Prognostic Significance of HER3 Expression in Patients with Cervical Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patients and Tumor Samples
2.2. Tissue Microarray Formation and Immunohistochemistry
2.3. Immunostaining Quantitative Evaluation
2.4. In-Silico Analysis of GSE44001
2.5. Statistical Analysis
3. Results
3.1. Patients’ Clinicopathological Characteristics
3.2. HER3 Expression and Its Prognostic Significance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, T.W.; Ryu, H.S.; Kim, S.C.; Enomoto, T.; Li, J.; Kim, K.H.; Shim, S.H.; Wang, P.H.; Therasakvichya, S.; Kobayashi, Y.; et al. Asian Society of Gynecologic Oncology International Workshop 2018. J. Gynecol. Oncol. 2019, 30, e39. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Welch, H.G.; Kramer, B.S.; Black, W.C. Epidemiologic Signatures in Cancer. N. Engl. J. Med. 2019, 381, 1378–1386. [Google Scholar] [CrossRef]
- Arbyn, M.; Xu, L.; Simoens, C.; Martin-Hirsch, P.P. Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database Syst. Rev. 2018, 5, CD009069. [Google Scholar] [CrossRef] [PubMed]
- Gien, L.T.; Beauchemin, M.C.; Thomas, G. Adenocarcinoma: A unique cervical cancer. Gynecol. Oncol. 2010, 116, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Czerniak, B.; Olszewska-Slonina, D. Biomarkers could facilitate prediction of worse clinical outcome of cancer with special insight to cervical cancer. Contemp. Oncol. 2018, 22, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.; Chen, G.; Wang, Y.; Zhang, L.; Long, Y.; Yuan, M.; Yang, D.; Liu, S.; Cheng, Y.; Zhang, L. Identification of candidate biomarkers correlated with the diagnosis and prognosis of cervical cancer via integrated bioinformatics analysis. OncoTargets Ther. 2019, 12, 4517–4532. [Google Scholar] [CrossRef] [Green Version]
- Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocana, A.; Pandiella, A. Targeting HER receptors in cancer. Curr. Pharm. Des. 2013, 19, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 2018, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature 2001, 411, 355–365. [Google Scholar] [CrossRef]
- Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer 2005, 5, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, C.L.; Engelman, J.A. ERBB receptors: From oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 2014, 25, 282–303. [Google Scholar] [CrossRef] [Green Version]
- Burden, S.; Yarden, Y. Neuregulins and their receptors: A versatile signaling module in organogenesis and oncogenesis. Neuron 1997, 18, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Gorgoulis, V.; Aninos, D.; Mikou, P.; Kanavaros, P.; Karameris, A.; Joardanoglou, J.; Rasidakis, A.; Veslemes, M.; Ozanne, B.; Spandidos, D.A. Expression of EGF, TGF-alpha and EGFR in squamous cell lung carcinomas. Anticancer Res. 1992, 12, 1183–1187. [Google Scholar] [PubMed]
- Irish, J.C.; Bernstein, A. Oncogenes in head and neck cancer. Laryngoscope 1993, 103, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Sugawa, N.; Ekstrand, A.J.; James, C.D.; Collins, V.P. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc. Natl. Acad. Sci. USA 1990, 87, 8602–8606. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.S.; Fletcher, J.A. The HER-2/neu oncogene in breast cancer: Prognostic factor, predictive factor, and target for therapy. Stem Cells 1998, 16, 413–428. [Google Scholar] [CrossRef] [PubMed]
- Issing, W.J.; Heppt, W.J.; Kastenbauer, E.R. erbB-3, a third member of the erbB/epidermal growth factor receptor gene family: Its expression in head and neck cancer cell lines. Eur. Arch. Oto-Rhino-Laryngol. 1993, 250, 392–395. [Google Scholar] [CrossRef]
- Gilbertson, R.J.; Perry, R.H.; Kelly, P.J.; Pearson, A.D.; Lunec, J. Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res. 1997, 57, 3272–3280. [Google Scholar] [PubMed]
- Li, Q.; Zhang, R.; Yan, H.; Zhao, P.; Wu, L.; Wang, H.; Li, T.; Cao, B. Prognostic significance of HER3 in patients with malignant solid tumors. Oncotarget 2017, 8, 67140–67151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klijn, J.G.; Berns, P.M.; Schmitz, P.I.; Foekens, J.A. The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: A review on 5232 patients. Endocr. Rev. 1992, 13, 3–17. [Google Scholar] [PubMed] [Green Version]
- Vogel, C.L.; Cobleigh, M.A.; Tripathy, D.; Gutheil, J.C.; Harris, L.N.; Fehrenbacher, L.; Slamon, D.J.; Murphy, M.; Novotny, W.F.; Burchmore, M.; et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 2002, 20, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Saltz, L.B.; Meropol, N.J.; Loehrer, P.J., Sr.; Needle, M.N.; Kopit, J.; Mayer, R.J. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol. 2004, 22, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Baselga, J.; Swain, S.M. Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3. Nat. Rev. Cancer 2009, 9, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, T.; Zhou, Z.N.; Flinn, R.J.; Wyckoff, J.; Boimel, P.J.; Pozzuto, M.; Coniglio, S.J.; Backer, J.M.; Bresnick, A.R.; Condeelis, J.S.; et al. Phosphoinositide 3-kinase signaling is critical for ErbB3-driven breast cancer cell motility and metastasis. Oncogene 2012, 31, 706–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2002, 2, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, I.; Seshacharyulu, P.; Haridas, D.; Rachagani, S.; Gupta, S.; Joshi, S.; Guda, C.; Yan, Y.; Jain, M.; Ganti, A.K.; et al. Novel HER3/MUC4 oncogenic signaling aggravates the tumorigenic phenotypes of pancreatic cancer cells. Oncotarget 2015, 6, 21085–21099. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Chen, Y.; Li, G.; Xia, L.; Gu, R.; Wen, X.; Ming, X.; Chen, H. Her3 is associated with poor survival of gastric adenocarcinoma: Her3 promotes proliferation, survival and migration of human gastric cancer mediated by PI3K/AKT signaling pathway. Med. Oncol. 2014, 31, 903. [Google Scholar] [CrossRef] [PubMed]
- Kiavue, N.; Cabel, L.; Melaabi, S.; Bataillon, G.; Callens, C.; Lerebours, F.; Pierga, J.Y.; Bidard, F.C. ERBB3 mutations in cancer: Biological aspects, prevalence and therapeutics. Oncogene 2020, 39, 487–502. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.Y.; La Choi, Y.; Kim, S.; Kim, M.; Kim, J.; Jung, S.P.; Choi, M.Y.; Lee, S.K.; Kil, W.H.; Lee, J.E.; et al. HER3 status by immunohistochemistry is correlated with poor prognosis in hormone receptor-negative breast cancer patients. Breast Cancer Res. Treat. 2013, 139, 741–750. [Google Scholar] [CrossRef]
- Ledel, F.; Hallstrom, M.; Ragnhammar, P.; Ohrling, K.; Edler, D. HER3 expression in patients with primary colorectal cancer and corresponding lymph node metastases related to clinical outcome. Eur. J. Cancer 2014, 50, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Yang, Y.S.; Xu, D.P.; Qu, J.H.; Guo, M.Z.; Gong, Y.; Huang, J. Comparative study on overexpression of HER2/neu and HER3 in gastric cancer. World J. Surg. 2009, 33, 2112–2118. [Google Scholar] [CrossRef] [PubMed]
- Baiocchi, G.; Lopes, A.; Coudry, R.A.; Rossi, B.M.; Soares, F.A.; Aguiar, S.; Guimaraes, G.C.; Ferreira, F.O.; Nakagawa, W.T. ErbB family immunohistochemical expression in colorectal cancer patients with higher risk of recurrence after radical surgery. Int. J. Colorectal Dis. 2009, 24, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.A.; Sorensen, B.S.; Melgard, P.; Fokdal, L.; Thykjaer, T.; Nexo, E. Expression of HER3, HER4 and their ligand heregulin-4 is associated with better survival in bladder cancer patients. Br. J. Cancer 2004, 91, 2034–2041. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, I.; Vorsteher, N.; Buhler, H.; Evers, K.; Sehouli, J.; Schaller, G.; Kummel, S. The prognostic significance of human epidermal growth factor receptor correlations in squamous cell cervical carcinoma. Anticancer Res. 2007, 27, 959–963. [Google Scholar] [PubMed]
- Mizuno, T.; Kojima, Y.; Yonemori, K.; Yoshida, H.; Sugiura, Y.; Ohtake, Y.; Okuma, H.S.; Nishikawa, T.; Tanioka, M.; Sudo, K.; et al. HER3 protein expression as a risk factor for post-operative recurrence in patients with early-stage adenocarcinoma and adenosquamous carcinoma of the cervix. Oncol. Lett. 2020, 20, 38. [Google Scholar] [CrossRef]
- Kim, T.J.; Lee, J.W.; Song, S.Y.; Choi, J.J.; Choi, C.H.; Kim, B.G.; Lee, J.H.; Bae, D.S. Increased expression of pAKT is associated with radiation resistance in cervical cancer. Br. J. Cancer 2006, 94, 1678–1682. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.Y.; Chung, J.Y.; Byeon, S.J.; Kim, C.J.; Lee, Y.Y.; Kim, T.J.; Lee, J.W.; Kim, B.G.; Chae, Y.L.; Oh, S.Y.; et al. Validation of Potential Protein Markers Predicting Chemoradioresistance in Early Cervical Cancer by Immunohistochemistry. Front. Oncol. 2021, 11, 665595. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Y.; Kim, T.J.; Kim, J.Y.; Choi, C.H.; Do, I.G.; Song, S.Y.; Sohn, I.; Jung, S.H.; Bae, D.S.; Lee, J.W.; et al. Genetic profiling to predict recurrence of early cervical cancer. Gynecol. Oncol. 2013, 131, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.H.; Chung, J.Y.; Park, H.S.; Jun, M.; Lee, Y.Y.; Kim, B.G.; Hewitt, S.M. Pancreatic adenocarcinoma up-regulated factor expression is associated with disease-specific survival in cervical cancer patients. Hum. Pathol. 2015, 46, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Brand, T.M.; Hartmann, S.; Bhola, N.E.; Peyser, N.D.; Li, H.; Zeng, Y.; Isaacson Wechsler, E.; Ranall, M.V.; Bandyopadhyay, S.; Duvvuri, U.; et al. Human Papillomavirus Regulates HER3 Expression in Head and Neck Cancer: Implications for Targeted HER3 Therapy in HPV(+) Patients. Clin. Cancer Res. 2017, 23, 3072–3083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takikita, M.; Xie, R.; Chung, J.Y.; Cho, H.; Ylaya, K.; Hong, S.M.; Moskaluk, C.A.; Hewitt, S.M. Membranous expression of Her3 is associated with a decreased survival in head and neck squamous cell carcinoma. J. Transl. Med. 2011, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.M.; Shrieve, D.C.; Zempolich, K.A.; Lee, R.J.; Hammond, E.; Handrahan, D.L.; Gaffney, D.K. Correlation between human epidermal growth factor receptor family (EGFR, HER2, HER3, HER4), phosphorylated Akt (P-Akt), and clinical outcomes after radiation therapy in carcinoma of the cervix. Gynecol. Oncol. 2005, 99, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Muthusami, S.; Sabanayagam, R.; Periyasamy, L.; Muruganantham, B.; Park, W.Y. A review on the role of epidermal growth factor signaling in the development, progression and treatment of cervical cancer. Int. J. Biol. Macromol. 2022, 194, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.J.; Huang, M.L.; Qin, Q.F.; Chen, Q.; Fang, K.; Wang, P.L. Prognostic Impact of Epidermal Growth Factor Receptor Overexpression in Patients with Cervical Cancer: A Meta-Analysis. PLoS ONE 2016, 11, e0158787. [Google Scholar] [CrossRef] [PubMed]
- Vosmik, M.; Laco, J.; Sirak, I.; Beranek, M.; Hovorkova, E.; Vosmikova, H.; Drastikova, M.; Hodek, M.; Zoul, Z.; Odrazka, K.; et al. Prognostic significance of human papillomavirus (HPV) status and expression of selected markers (HER2/neu, EGFR, VEGF, CD34, p63, p53 and Ki67/MIB-1) on outcome after (chemo-) radiotherapy in patients with squamous cell carcinoma of uterine cervix. Pathol. Oncol. Res. 2014, 20, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Iwamoto, T.; Gonzalez-Angulo, A.M.; Ferrer-Lozano, J.; Lluch, A.; Niikura, N.; Bartholomeusz, C.; Nakamura, S.; Hortobagyi, G.N.; Ueno, N.T. Prognostic impact of phosphorylated HER-2 in HER-2+ primary breast cancer. Oncologist 2011, 16, 956–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramic, S.; Asic, K.; Balja, M.P.; Paic, F.; Benkovic, V.; Knezevic, F. Correlation of phosphorylated HER2 with clinicopathological characteristics and efficacy of trastuzumab treatment for breast cancer. Anticancer Res. 2013, 33, 2509–2515. [Google Scholar] [PubMed]
- Frogne, T.; Laenkholm, A.V.; Lyng, M.B.; Henriksen, K.L.; Lykkesfeldt, A.E. Determination of HER2 phosphorylation at tyrosine 1221/1222 improves prediction of poor survival for breast cancer patients with hormone receptor-positive tumors. Breast Cancer Res. 2009, 11, R11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, A.; Badal, Y.; Nguyen, X.T.; Miller, J.; Chenna, A.; Tahir, H.; Newton, A.; Parry, G.; Williams, S. Profiling the HER3/PI3K pathway in breast tumors using proximity-directed assays identifies correlations between protein complexes and phosphoproteins. PLoS ONE 2011, 6, e16443. [Google Scholar] [CrossRef] [PubMed]
- Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Munoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Pollock, N.I.; Wang, L.; Wallweber, G.; Gooding, W.E.; Huang, W.; Chenna, A.; Winslow, J.; Sen, M.; DeGrave, K.A.; Li, H.; et al. Increased Expression of HER2, HER3, and HER2:HER3 Heterodimers in HPV-Positive HNSCC Using a Novel Proximity-Based Assay: Implications for Targeted Therapies. Clin. Cancer Res. 2015, 21, 4597–4606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paolini, F.; Curzio, G.; Melucci, E.; Terrenato, I.; Antoniani, B.; Carosi, M.; Mottolese, M.; Vici, P.; Mariani, L.; Venuti, A. Human papillomavirus 16 E2 interacts with neuregulin receptor degradation protein 1 affecting ErbB-3 expression in vitro and in clinical samples of cervical lesions. Eur. J. Cancer 2016, 58, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network; Albert Einstein College of Medicine; Analytical Biological Services; Barretos Cancer Hospital; Baylor College of Medicine; Beckman Research Institute of City of Hope; Buck Institute for Research on Aging; Canada’s Michael Smith Genome Sciences Centre; Helen, F.; Graham Cancer Center & Research Institute at Christiana Care Health Services; et al. Integrated genomic and molecular characterization of cervical cancer. Nature 2017, 543, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Greenman, C.; Stephens, P.; Smith, R.; Dalgliesh, G.L.; Hunter, C.; Bignell, G.; Davies, H.; Teague, J.; Butler, A.; Stevens, C.; et al. Patterns of somatic mutation in human cancer genomes. Nature 2007, 446, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Rose, P.G.; Java, J.J.; Whitney, C.W.; Stehman, F.B.; Lanciano, R.; Thomas, G.M. Locally advanced adenocarcinoma and adenosquamous carcinomas of the cervix compared to squamous cell carcinomas of the cervix in gynecologic oncology group trials of cisplatin-based chemoradiation. Gynecol. Oncol. 2014, 135, 208–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Almeida, V.H.; de Melo, A.C.; Meira, D.D.; Pires, A.C.; Nogueira-Rodrigues, A.; Pimenta-Inada, H.K.; Alves, F.G.; Moralez, G.; Thiago, L.S.; Ferreira, C.G.; et al. Radiotherapy modulates expression of EGFR, ERCC1 and p53 in cervical cancer. Braz. J. Med. Biol. Res. 2017, 51, e6822. [Google Scholar] [CrossRef] [Green Version]
- Dittmann, K.; Mayer, C.; Fehrenbacher, B.; Schaller, M.; Raju, U.; Milas, L.; Chen, D.J.; Kehlbach, R.; Rodemann, H.P. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J. Biol. Chem. 2005, 280, 31182–31189. [Google Scholar] [CrossRef] [Green Version]
- Dittmann, K.; Mayer, C.; Fehrenbacher, B.; Schaller, M.; Kehlbach, R.; Rodemann, H.P. Nuclear EGFR shuttling induced by ionizing radiation is regulated by phosphorylation at residue Thr654. FEBS Lett. 2010, 584, 3878–3884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redlich, N.; Robinson, A.M.; Nickel, K.P.; Stein, A.P.; Wheeler, D.L.; Adkins, D.R.; Uppaluri, R.; Kimple, R.J.; Van Tine, B.A.; Michel, L.S. Anti-Trop2 blockade enhances the therapeutic efficacy of ErbB3 inhibition in head and neck squamous cell carcinoma. Cell Death Dis. 2018, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Ritter, C.A.; Perez-Torres, M.; Rinehart, C.; Guix, M.; Dugger, T.; Engelman, J.A.; Arteaga, C.L. Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin. Cancer Res. 2007, 13, 4909–4919. [Google Scholar] [CrossRef] [Green Version]
- Bourillon, L.; Demontoy, S.; Lenglet, A.; Zampieri, A.; Fraisse, J.; Jarlier, M.; Boissiere-Michot, F.; Perrochia, H.; Rathat, G.; Garambois, V.; et al. Higher Anti-Tumor Efficacy of the Dual HER3-EGFR Antibody MEHD7945a Combined with Ionizing Irradiation in Cervical Cancer Cells. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 1039–1051. [Google Scholar] [CrossRef]
HER3 | pHER3 | |||||
---|---|---|---|---|---|---|
Negative | Positive | p-Value | Negative | Positive | p-Value | |
Age, years, median [range] | 48.0 [42.0–58.0] | 48.0 [41.0–56.0] | 0.549 | 48.0 [41.0–57.0] | 47.5 [39.0–56.0] | 0.593 |
Stage, n [%] | 0.406 | 0.107 | ||||
IB | 200 [87.7%] | 87 [83.7%] | 256 [85.3%] | 22 [100.0%] | ||
IIB | 28 [12.3%] | 17 [16.3%] | 44 [14.7%] | 0 [0.0%] | ||
Primary Treatment, n [%] | 0.528 | 0.286 | ||||
OP only | 119 [52.2%] | 48 [46.2%] | 146 [48.7%] | 12 [54.5%] | ||
OP + RT/CCRT | 109 [47.8%] | 56 [53.8%] | 154 [51.3%] | 10 [45.5%] | ||
LN Metastasis, n [%] | 0.690 | 0.571 | ||||
Negative | 175 [76.8%] | 77 [74.0%] | 228 [76.0%] | 15 [68.2%] | ||
Positive | 53 [23.2%] | 27 [26.0%] | 72 [24.0%] | 7 [31.8%] | ||
Cell type, n [%] | 0.003 | 0.770 | ||||
SCC | 185 [81.1%] | 68 [65.4%] | 230 [76.7%] | 18 [81.8%] | ||
AD/ASC | 43 [18.8%] | 36 [34.6%] | 70 [23.3%] | 4 [18.2%] | ||
RT resistance, n [%] | 0.056 | 0.119 | ||||
Sensitive | 79 [89.8%] | 34 [75.6%] | 108 [86.4%] | 4 [57.1%] | ||
Resistant | 9 [10.2%] | 11 [24.4%] | 17 [13.6%] | 3 [42.9%] | ||
Tumor size, n [%] | 3.0 [2.0–4.0] | 3.2 [2.4–4.2] | 0.171 | 3.0 [2.2–4.0] | 3.0 [1.2–4.2] | 0.357 |
PM involvement, n [%] | 1.000 | 0.226 | ||||
Negative | 207 [90.8%] | 94 [90.4%] | 269 [89.7%] | 22 [100.0%] | ||
Positive | 21 [9.2%] | 10 [9.6%] | 31 [10.3%] | 0 [0.0%] | ||
Resection margin, n [%] | 0.337 | 0.709 | ||||
Negative | 217 [95.2%] | 102 [98.1%] | 288 [96.0%] | 22 [100.0%] | ||
Positive | 11 [4.8%] | 2 [1.9%] | 12 [4.0%] | 0 [0.0%] |
Variables | Disease-Free Survival | Overall Survival | ||
---|---|---|---|---|
HR [95% CI] | p-Value | HR [95% CI] | p-Value | |
Stage (ⅡB vs. IB) | 1.59 [0.78–3.27] | 0.202 | 1.79 [0.61–5.29] | 0.290 |
LN metastasis | 4.13 [2.21–7.72] | <0.001 | 3.02 [1.18–7.74] | 0.021 |
Cell type (AD vs. SCC) | 3.05 [1.68–5.54] | <0.001 | 4.44 [1.76–11.19] | 0.002 |
Tumor size | 1.04 [0.86–1.24] | 0.707 | 1.00 [0.77–1.30] | 0.991 |
PM involvement | 1.33 [0.57–3.10] | 0.503 | 2.04 [0.60–6.98] | 0.256 |
HER3 (Positive vs. negative) | 2.58 [1.42–4.67] | 0.002 | 3.21 [1.26–8.14] | 0.014 |
pHER3 (Positive vs. negative) | 1.91 [0.72–5.06] | 0.194 | 2.10 [0.45–9.82] | 0.346 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-S.; Shim, J.I.; Byeon, S.-J.; Lee, E.J.; Lee, Y.-Y.; Kim, T.-J.; Lee, J.-W.; Kim, B.-G.; Choi, C.H. Prognostic Significance of HER3 Expression in Patients with Cervical Cancer. Cancers 2022, 14, 2139. https://doi.org/10.3390/cancers14092139
Chang C-S, Shim JI, Byeon S-J, Lee EJ, Lee Y-Y, Kim T-J, Lee J-W, Kim B-G, Choi CH. Prognostic Significance of HER3 Expression in Patients with Cervical Cancer. Cancers. 2022; 14(9):2139. https://doi.org/10.3390/cancers14092139
Chicago/Turabian StyleChang, Chi-Son, Jung In Shim, Sun-Ju Byeon, Eun Jin Lee, Yoo-Young Lee, Tae-Joong Kim, Jeong-Won Lee, Byoung-Gie Kim, and Chel Hun Choi. 2022. "Prognostic Significance of HER3 Expression in Patients with Cervical Cancer" Cancers 14, no. 9: 2139. https://doi.org/10.3390/cancers14092139
APA StyleChang, C. -S., Shim, J. I., Byeon, S. -J., Lee, E. J., Lee, Y. -Y., Kim, T. -J., Lee, J. -W., Kim, B. -G., & Choi, C. H. (2022). Prognostic Significance of HER3 Expression in Patients with Cervical Cancer. Cancers, 14(9), 2139. https://doi.org/10.3390/cancers14092139