.; Kim, S.H.; Chung, S.K.; Yoo, I.R. 18F-FDG PET/CT findings in endometrial cancer patients: The correlation between SUVmax and clinicopathologic features. J. Med. Assoc. Thail. 2014, 97, 115–122. [Google Scholar]
- Tsuyoshi, H.; Tsujikawa, T.; Yamada, S.; Okazawa, H.; Yoshida, Y. Diagnostic value of [18F]FDG PET/MRI for staging in patients with ovarian cancer. EJNMMI Res. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Wu, C.; Chen, R.; Zhou, X.; Xia, Q.; Liu, J. Preoperative evaluation of residual tumor in patients with endometrial carcinoma by using 18F-FDG PET/CT. J. Cancer 2020, 11, 2283–2288. [Google Scholar] [CrossRef]
- Tsujikawa, T.; Yoshida, Y.; Mori, T.; Kurokawa, T.; Fujibayashi, Y.; Kotsuji, F.; Okazawa, H. Uterine tumors: Pathophysiologic imaging with 16α-[18F] fluoro-17β-estradiol and 18F fluorodeoxyglucose PET—initial experience. Radiology 2008, 248, 599–605. [Google Scholar] [CrossRef]
- Tsujikawa, T.; Yoshida, Y.; Kudo, T.; Kiyono, Y.; Kurokawa, T.; Kobayashi, M.; Tsuchida, T.; Fujibayashi, Y.; Kotsuji, F.; Okazawa, H. Functional images reflect aggressiveness of endometrial carcinoma: Estrogen receptor expression combined with 18F-FDG PET. J. Nucl. Med. 2009, 50, 1598–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canlorbe, G.; Rouzier, R.; Bendifallah, S.; Chéreau, E. Impact of sentinel node technique on the survival in patients with vulvar cancer: Analysis of the surveillance, epidemiology, and end results (SEER) database. Gynecol. Obstet. Fertil. 2012, 40, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Burger, M.; Hollema, H.; Emanuels, A.G.; Krans, M.; Pras, E.; Bouma, J. The importance of the groin node status for the survival of T1 and T2 Vulval carcinoma patients. Gynecol. Oncol. 1995, 57, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Crivellaro, C.; Guglielmo, P.; De Ponti, E.; Elisei, F.; Guerra, L.; Magni, S.; La Manna, M.; Di Martino, G.; Landoni, C.; Buda, A. 18F-FDG PET/CT in preoperative staging of vulvar cancer patients: Is it really effective? Medicine 2017, 96, e7943. [Google Scholar] [CrossRef]
- Collarino, A.; Donswijk, M.; van Driel, W.J.; Stokkel, M.P.; Olmos, R.A.V. The use of SPECT/CT for anatomical mapping of lymphatic drainage in vulvar cancer: Possible implications for the extent of inguinal lymph node dissection. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 2064–2071. [Google Scholar] [CrossRef]
- Bluemel, C.; Safak, G.; Cramer, A.; Wöckel, A.; Gesierich, A.; Hartmann, E.; Schmid, J.-S.; Kaiser, F.; Buck, A.K.; Herrmann, K. Fusion of freehand SPECT and ultrasound: First experience in preoperative localization of sentinel lymph nodes. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 2304–2312. [Google Scholar] [CrossRef]
- KleinJan, G.H.; Van Werkhoven, E.; Berg, N.S.V.D.; Karakullukcu, M.B.; Zijlmans, H.J.M.A.A.; Van Der Hage, J.A.; Van De Wiel, B.A.; Buckle, T.; Klop, W.M.C.; Horenblas, S.; et al. The best of both worlds: A hybrid approach for optimal pre- and intraoperative identification of sentinel lymph nodes. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1915–1925. [Google Scholar] [CrossRef] [Green Version]
- Mathéron, H.; Berg, N.V.D.; Brouwer, O.; KleinJan, G.; van Driel, W.J.; Trum, J.; Vegt, E.; Kenter, G.; van Leeuwen, F.; Olmos, R.V. Multimodal surgical guidance towards the sentinel node in vulvar cancer. Gynecol. Oncol. 2013, 131, 720–725. [Google Scholar] [CrossRef]
- Dell’Oglio, P.; de Vries, H.M.; Mazzone, E.; KleinJan, G.H.; Donswijk, M.L.; van der Poel, H.G.; Horenblas, S.; van Leeuwen, F.W.; Brouwer, O.R. Hybrid indocyanine green–99mTc-nanocolloid for single-photon emission computed tomography and combined radio-and fluorescence-guided sentinel node biopsy in penile cancer: Results of 740 inguinal basins assessed at a single institution. Eur. Urol. 2020, 78, 865–872. [Google Scholar] [CrossRef]
- Bayat, Z.; Saeedzadeh, E.; Vahidfar, N.; Sadeghi, M.; Farzenefar, S.; Daha, F.J.; Salehi, Y. Preparation and validation of [67Ga]Ga-phytate kit and Monte Carlo dosimetry: An effort toward developing an impressive lymphoscintigraphy tracer. J. Radioanal. Nucl. Chem. Artic. 2022, 331, 691–700. [Google Scholar] [CrossRef]
- Carter, J.S.; Downs, L.S. Vulvar and Vaginal Cancer. Obstet. Gynecol. Clin. N. Am. 2012, 39, 213–231. [Google Scholar] [CrossRef] [PubMed]
- Tinneberg, H.-R.; Zambo, K.; Koppán, M.; Paál, A.; Schmidt, E.; Bódis, J. Sentinel lymph nodes in gynaecological malignancies: Frontline between TNM and clinical staging systems? Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 1684–1688. [Google Scholar] [CrossRef]
- Kraft, O.; Havel, M. Detection of sentinel lymph nodes by SPECT/CT and planar scintigraphy: The influence of age, gender and BMI. J. Biomed. Graph. Comput. 2012, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Ayhan, A.; Celik, H.; Dursun, P. Lymphatic mapping and sentinel node biopsy in gynecological cancers: A critical review of the literature. World J. Surg. Oncol. 2008, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harisankar, C.N.B.; Mittal, B.R.; Bhattacharya, A.; Dhaliwal, L.K. Utility of SPECT/CT in sentinel lymph node detection in a case of vulvar carcinoma. Mol. Imaging Radionucl. Ther. 2013, 22, 106–108. [Google Scholar] [CrossRef]
- Rodier, J.; Janser, J.; David, E.; Routiot, T.; Ott, G. Radiopharmaceutical-Guided surgery in primary malignant melanoma of the vagina. Gynecol. Oncol. 1999, 75, 308–309. [Google Scholar] [CrossRef]
- Kobayashi, K.; Ramirez, P.T.; Kim, E.E.; Levenback, C.F.; Rohren, E.M.; Frumovitz, M.; Mar, M.V.; Gayed, I.W. Sentinel node mapping in vulvovaginal melanoma using SPECT/CT lymphoscintigraphy. Clin. Nucl. Med. 2009, 34, 859–861. [Google Scholar] [CrossRef]
- Abramova, L.; Parekh, J.; Irvin, W.P.; Rice, L.W.; Taylor, P.T.; Anderson, W.A.; Slingluff, C.L. Sentinel node biopsy in vulvar and vaginal melanoma: Presentation of six cases and a literature review. Ann. Surg. Oncol. 2002, 9, 840–846. [Google Scholar] [CrossRef]
- Dhar, K.; Das, N.; Brinkman, D.; Beynon, J.; Woolas, R. Utility of sentinel node biopsy in vulvar and vaginal melanoma: Report of two cases and review of the literature. Int. J. Gynecol. Cancer 2007, 17, 720–723. [Google Scholar] [CrossRef]
- Nakagawa, S.; Koga, K.; Kugu, K.; Tsutsumi, O.; Taketani, Y. The evaluation of the sentinel node successfully conducted in a case of malignant melanoma of the vagina. Gynecol. Oncol. 2002, 86, 387–389. [Google Scholar] [CrossRef]
- Soergel, P.; Hillemanns, P.; Klapdor, R.; Jentschke, M.; Christgen, M.; Hertel, H. Sentinel lymphonodectomy in early vaginal cancer using combined near infrared fluorescence from indocyanine green and technetium-99m nanocolloid–a first case report. Clin. Obstet. Gynecol. Reprod. Med. 2017, 3, 1–3. [Google Scholar]
- Van Dam, P.; Sonnemans, H.; Van Dam, P.-J.; Verkinderen, L.; Dirix, L.Y. Sentinel node detection in patients with vaginal carcinoma. Gynecol. Oncol. 2004, 92, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Frumovitz, M.; Gayed, I.W.; Jhingran, A.; Euscher, E.D.; Coleman, R.L.; Ramirez, P.T.; Levenback, C.F. Lymphatic mapping and sentinel lymph node detection in women with vaginal cancer. Gynecol. Oncol. 2008, 108, 478–481. [Google Scholar] [CrossRef]
- Boran, N.; Cırık, D.A.; Işıkdoğan, Z.; Kır, K.M.; Turan, T.; Tulunay, G.; Kose, M.F. Sentinel lymph node detection and accuracy in vulvar cancer: Experience of a tertiary center in Turkey. J. Turk. Gynecol. Assoc. 2013, 14, 146–152. [Google Scholar] [CrossRef]
- Levenback, C.F.; Ali, S.; Coleman, R.L.; Gold, M.A.; Fowler, J.M.; Judson, P.L.; Bell, M.C.; De Geest, K.; Spirtos, N.M.; Potkul, R.K.; et al. Lymphatic mapping and sentinel lymph node biopsy in women with squamous cell carcinoma of the vulva: A gynecologic oncology group study. J. Clin. Oncol. 2012, 30, 3786–3791. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Kim, D.-Y.; Suh, D.-S.; Kim, J.-H.; Kim, Y.-M.; Kim, Y.-T.; Nam, J.-H. The efficacy of sentinel lymph node mapping with indocyanine green in cervical cancer. World J. Surg. Oncol. 2018, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Husain, A.; Akhurst, T.; Larson, S.; Alektiar, K.; Barakat, R.R.; Chi, D.S. A prospective study of the accuracy of 18Fluorodeoxyglucose positron emission tomography (18FDG PET) in identifying sites of metastasis prior to pelvic exenteration. Gynecol. Oncol. 2007, 106, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lin, W.Y.; Liang, J.A.; Lu, Y.Y.; Wang, H.Y.; Tsai, S.C.; Kao, C.H. Opportunities for 2-[18F] fluoro-2-deoxy-D-glucose PET/CT in cervical-vaginal neuroendocrine carcinoma: case series and literature review. Korean J. Radiol. 2012, 13, 760–770. [Google Scholar] [CrossRef]
- Bentivegna, E.; Uzan, C.; Gouy, S.; Leboulleux, S.; Duvillard, P.; Lumbroso, J.; Haie-Meder, C.; Morice, P. The accuracy of FDG-PET/CT in early-stage cervical and vaginal cancers. Gynecol. Obstet. Fertil. 2011, 39, 193–197. [Google Scholar] [CrossRef]
- Rahman, W.T.; Wale, D.J.; Viglianti, B.L.; Townsend, D.M.; Manganaro, M.S.; Gross, M.D.; Wong, K.K.; Rubello, D. The impact of infection and inflammation in oncologic 18F-FDG PET/CT imaging. Biomed. Pharmacother. 2019, 117, 109168. [Google Scholar] [CrossRef]
- Almuhaideb, A.; Papathanasiou, N.; Bomanji, J. 18F-FDG PET/CT imaging in oncology. Ann. Saudi Med. 2011, 31, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Lakhani, A.; Khan, S.R.; Bharwani, N.; Stewart, V.; Rockall, A.; Khan, S.; Barwick, T.D. FDG PET/CT Pitfalls in gynecologic and genitourinary oncologic imaging. Radiographics 2017, 37, 577–594. [Google Scholar] [CrossRef] [Green Version]
- Charretier, Y.; Schrenzel, J. Mass spectrometry methods for predicting antibiotic resistance. Proteom.–Clin. Appl. 2016, 10, 964–981. [Google Scholar] [CrossRef]
- Vahidfar, N.; Aghanejad, A.; Ahmadzadehfar, H.; Farzanehfar, S.; Eppard, E. Theranostic advances in breast cancer in nuclear medicine. Int. J. Mol. Sci. 2021, 22, 4597. [Google Scholar] [CrossRef] [PubMed]
- Vahidfar, N.; Eppard, E.; Farzanehfar, S.; Yordanova, A.; Fallahpoor, M.; Ahmadzadehfar, H. An impressive approach in nuclear medicine: Theranostics. PET Clin. 2021, 16, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Gascard, P.; Tlsty, T.D. Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genes Dev. 2016, 30, 1002–1019. [Google Scholar] [CrossRef] [PubMed]
- Barbazán, J.; Vignjevic, D.M. Cancer associated fibroblasts: Is the force the path to the dark side? Curr. Opin. Cell Biol. 2019, 56, 71–79. [Google Scholar] [CrossRef]
- Dendl, K.; Koerber, S.A.; Finck, R.; Mokoala, K.M.G.; Staudinger, F.; Schillings, L.; Heger, U.; Röhrich, M.; Kratochwil, C.; Sathekge, M.; et al. 68Ga-FAPI-PET/CT in patients with various gynecological malignancies. Eur. J. Pediatr. 2021, 48, 4089–4100. [Google Scholar] [CrossRef]
- Cescato, R.; Maina, T.; Nock, B.; Nikolopoulou, A.; Charalambidis, D.; Piccand, V.; Reubi, J.C. Bombesin Receptor Antagonists May Be Preferable to Agonists for Tumor Targeting. J. Nucl. Med. 2008, 49, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Siripongsatian, D.; Promteangtrong, C.; Kunawudhi, A.; Kiatkittikul, P.; Chotipanich, C. Intense 68Ga-FAPI-46 Activity in Lesions of Recurrent Ovarian Clear Cell Carcinoma That Were Negative on FDG PET/CT Study. Clin. Nucl. Med. 2022, 47, e210–e212. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, S.; Tang, W.; Liu, L.; Chen, Y. 68Ga-DOTA-FAPI-04 PET/CT as a Promising tool for differentiating ovarian physiological uptake: Preliminary experience of comparative analysis with 18F-FDG. Front. Med. 2021, 8, 8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahidfar, N.; Farzanefar, S.; Ahmadzadehfar, H.; Molloy, E.N.; Eppard, E. A Review of Nuclear Medicine Approaches in the Diagnosis and the Treatment of Gynecological Malignancies. Cancers 2022, 14, 1779. https://doi.org/10.3390/cancers14071779
Vahidfar N, Farzanefar S, Ahmadzadehfar H, Molloy EN, Eppard E. A Review of Nuclear Medicine Approaches in the Diagnosis and the Treatment of Gynecological Malignancies. Cancers. 2022; 14(7):1779. https://doi.org/10.3390/cancers14071779
Chicago/Turabian StyleVahidfar, Nasim, Saeed Farzanefar, Hojjat Ahmadzadehfar, Eóin N. Molloy, and Elisabeth Eppard. 2022. "A Review of Nuclear Medicine Approaches in the Diagnosis and the Treatment of Gynecological Malignancies" Cancers 14, no. 7: 1779. https://doi.org/10.3390/cancers14071779
APA StyleVahidfar, N., Farzanefar, S., Ahmadzadehfar, H., Molloy, E. N., & Eppard, E. (2022). A Review of Nuclear Medicine Approaches in the Diagnosis and the Treatment of Gynecological Malignancies. Cancers, 14(7), 1779. https://doi.org/10.3390/cancers14071779