Updated Functional Roles of NAMPT in Carcinogenesis and Therapeutic Niches
Abstract
:Simple Summary
Abstract
1. Introduction
2. NAMPT Somatic Mutations and Cancer
3. NAMPT Distribution and Expression in Normal Cell Types
4. NAMPT Expression Levels in Cancers
5. NAMPT and Clinical Significance
6. NAMPT and Hepatoma
7. NAMPT and Breast Cancer
8. NAMPT and Colorectal Cancer
9. NAMPT and Melanoma
10. NAMPT and Other Cancers
11. NAMPT and Endothelial Cells
12. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; De Giorgis, T.; Kiess, W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 2015, 11, 535–546. [Google Scholar] [CrossRef]
- Samal, B.; Sun, Y.; Stearns, G.; Xie, C.; Suggs, S.; McNiece, I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. 1994, 14, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Gerner, R.R.; Klepsch, V.; Macheiner, S.; Arnhard, K.; Adolph, T.E.; Grander, C.; Wieser, V.; Pfister, A.; Moser, P.; Her-mann-Kleiter, N.; et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut 2018, 67, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- Revollo, J.R.; Grimm, A.A.; Imai, S.-I. The NAD Biosynthesis Pathway Mediated by Nicotinamide Phosphoribosyltransferase Regulates Sir2 Activity in Mammalian Cells. J. Biol. Chem. 2004, 279, 50754–50763. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, J.; Baur, J.A.; Imai, S.-I. NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab. 2018, 27, 513–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, M.; Mianabadi, F.; Mehrad-Majd, H. Circulating visfatin levels and cancers risk: A systematic review and meta-analysis. J. Cell. Physiol. 2019, 234, 5011–5022. [Google Scholar] [CrossRef]
- Guo, J.; Lam, L.T.; Longenecker, K.L.; Bui, M.H.; Idler, K.B.; Glaser, K.B.; Wilsbacher, J.L.; Tse, C.; Pappano, W.N.; Huang, T.-H. Identification of novel resistance mechanisms to NAMPT inhibition via the de novo NAD+ biosynthesis pathway and NAMPT mutation. Biochem. Biophys. Res. Commun. 2017, 491, 681–686. [Google Scholar] [CrossRef]
- Duarte-Pereira, S.; Silva, S.S.; Azevedo, L.; Castro, L.; Amorim, A.; Silva, R.M. NAMPT and NAPRT1: Novel polymorphisms and distribution of variants between normal tissues and tumor samples. Sci. Rep. 2014, 4, 6311. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Elkins, K.; Oh, A.; Thomas, O.; Wu, J.; Lisa, C.; Xiaozhang, Z.; Kwong, M.; Coons, M.; Brillantes, B.; et al. Structural Basis for Resistance to Diverse Classes of NAMPT Inhibitors. PLoS ONE 2014, 9, e109366. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.J.; Getz, G.; The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 2020, 578, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.E.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, R.; Kim, C.; Sei, E.; Foukakis, T.; Crosetto, N.; Chan, L.-K.; Srinivasan, M.; Zhang, H.; Meric-Bernstam, F.; Navin, N. Nanogrid single-nucleus RNA sequencing reveals phenotypic diversity in breast cancer. Nat. Commun. 2017, 8, 228. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Gao, R.; Sei, E.; Brandt, R.; Hartman, J.; Hatschek, T.; Crosetto, N.; Foukakis, T.; Navin, N.E. Chemoresistance Evo-lution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing. Cell 2018, 173, 879–893.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizi, E.; Carr, A.J.; Plitas, G.; Cornish, A.E.; Konopacki, C.; Prabhakaran, S.; Nainys, J.; Wu, K.; Kiseliovas, V.; Setty, M.; et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell 2018, 174, 1293–1308.e36. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.; Eum, H.H.; Lee, H.-O.; Lee, K.-M.; Lee, H.-B.; Kim, K.-T.; Ryu, H.S.; Kim, S.; Lee, J.E.; Park, Y.H.; et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat. Commun. 2017, 8, 15081. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Hebert, L.L.; Eschbacher, J.M.; Kim, S. Single-Cell RNA Sequencing of a Postmenopausal Normal Breast Tissue Identifies Multiple Cell Types That Contribute to Breast Cancer. Cancers 2020, 12, 3639. [Google Scholar] [CrossRef]
- Uhlén, M.; Björling, E.; Agaton, C.; Szigyarto, C.A.-K.; Amini, B.; Andersen, E.; Andersson, A.-C.; Angelidou, P.; Asplund, A.; Asplund, C.; et al. A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics. Mol. Cell. Proteom. MCP 2005, 4, 1920–1932. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh-Fanalou, S.; Hosseinkhani, S.; Nazarizadeh, A.; Ezzati-Mobaser, S.; Hesari, Z.; Aziminezhadan, P.; Abdolvahabi, Z.; Abolmaali, M.; Tavakoli-Yaraki, M.; Nourbakhsh, M. MiR-613 Promotes Cell Death in Breast Cancer Cells by Downregulation of Nicotinamide Phosphoribosyltransferase and Reduction of NAD. DNA Cell Biol. 2021, 40, 1026–1036. [Google Scholar] [CrossRef]
- Audrito, V.; Managò, A.; La Vecchia, S.; Zamporlini, F.; Vitale, N.; Baroni, G.; Cignetto, S.; Serra, S.; Bologna, C.; Stingi, A.; et al. Nicotinamide Phosphoribosyltransferase (NAMPT) as a Therapeutic Target in BRAF-Mutated Metastatic Melanoma. JNCI J. Natl. Cancer Inst. 2018, 110, 290–303. [Google Scholar] [CrossRef]
- Pazgan-Simon, M.; Kukla, M.; Zuwała-Jagiełło, J.; Derra, A.; Bator, M.; Menżyk, T.; Lekstan, A.; Grzebyk, E.; Simon, K. Serum visfatin and vaspin levels in hepatocellular carcinoma (HCC). PLoS ONE 2020, 15, e0227459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, N.; Chen, Y.; Yang, L.; He, S.; Liu, T. Visfatin increases miR-21 to promote migration in HCC. Cell. Mol. Biol. 2018, 64, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Zhang, J.; Zhang, J.; Guan, W.; Ren, W.; Liu, Y.; Xu, G. A Negative Feedback Loop Between NAMPT and TGF-β Signaling Pathway in Colorectal Cancer Cells. Onco Targets Ther. 2021, 14, 187–198. [Google Scholar] [CrossRef]
- Ye, C.; Qi, L.; Li, X.; Wang, J.; Yu, J.; Zhou, B.; Guo, C.; Chen, J.; Zheng, S. Targeting the NAD+ salvage pathway suppresses APC mutation-driven colorectal cancer growth and Wnt/β-catenin signaling via increasing Axin level. Cell Commun. Signal. 2020, 18, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.Y.; Wang, J.Z.; Gao, L.; Zhang, F.Y.; Wang, Q.; Liu, K.J.; Xiang, B. Inhibition of nicotinamide phosphoribosyltrans-ferase and depletion of nicotinamide adenine dinucleotide contribute to arsenic trioxide suppression of oral squamous cell carcinoma. Toxicol. Appl. Pharmacol. 2017, 331, 54–61. [Google Scholar] [CrossRef]
- Ju, H.-Q.; Zhuang, Z.-N.; Li, H.; Tian, T.; Lu, Y.-X.; Fan, X.-Q.; Zhou, H.-J.; Mo, H.-Y.; Sheng, H.; Chiao, P.J.; et al. Regulation of the Nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer. Cancer Lett. 2016, 379, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sharif, T.; Ahn, D.-G.; Liu, R.-Z.; Pringle, E.; Martell, E.; Dai, C.; Nunokawa, A.; Kwak, M.; Clements, D.; Murphy, J.P.; et al. The NAD+ salvage pathway modulates cancer cell viability via p73. Cell Death Differ. 2016, 23, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-P.; Zou, J.; Xu, Z.-Q.; Ruan, J.; Yang, S.-D.; Yin, Y.; Mu, H.-J. Association of leptin, visfatin, apelin, resistin and ad-iponectin with clear cell renal cell carcinoma. Oncol. Lett. 2017, 13, 463–468. [Google Scholar] [CrossRef] [Green Version]
- Sawicka-Gutaj, N.; Waligórska-Stachura, J.; Andrusiewicz, M.; Biczysko, M.; Sowiński, J.; Skrobisz, J.; Ruchała, M. Nicotina-mide phosphorybosiltransferase overexpression in thyroid malignancies and its correlation with tumor stage and with survivin/survivin DEx3 expression. Tumor Biol. 2015, 36, 7859–7863. [Google Scholar] [CrossRef] [Green Version]
- Venkateshaiah, S.U.; Khan, S.; Ling, W.; Bam, R.; Li, X.; van Rhee, F.; Usmani, S.; Barlogie, B.; Epstein, J.; Yaccoby, S. NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity. Exp. Hematol. 2013, 41, 547–557.e542. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Sanborn, J.Z.; Benz, S.; Szeto, C.; Hsu, F.; Kuhn, R.M.; Karolchik, D.; Archie, J.; Lenburg, M.; Esserman, L.J.; et al. The UCSC Cancer Genomics Browser. Nat. Methods 2009, 6, 239–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.-Q.; Lei, J.; Mao, L.-H.; Wang, Q.-L.; Xu, F.; Ran, T.; Zhou, Z.-H.; He, S. NAMPT and NAPRT, Key Enzymes in NAD Salvage Synthesis Pathway, Are of Negative Prognostic Value in Colorectal Cancer. Front. Oncol. 2019, 9, 736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Tang, W.; Chen, X.; Wang, S.; Wang, X.; Xu, H.; Li, L. The NAMPT/E2F2/SIRT1 axis promotes proliferation and inhibits p53-dependent apoptosis in human melanoma cells. Biochem. Biophys. Res. Commun. 2017, 493, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhu, S.; Wu, Z.; Huang, Y.; Liu, C.; Tang, S.; Wei, L. Elevated serum visfatin levels are associated with poor prognosis of hepatocellular carcinoma. Oncotarget 2017, 8, 23427–23435. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, K.; Song, H.; Wu, M.; Li, J.; Yong, Z.; Jiang, S.; Kuang, X.; Zhang, T. Visfatin is involved in promotion of colorectal carcinoma malignancy through an inducing EMT mechanism. Oncotarget 2016, 7, 32306–32317. [Google Scholar] [CrossRef] [Green Version]
- Hung, A.; Lo, S.; Hou, M.-F.; Lee, Y.-C.; Tsai, C.-H.; Chen, Y.-Y.; Liu, W.; Yi-Hsuan, L.; Lo, Y.-H.; Wang, C.-H.; et al. Extracellular Visfatin-Promoted Malignant Behavior in Breast Cancer Is Mediated Through c-Abl and STAT3 Activation. Clin. Cancer Res. 2016, 22, 4478–4490. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.-W.; Wang, Q.-J.; Xia, M.-M.; Qian, J. Elevated plasma visfatin levels correlate with poor prognosis of gastric cancer patients. Peptides 2014, 58, 60–64. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, R.; Zhao, M.; Li, L.; Fan, L.; Che, X.-M. High glucose promotes gastric cancer chemoresistance in vivo and in vitro. Mol. Med. Rep. 2015, 12, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Ke, H.-L.; Lin, H.-H.; Li, W.-M.; Li, C.-C.; Chang, L.-L.; Lee, Y.-C.; Huang, C.-N.; Wu, W.-J. High visfatin expression predicts poor prognosis of upper tract urothelial carcinoma patients. Am. J. Cancer Res. 2015, 5, 2447–2454. [Google Scholar]
- Cagnetta, A.; Cea, M.; Calimeri, T.; Acharya, C.; Fulciniti, M.; Tai, Y.-T.; Hideshima, T.; Chauhan, D.; Zhong, M.Y.; Patrone, F.; et al. Intracellular NAD+ depletion enhances bortezomib-induced anti-myeloma activity. Blood 2013, 122, 1243–1255. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-Y.; Tang, S.-H.; Zhou, X.-C.; Ye, Y.-H.; Xu, X.-Q.; Li, R.-Z. Preoperative serum visfatin levels and prognosis of breast cancer among Chinese women. Peptides 2014, 51, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Bi, T.; Qin, C.; Yang, X.; Pang, K. Expression of NAMPT is associated with breast invasive ductal carcinoma devel-opment and prognosis. Oncol. Lett. 2018, 15, 6648–6654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Thul, P.J.; Åkesson, L.; Wiking, M.; Mahdessian, D.; Geladaki, A.; Ait Blal, H.; Alm, T.; Asplund, A.; Björk, L.; Breckels, L.M.; et al. A subcellular map of the human proteome. Science 2017, 356, eaal3321. [Google Scholar] [CrossRef] [PubMed]
- Uhlen, M.; Oksvold, P.; Fagerberg, L.; Lundberg, E.; Jonasson, K.; Forsberg, M.; Zwahlen, M.; Kampf, C.; Wester, K.; Hober, S.; et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 2010, 28, 1248–1250. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A pathology atlas of the human cancer transcriptome. Science 2017, 357, 2507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Györffy, B.; Schäfer, R. Meta-analysis of gene expression profiles related to relapse-free survival in 1,079 breast cancer patients. Breast Cancer Res. Treat. 2008, 118, 433–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanokawa-Akakura, R.; Ostrakhovitch, E.A.; Akakura, S.; Goodwin, S.; Tabibzadeh, S. A H2S-Nampt Dependent Energetic Circuit Is Critical to Survival and Cytoprotection from Damage in Cancer Cells. PLoS ONE 2014, 9, e108537. [Google Scholar] [CrossRef] [Green Version]
- Ninomiya, S.; Shimizu, M.; Imai, K.; Takai, K.; Shiraki, M.; Hara, T.; Tsurumi, H.; Ishizaki, S.; Moriwaki, H. Possible Role of Visfatin in Hepatoma Progression and the Effects of Branched-Chain Amino Acids on Visfatin-Induced Proliferation in Human Hepatoma Cells. Cancer Prev. Res. 2011, 4, 2092–2100. [Google Scholar] [CrossRef] [Green Version]
- Schuster, S.; Penke, M.; Gorski, T.; Gebhardt, R.; Weiss, T.S.; Kiess, W.; Garten, A. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells. Biochem. Biophys. Res. Commun. 2015, 458, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Hasmann, M.; Schemainda, I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 2003, 63, 7436–7442. [Google Scholar] [PubMed]
- Podsednik, A.; Jiang, J.; Jacob, A.; Li, L.; Xu, H. Optical Redox Imaging of Treatment Responses to Nampt Inhibition and Combination Therapy in Triple-Negative Breast Cancer Cells. Int. J. Mol. Sci. 2021, 22, 5563. [Google Scholar] [CrossRef]
- Park, H.-J.; Kim, S.-R.; Kim, S.S.; Wee, H.-J.; Bae, M.-K.; Ryu, M.H.; Bae, S.-K. Visfatin promotes cell and tumor growth by upregulating Notch1 in breast cancer. Oncotarget 2014, 5, 5087–5099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholinejad, Z.; Kheiripour, N.; Nourbakhsh, M.; Ilbeigi, D.; Behroozfar, K.; Hesari, Z.; Golestani, A.; Shabani, M.; Einollahi, N. Extracellular NAMPT/Visfatin induces proliferation through ERK1/2 and AKT and inhibits apoptosis in breast cancer cells. Peptides 2017, 92, 9–15. [Google Scholar] [CrossRef]
- Behrouzfar, K.; Alaee, M.; Nourbakhsh, M.; Gholinejad, Z.; Golestani, A. Extracellular NAMPT/visfatin causes p53 deacety-lation via NAD production and SIRT1 activation in breast cancer cells. Cell Biochem. Funct. 2017, 35, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Kim, E.O.; Jeong, B.R.; Min, Y.J.; Park, J.W.; Kim, E.S.; Namgoong, I.S.; Kim, Y.I.; Lee, B.J. Visfatin stimulates pro-liferation of MCF-7 human breast cancer cells. Mol. Cells 2010, 30, 341–345. [Google Scholar] [CrossRef]
- Santidrian, A.F.; LeBoeuf, S.E.; Wold, E.D.; Ritland, M.; Forsyth, J.S.; Felding, B.H. Nicotinamide phosphoribosyltransferase can affect metastatic activity and cell adhesive functions by regulating integrins in breast cancer. DNA Repair 2014, 23, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.M.; Hwang, S.W.; Wang, T.; Park, C.W.; Ryu, Y.; Jung, J.; Shin, J.H.; Kim, S.; Lee, J.L.; Kim, C.W.; et al. Increased nic-otinamide adenine dinucleotide pool promotes colon cancer progression by suppressing reactive oxygen species level. Cancer Sci. 2018, 110, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Zhou, H.; Zhu, S.; Huang, J.; Zhao, X.; Ding, H.; Qin, L.; Pan, Y. Nicotinamide phosphoribosyl transferase regulates cell growth via the Sirt1/P53 signaling pathway and is a prognosis marker in colorectal cancer. J. Cell. Physiol. 2019, 234, 4385–4395. [Google Scholar] [CrossRef]
- Slomian, G.; Swietochowska, E.; Nowak, G.; Pawlas, K.; Zelazko, A.; Nowak, P. Chemotherapy and plasma adipokines level in patients with colorectal cancer. Postepy. Hig. Med. Dosw. 2017, 71, 281–290. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, J.; Zhang, R. Visfatin mediates doxorubicin resistance in human colorectal cancer cells via up regulation of multidrug resistance 1 (MDR1). Cancer Chemother. Pharmacol. 2017, 80, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Audrito, V.; Messana, V.G.; Moiso, E.; Vitale, N.; Arruga, F.; Brandimarte, L.; Gaudino, F.; Pellegrino, E.; Vaisitti, T.; Riganti, C.; et al. NAMPT Over-Expression Recapitulates the BRAF Inhibitor Resistant Phenotype Plasticity in Melanoma. Cancers 2020, 12, 3855. [Google Scholar] [CrossRef] [PubMed]
- Ohanna, M.; Cerezo, M.; Nottet, N.; Bille, K.; Didier, R.; Beranger, G.; Mograbi, B.; Rocchi, S.; Yvan-Charvet, L.; Ballotti, R.; et al. Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype. Genes Dev. 2018, 32, 448–461. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.T.; Li, L.; Brafford, P.A.; van den Eijnden, M.; Halloran, M.B.; Sproesser, K.; Haass, N.K.; Smalley, K.S.; Tsai, J.; Bollag, G.; et al. PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas. Pigment Cell Melanoma Res. 2010, 23, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Bułdak, R.; Bułdak, Ł.; Polaniak, R.; Kukla, M.; Birkner, E.; Kubina, R.; Kabała-Dzik, A.; Duława-Bułdak, A.; Żwirska-Korczala, K. Visfatin affects redox adaptative responses and proliferation in Me45 human malignant melanoma cells: An in vitro study. Oncol. Rep. 2012, 29, 771–778. [Google Scholar] [CrossRef]
- Pylaeva, E.; Harati, M.D.; Spyra, I.; Bordbari, S.; Strachan, S.; Thakur, B.K.; Höing, B.; Franklin, C.; Skokowa, J.; Welte, K.; et al. NAMPT signaling is critical for the proan-giogenic activity of tumor-associated neutrophils. Int. J. Cancer 2019, 144, 136–149. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, C.; Zhang, Y.; Gao, J.; Teng, F.; Tian, W.; Yang, W.; Yan, Y.; Xue, F. Visfatin stimulates endometrial cancer cell proliferation via activation of PI3K/Akt and MAPK/ERK1/2 signalling pathways. Gynecol. Oncol. 2016, 143, 168–178. [Google Scholar] [CrossRef]
- Ilhan, T.T.; Kebapcilar, A.; Yilmaz, S.A.; Ilhan, T.; Kerimoglu, O.S.; Pekin, A.T.; Akyurek, F.; Unlu, A.; Celik, C. Relations of Serum Visfatin and Resistin Levels with Endometrial Cancer and Factors Associated with its Prognosis. Asian Pac. J. Cancer Prev. 2015, 16, 4503–4508. [Google Scholar] [CrossRef] [Green Version]
- Abu Aboud, O.; Chen, C.-H.; Senapedis, W.; Baloglu, E.; Argueta, C.; Weiss, R.H. Dual and Specific Inhibition of NAMPT and PAK4 By KPT-9274 Decreases Kidney Cancer Growth. Mol. Cancer Ther. 2016, 15, 2119–2129. [Google Scholar] [CrossRef] [Green Version]
- Kato, H.; Ito, E.; Shi, W.; Alajez, N.M.; Yue, S.; Lee, C.; Chan, N.; Bhogal, N.; Coackley, C.L.; Vines, D.; et al. Efficacy of Com-bining GMX1777 with Radiation Therapy for Human Head and Neck Carcinoma. Clin. Cancer Res. 2010, 16, 898–911. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Miao, Z.; Jiang, J.; Yuan, S.; Fang, W.; Li, B.; Chen, Y. Visfatin Mediates SCLC Cells Migration across Brain Endothelial Cells through Upregulation of CCL2. Int. J. Mol. Sci. 2015, 16, 11439–11451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Tian, W.; Liu, Y.; Ju, Y.; Shen, Y.; Zhao, S.; Zhang, B.; Li, Y. Visfatin Triggers the Cell Motility of Non-Small Cell Lung Cancer via Up-Regulation of Matrix Metalloproteinases. Basic Clin. Pharmacol. Toxicol. 2016, 119, 548–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Z.; Liang, N.; Yang, H.; Li, S. Visfatin mediates doxorubicin resistance in human non-small-cell lung cancervi-aAkt-mediated up-regulation of ABCC1. Cell Prolif. 2017, 50, e12366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.-J.; Shen, N.-J.; Cheng, L.; Fang, Y.; Huang, H.; Li, K.-H. Visfatin triggers the in vitro migration of osteosarcoma cells via activation of NF-κB/IL-6 signals. Eur. J. Pharmacol. 2016, 791, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Liu, K.-R.; Zhang, J.-N.; Liu, Y.; Zhu, Y. Visfatin derived from ascites promotes ovarian cancer cell migration through Rho/ROCK signaling-mediated actin polymerization. Eur. J. Cancer Prev. 2015, 24, 231–239. [Google Scholar] [CrossRef]
- Elf, A.-K.; Bernhardt, P.; Hofving, T.; Arvidsson, Y.; Forssell-Aronsson, E.; Wängberg, B.; Nilsson, O.; Johanson, V. NAMPT Inhibitor GMX1778 Enhances the Efficacy of 177Lu-DOTATATE Treatment of Neuroendocrine Tumors. J. Nucl. Med. 2017, 58, 288–292. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Yan, P.-F.; Zhao, H.-Y.; Zhang, F.-C.; Zhao, W.-H.; Feng, M. Inhibitor of Nicotinamide Phosphoribosyltransferase Sensitizes Glioblastoma Cells to Temozolomide via Activating ROS/JNK Signaling Pathway. BioMed Res. Int. 2016, 2016, 1450843. [Google Scholar] [CrossRef]
- Bong, I.P.N.; Ng, C.C.; Fakiruddin, S.K.; Lim, M.N.; Zakaria, Z. Small interfering RNA-mediated silencing of nicotinamide phosphoribosyltransferase (NAMPT) and lysosomal trafficking regulator (LYST) induce growth inhibition and apoptosis in human multiple myeloma cells: A preliminary study. Bosn. J. Basic Med. Sci. 2016, 16, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-R.; Jung, Y.-H.; Park, H.-J.; Kim, M.-K.; Jeong, J.-W.; Jang, H.-O.; Yun, I.; Bae, S.-K.; Bae, M.-K. Upregulation of thromboxane synthase mediates visfatin-induced interleukin-8 expression and angiogenic activity in endothelial cells. Bio-chem. Biophys. Res. Commun. 2012, 418, 662–668. [Google Scholar] [CrossRef]
- Park, J.-W.; Kim, W.-H.; Shin, S.-H.; Kim, J.Y.; Yun, M.R.; Park, K.J.; Park, H.-Y. Visfatin exerts angiogenic effects on human umbilical vein endothelial cells through the mTOR signaling pathway. Biochim. Biophys. Acta 2011, 1813, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Bae, Y.-H.; Park, H.-J.; Kim, S.-R.; Kim, J.-Y.; Kang, Y.; Kim, J.-A.; Wee, H.-J.; Kageyama, R.; Jung, J.S.; Bae, M.-K.; et al. Notch1 mediates visfatin-induced FGF-2 up-regulation and endothelial angiogenesis. Cardiovasc. Res. 2011, 89, 436–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-Y.; Bae, Y.-H.; Bae, M.-K.; Kim, S.-R.; Park, H.-J.; Wee, H.-J.; Bae, S.-K. Visfatin through STAT3 activation enhances IL-6 expression that promotes endothelial angiogenesis. Biochim. Biophys. Acta 2009, 1793, 1759–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, J.; Xiao, Z.-J.; Liu, Z.-G.; Gong, H.-Y.; Yuan, Q.; Wang, S.; Li, Y.-J.; Jiang, D.-J. Involvement of dimethylarginine dime-thylaminohydrolase-2 in visfatin-enhanced angiogenic function of endothelial cells. Diabetes Metab. Res. Rev. 2009, 25, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Adya, R.; Tan, B.K.; Chen, J.; Randeva, H.S. Pre-B cell colony enhancing factor (PBEF)/visfatin induces secretion of MCP-1 in human endothelial cells: Role in visfatin-induced angiogenesis. Atherosclerosis 2009, 205, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Adya, R.; Tan, B.K.; Punn, A.; Chen, J.; Randeva, H.S. Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: Novel insights into visfatin-induced angiogenesis. Cardiovasc. Res. 2007, 78, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-R.; Bae, S.-K.; Choi, K.-S.; Park, S.-Y.; Jun, H.O.; Lee, J.-Y.; Jang, H.-O.; Yun, I.; Yoon, K.-H.; Kim, Y.-J.; et al. Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase 1/2. Biochem. Biophys. Res. Commun. 2007, 357, 150–156. [Google Scholar] [CrossRef]
Sample ID | Cancer Type Detailed | Protein Change | Mutation Type | Variant Type | Copy Number | Mutations in Sample |
---|---|---|---|---|---|---|
#1 | Mucinous Adenocarcinoma of the Colon and Rectum | Y69H | Missense | SNP | Diploid | 11,036 |
#2 | Mucinous Adenocarcinoma of the Colon and Rectum | L70V | Missense | SNP | Diploid | 11,036 |
#3 | Melanoma | G110K | Missense | DNP | Gain | 1246 |
#4 | Melanoma | A162T | Missense | SNP | Gain | 584 |
#5 | Breast Invasive Ductal Carcinoma | K170E | Missense | SNP | Diploid | 81 |
#6 | Prostate Adenocarcinoma | A208T | Missense | SNP | Diploid | 10 |
#7 | Colorectal Adenocarcinoma | K229T | Missense | SNP | Diploid | 12,010 |
#8 | Melanoma | P238L | Missense | SNP | Gain | 2784 |
#9 | Papillary Stomach Adenocarcinoma | K330Q | Missense | SNP | Diploid | 59 |
#10 | Esophageal Adenocarcinoma | E366 * | Nonsense | SNP | ShallowDel | 242 |
#11 | Renal Clear Cell Carcinoma | G381V | Missense | SNP | Gain | 78 |
#12 | Mucinous Adenocarcinoma of the Colon and Rectum | V404A | Missense | SNP | Diploid | 11,036 |
Symbol | Cancer Type | Prognosis | Endpoint | p Value | Case | Dataset | Method |
---|---|---|---|---|---|---|---|
NAMPT | Glioma | Poor | Overall survival | 0.014 | 153 | TCGA | RNA Seq |
NAMPT | Thyroid Cancer | - | Overall survival | N.S. | 501 | TCGA | RNA Seq |
NAMPT | Lung Cancer | - | Overall survival | 0.027 | 994 | TCGA | RNA Seq |
NAMPT | Colorectal Cancer | Good | Overall survival | 0.0059 | 597 | TCGA | RNA Seq |
NAMPT | Head and Neck Cancer | Poor | Overall survival | <0.001 | 499 | TCGA | RNA Seq |
NAMPT | Stomach Cancer | - | Overall survival | N.S. | 354 | TCGA | RNA Seq |
NAMPT | Liver Cancer | - | Overall survival | N.S. | 365 | TCGA | RNA Seq |
NAMPT | Pancreatic Cancer | Poor | Overall survival | <0.001 | 176 | TCGA | RNA Seq |
NAMPT | Renal Cancer | Poor | Overall survival | <0.001 | 877 | TCGA | RNA Seq |
NAMPT | Urothelial Cancer | Poor | Overall survival | 0.0064 | 406 | TCGA | RNA Seq |
NAMPT | Prostate Cancer | - | Overall survival | N.S. | 494 | TCGA | RNA Seq |
NAMPT | Testis Cancer | - | Overall survival | N.S. | 134 | TCGA | RNA Seq |
NAMPT | Breast Cancer | - | Overall survival | N.S. | 1075 | TCGA | RNA Seq |
NAMPT | Cervical Cancer | Poor | Overall survival | <0.001 | 291 | TCGA | RNA Seq |
NAMPT | Endometrial Cancer | Poor | Overall survival | 0.016 | 541 | TCGA | RNA Seq |
NAMPT | Ovarian Cancer | - | Overall survival | N.S. | 373 | TCGA | RNA Seq |
NAMPT | Melanoma | - | Overall survival | N.S. | 102 | TCGA | RNA Seq |
Symbol | Cancer Type | Prognosis | Endpoint | p Value | Case | Dataset | Method | Probe ID |
NAMPT | Breast Cancer | - | Relapse-free survival | N.S. | 2032 | E-MTAB-365, E-TABM-43, GSE: 11,121, 12,093, | Array | 1555167_s_at |
12,276, 1456, 16,391, 16,446, 16,716, 17,705, 17,907, | ||||||||
18,728, 19,615, 20,194, 20,271, 2034, 20,685, 20,711, | ||||||||
21,653, 22,093, 25,066, 2603, 26,971, 29,044, 2990, | ||||||||
31,448, 31,519, 32,646, 3494, 36,771, 37,946, 41,998, | ||||||||
42,568, 43,358, 43,365, 45,255, 4611, 46,184, 48,390, | ||||||||
50,948, 5327, 58,812, 61,304, 65,194, 6532, 69,031, | ||||||||
7390, 76,275, 78,958, 9195 | ||||||||
NAMPT | Ovarian Cancer | - | Progression-free survival | N.S. | 614 | GSE: 14,764, 15,622, 18,520, 19,829, 23,554, 26,193, | Array | 1555167_s_at |
26,712, 27,651, 30,161, 3149, 51,373, 63,885, 65,986, | RNA Seq | |||||||
9891, TCGA (n = 565) | ||||||||
NAMPT | Lung Cancer | - | Post-progression survival | N.S. | 138 | CAARRAY, GSE: 14,814, 19,188, 29,013, 30219, | Array | 1555167_s_at |
31,210, 3141, 31,908, 37,745, 43,580, 4573, 50,081, | RNA Seq | |||||||
8894, TCGA (n = 133) | ||||||||
NAMPT | Gastric Cancer | Good | Post-progression survival | 0.0024 | 384 | GSE: 14,210, 15,459, 22,377, 29,272, 51,105, 62,254 | Array | 1555167_s_at |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-C. Updated Functional Roles of NAMPT in Carcinogenesis and Therapeutic Niches. Cancers 2022, 14, 2059. https://doi.org/10.3390/cancers14092059
Lin T-C. Updated Functional Roles of NAMPT in Carcinogenesis and Therapeutic Niches. Cancers. 2022; 14(9):2059. https://doi.org/10.3390/cancers14092059
Chicago/Turabian StyleLin, Tsung-Chieh. 2022. "Updated Functional Roles of NAMPT in Carcinogenesis and Therapeutic Niches" Cancers 14, no. 9: 2059. https://doi.org/10.3390/cancers14092059
APA StyleLin, T. -C. (2022). Updated Functional Roles of NAMPT in Carcinogenesis and Therapeutic Niches. Cancers, 14(9), 2059. https://doi.org/10.3390/cancers14092059