Intratumoral Platelets: Harmful or Incidental Bystanders of the Tumor Microenvironment?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Clinical Evidence That Platelets Impact Tumor Progression and Response to Therapy
3. Tumor Cell-Platelet Interactions: Mechanisms and Functional Consequences
4. Intratumoral Platelets: Occurrence and Possible Origins
5. Shaping of the Tumor Microenvironment by Platelets
5.1. Platelets and Tumor Angiogenesis and Vascular Integrity
5.2. Platelets and Tumor Lymphangiogenesis
5.3. Platelets and the Tumor Immune Microenvironment
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Runa, F.; Hamalian, S.; Meade, K.; Shisgal, P.; Gray, P.C.; Kelber, J.A. Tumor Microenvironment Heterogeneity: Challenges and Opportunities. Curr. Mol. Biol. Rep. 2017, 3, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Ruffell, B.; Au, A.; Rugo, H.S.; Esserman, L.J.; Hwang, E.S.; Coussens, L.M. Leukocyte Composition of Human Breast Cancer. Proc. Natl. Acad. Sci. USA 2012, 109, 2796–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tammela, T.; Sanchez-Rivera, F.J.; Cetinbas, N.M.; Wu, K.; Joshi, N.S.; Helenius, K.; Park, Y.; Azimi, R.; Kerper, N.R.; Wesselhoeft, R.A.; et al. A Wnt-Producing Niche Drives Proliferative Potential and Progression in Lung Adenocarcinoma. Nature 2017, 545, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.S.; Ibaseta, A.; Fischer, M.M.; Cancilla, B.; O’Young, G.; Cristea, S.; Luca, V.C.; Yang, D.; Jahchan, N.S.; Hamard, C.; et al. Intratumoural Heterogeneity Generated by Notch Signalling Promotes Small-Cell Lung Cancer. Nature 2017, 545, 360–364. [Google Scholar] [CrossRef]
- Hanahan, D.; Coussens, L.M. Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell 2012, 21, 309–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López de Andrés, J.; Griñán-Lisón, C.; Jiménez, G.; Marchal, J.A. Cancer Stem Cell Secretome in the Tumor Microenvironment: A Key Point for an Effective Personalized Cancer Treatment. J. Hematol. Oncol. 2020, 13, 136. [Google Scholar] [CrossRef]
- Anderson, N.M.; Simon, M.C. The Tumor Microenvironment. Curr. Biol. 2020, 30, R921–R925. [Google Scholar] [CrossRef] [PubMed]
- Pallegar, N.K.; Christian, S.L. Adipocytes in the Tumour Microenvironment. Adv. Exp. Med. Biol. 2020, 1234, 1–13. [Google Scholar] [CrossRef]
- Gasic, G.J.; Gasic, T.B.; Stewart, C.C. Antimetastatic Effects Associated with Platelet Reduction. Proc. Natl. Acad. Sci. USA 1968, 61, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.R.; Zhang, D.; Oswald, B.E.; Carrim, N.; Wang, X.; Hou, Y.; Zhang, Q.; Lavalle, C.; McKeown, T.; Marshall, A.H.; et al. Platelets Are Versatile Cells: New Discoveries in Hemostasis, Thrombosis, Immune Responses, Tumor Metastasis and Beyond. Crit. Rev. Clin. Lab. Sci. 2016, 53, 409–430. [Google Scholar] [CrossRef]
- Bourne, J.H.; Beristain-Covarrubias, N.; Zuidscherwoude, M.; Campos, J.; Di, Y.; Garlick, E.; Colicchia, M.; Terry, L.V.; Thomas, S.G.; Brill, A.; et al. CLEC-2 Prevents Accumulation and Retention of Inflammatory Macrophages During Murine Peritonitis. Front. Immunol. 2021, 12, 693974. [Google Scholar] [CrossRef] [PubMed]
- Gros, A.; Ollivier, V.; Ho-Tin-Noé, B. Platelets in Inflammation: Regulation of Leukocyte Activities and Vascular Repair. Front. Immunol. 2015, 6, 678. [Google Scholar] [CrossRef] [PubMed]
- Kisucka, J.; Butterfield, C.E.; Duda, D.G.; Eichenberger, S.C.; Saffaripour, S.; Ware, J.; Ruggeri, Z.M.; Jain, R.K.; Folkman, J.; Wagner, D.D. Platelets and Platelet Adhesion Support Angiogenesis While Preventing Excessive Hemorrhage. Proc. Natl. Acad. Sci. USA 2006, 103, 855–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klement, G.L.; Yip, T.T.; Cassiola, F.; Kikuchi, L.; Cervi, D.; Podust, V.; Italiano, J.E.; Wheatley, E.; Abou-Slaybi, A.; Bender, E.; et al. Platelets Actively Sequester Angiogenesis Regulators. Blood 2009, 113, 2835–2842. [Google Scholar] [CrossRef]
- Walsh, T.G.; Metharom, P.; Berndt, M.C. The Functional Role of Platelets in the Regulation of Angiogenesis. Platelets 2015, 26, 199–211. [Google Scholar] [CrossRef]
- Lim, L.; Bui, H.; Farrelly, O.; Yang, J.; Li, L.; Enis, D.; Ma, W.; Chen, M.; Oliver, G.; Welsh, J.D.; et al. Hemostasis Stimulates Lymphangiogenesis through Release and Activation of VEGFC. Blood 2019, 134, 1764–1775. [Google Scholar] [CrossRef]
- Osada, M.; Inoue, O.; Ding, G.; Shirai, T.; Ichise, H.; Hirayama, K.; Takano, K.; Yatomi, Y.; Hirashima, M.; Fujii, H.; et al. Platelet Activation Receptor CLEC-2 Regulates Blood/Lymphatic Vessel Separation by Inhibiting Proliferation, Migration, and Tube Formation of Lymphatic Endothelial Cells. J. Biol. Chem. 2012, 287, 22241–22252. [Google Scholar] [CrossRef] [Green Version]
- Bertozzi, C.C.; Hess, P.R.; Kahn, M.L. Platelets: Covert Regulators of Lymphatic Development. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2368–2371. [Google Scholar] [CrossRef]
- Wichaiyo, S.; Lax, S.; Montague, S.J.; Li, Z.; Grygielska, B.; Pike, J.A.; Haining, E.J.; Brill, A.; Watson, S.P.; Rayes, J. Platelet Glycoprotein VI and C-Type Lectin-like Receptor 2 Deficiency Accelerates Wound Healing by Impairing Vascular Integrity in Mice. Haematologica 2019, 104, 1648–1660. [Google Scholar] [CrossRef]
- Levoux, J.; Prola, A.; Lafuste, P.; Gervais, M.; Chevallier, N.; Koumaiha, Z.; Kefi, K.; Braud, L.; Schmitt, A.; Yacia, A.; et al. Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metab. 2021, 33, 283–299.e9. [Google Scholar] [CrossRef]
- Manne, B.K.; Xiang, S.C.; Rondina, M.T. Platelet Secretion in Inflammatory and Infectious Diseases. Platelets 2017, 28, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Giannini, S.; Falet, H.; Hoffmeister, K. Platelet Glycobiology and the Control of Platelet Function and Lifespan. In Platelets; Academic Press: Cambridge, UK, 2019; pp. 79–97. ISBN 9780128134566. [Google Scholar]
- Trousseau, A. Phlegmatia Alba Dolens. In Clinique Médicale de l’Hotel-Dieu de Paris; J.-B. Baillière et Fils: Paris, France, 1865; Volume 3, pp. 654–712. [Google Scholar]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism Is a Leading Cause of Death in Cancer Patients Receiving Outpatient Chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Møller Pedersen, L.; Milman, N. Prognostic Significance of Thrombocytosis in Patients with Primary Lung Cancer. Eur. Respir. J. 1996, 9, 1826–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taucher, S.; Salat, A.; Gnant, M.; Kwasny, W.; Mlineritsch, B.; Menzel, R.C.; Schmid, M.; Smola, M.G.; Stierer, M.; Tausch, C.; et al. Impact of Pretreatment Thrombocytosis on Survival in Primary Breast Cancer. Thromb. Haemost. 2003, 89, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Symbas, N.P.; Townsend, M.F.; El-Galley, R.; Keane, T.E.; Graham, S.D.; Petros, J.A. Poor Prognosis Associated with Thrombocytosis in Patients with Renal Cell Carcinoma. BJU Int. 2000, 86, 203–207. [Google Scholar] [CrossRef]
- Brockmann, M.A.; Giese, A.; Mueller, K.; Kaba, F.J.; Lohr, F.; Weiss, C.; Gottschalk, S.; Nolte, I.; Leppert, J.; Tuettenberg, J.; et al. Preoperative Thrombocytosis Predicts Poor Survival in Patients with Glioblastoma. Neuro. Oncol. 2007, 9, 335–342. [Google Scholar] [CrossRef]
- Sarma, D.; Kim, S.Y.; Henry, D.H. Assessing a Prognostic Model for Predicting VTE Occurrence in Cancer Patients. J. Clin. Oncol. 2012, 30, 1577. [Google Scholar] [CrossRef]
- Bottsford-Miller, J.; Choi, H.J.; Dalton, H.J.; Stone, R.L.; Cho, M.S.; Haemmerle, M.; Nick, A.M.; Pradeep, S.; Zand, B.; Previs, R.A.; et al. Differential Platelet Levels Affect Response to Taxane-Based Therapy in Ovarian Cancer. Clin. Cancer Res. 2015, 21, 602–610. [Google Scholar] [CrossRef] [Green Version]
- Voutsadakis, I.A. Thrombocytosis as a Prognostic Marker in Gastrointestinal Cancers. World J. Gastrointest. Oncol. 2014, 6, 34–40. [Google Scholar] [CrossRef]
- Hur, J.Y.; Lee, H.Y.; Chang, H.J.; Choi, C.W.; Kim, D.H.; Eo, W.K. Preoperative Plateletcrit Is a Prognostic Biomarker for Survival in Patients with Non-Small Cell Lung Cancer. J. Cancer 2020, 11, 2800–2807. [Google Scholar] [CrossRef] [Green Version]
- Yun, Z.Y.; Zhang, X.; Liu, Y.S.; Liu, T.; Liu, Z.P.; Wang, R.T.; Yu, K.J. Lower Mean Platelet Volume Predicts Poor Prognosis in Renal Cell Carcinoma. Sci. Rep. 2017, 7, 6700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, W.; Ge, X.X.; Wu, J.; Gong, F.R.; Wu, M.Y.; Xu, M.D.; Lian, L.; Wang, W.J.; Li, W.; Tao, M. Prognostic Evaluation of Resectable Colorectal Cancer Using Platelet-Associated Indicators. Oncol. Lett. 2019, 18, 571–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Cui, M.M.; Xu, Y.; Liu, L.; Niu, Y.; Liu, T.; Liu, Z.P.; Wang, R.T.; Yu, K.J. Decreased Mean Platelet Volume Predicts Poor Prognosis in Invasive Bladder Cancer. Oncotarget 2017, 8, 68115–68122. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Yu, Z.; Zhang, X.; Liu, T.; Sun, Y.X.; Wang, R.T.; Yu, K.J. Elevated Mean Platelet Volume Predicts Poor Prognosis in Colorectal Cancer. Sci. Rep. 2017, 7, 10261. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.M.; Xia, Y.Y.; Lian, L.; Zhou, C.; Li, X.L.; Han, S.G.; Zheng, Y.; Gong, F.R.; Tao, M.; Mao, Z.Q.; et al. Mean Platelet Volume Provides Beneficial Diagnostic and Prognostic Information for Patients with Resectable Gastric Cancer. Oncol. Lett. 2016, 12, 2501–2506. [Google Scholar] [CrossRef] [Green Version]
- Handtke, S.; Thiele, T. Large and Small Platelets—(When) Do They Differ? J. Thromb. Haemost. 2020, 18, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fang, M.; Li, J.; Yang, R.; Du, J.; Luo, Y. High Platelet Levels Attenuate the Efficacy of Platinum-Based Treatment in Non-Small Cell Lung Cancer. Cell. Physiol. Biochem. 2018, 48, 2456–2469. [Google Scholar] [CrossRef]
- Hu, Q.; Hada, A.; Han, L. Platelet Count as a Biomarker for Monitoring Treatment Response and Disease Recurrence in Recurrent Epithelial Ovarian Cancer. J. Ovarian Res. 2020, 13, 78. [Google Scholar] [CrossRef]
- Elaskalani, O.; Falasca, M.; Moran, N.; Berndt, M.C.; Metharom, P. The Role of Platelet-Derived ADP and ATP in Promoting Pancreatic Cancer Cell Survival and Gemcitabine Resistance. Cancers 2017, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Darga, E.P.; Dolce, E.M.; Fang, F.; Kidwell, K.M.; Gersch, C.L.; Kregel, S.; Thomas, D.G.; Gill, A.; Brown, M.E.; Gross, S.; et al. PD-L1 Expression on Circulating Tumor Cells and Platelets in Patients with Metastatic Breast Cancer. PLoS ONE 2021, 16, e0260124. [Google Scholar] [CrossRef]
- Rolfes, V.; Idel, C.; Pries, R.; Plötze-Martin, K.; Habermann, J.; Gemoll, T.; Bohnet, S.; Latz, E.; Ribbat-Idel, J.; Franklin, B.S.; et al. PD-L1 Is Expressed on Human Platelets and Is Affected by Immune Checkpoint Therapy. Oncotarget 2018, 9, 27460–27470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinterleitner, C.; Strähle, J.; Malenke, E.; Hinterleitner, M.; Henning, M.; Seehawer, M.; Bilich, T.; Heitmann, J.; Lutz, M.; Mattern, S.; et al. Platelet PD-L1 Reflects Collective Intratumoral PD-L1 Expression and Predicts Immunotherapy Response in Non-Small Cell Lung Cancer. Nat. Commun. 2021, 12, 7005. [Google Scholar] [CrossRef] [PubMed]
- Chubak, J.; Whitlock, E.P.; Williams, S.B.; Kamineni, A.; Burda, B.U.; Buist, D.S.M.; Anderson, M.L. Aspirin for the Prevention of Cancer Incidence and Mortality: Systematic Evidence Reviews for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2016, 164, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Miguel, A.; García-Rodríguez, L.A.; Gil, M.; Montoya, H.; Rodríguez-Martín, S.; de Abajo, F.J. Clopidogrel and Low-Dose Aspirin, Alone or Together, Reduce Risk of Colorectal Cancer. Clin. Gastroenterol. Hepatol. 2019, 17, 2024–2033.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elaskalani, O.; Domenchini, A.; Razak, N.B.A.; Dye, D.E.; Falasca, M.; Metharom, P. Antiplatelet Drug Ticagrelor Enhances Chemotherapeutic Efficacy by Targeting the Novel P2Y12-AKT Pathway in Pancreatic Cancer Cells. Cancers 2020, 12, 250. [Google Scholar] [CrossRef] [Green Version]
- Ballerini, P.; Dovizio, M.; Bruno, A.; Tacconelli, S.; Patrignani, P. P2Y12 Receptors in Tumorigenesis and Metastasis. Front. Pharmacol. 2018, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Pannunzio, A.; Coluccia, M. Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals 2018, 11, 101. [Google Scholar] [CrossRef] [Green Version]
- Hashemi Goradel, N.; Najafi, M.; Salehi, E.; Farhood, B.; Mortezaee, K. Cyclooxygenase-2 in Cancer: A Review. J. Cell. Physiol. 2019, 234, 5683–5699. [Google Scholar] [CrossRef]
- Czajkowski, R.; Lei, L.; Saba, P.; Barańska, J. ADP-Evoked Phospholipase C Stimulation and Adenylyl Cyclase Inhibition in Glioma C6 Cells Occur through Two Distinct Nucleotide Receptors, P2Y1 and P2Y12. FEBS Lett. 2002, 513, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Tomlinson, W.; Kirk, I.P.; Kim, Y.B.; Humphries, R.G.; Kunapuli, S.P. The C6-2B Glioma Cell P2Y(AC) Receptor Is Pharmacologically and Molecularly Identical to the Platelet P2Y(12) Receptor. Br. J. Pharmacol. 2001, 133, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.R.; Yousef, G.M.; Ni, H. Cancer and Platelet Crosstalk: Opportunities and Challenges of Aspirin and Other Antiplatelet Agents. Blood 2018, 131, 1777–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenberger, L.M.; Vijayan, K.V. Are Platelets the Primary Target of Aspirin’s Remarkable Anticancer Activity? Cancer Res. 2019, 79, 3820–3823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpatkin, S.; Pearlstein, E.; Ambrogio, C.; Coller, B.S. Role of Adhesive Proteins in Platelet Tumor Interaction in Vitro and Metastasis Formation in Vivo. J. Clin. Investig. 1988, 81, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Mammadova-Bach, E.; Zigrino, P.; Brucker, C.; Bourdon, C.; Freund, M.; De Arcangelis, A.; Abrams, S.I.; Orend, G.; Gachet, C.; Mangin, P.H. Platelet Integrin A6β1 Controls Lung Metastasis through Direct Binding to Cancer Cell–Derived ADAM9. JCI Insight 2016, 1, e88245. [Google Scholar] [CrossRef] [Green Version]
- Mammadova-Bach, E.; Gil-Pulido, J.; Sarukhanyan, E.; Burkard, P.; Shityakov, S.; Schonhart, C.; Stegner, D.; Remer, K.; Nurden, P.; Nurden, A.T.; et al. Platelet Glycoprotein VI Promotes Metastasis through Interaction with Cancer Cell–Derived Galectin-3. Blood 2020, 135, 1146–1160. [Google Scholar] [CrossRef]
- Shirai, T.; Inoue, O.; Tamura, S.; Tsukiji, N.; Sasaki, T.; Endo, H.; Satoh, K.; Osada, M.; Sato-Uchida, H.; Fujii, H.; et al. C-Type Lectin-like Receptor 2 Promotes Hematogenous Tumor Metastasis and Prothrombotic State in Tumor-Bearing Mice. J. Thromb. Haemost. 2017, 15, 513–525. [Google Scholar] [CrossRef]
- Dunne, E.; Spring, C.M.; Reheman, A.; Jin, W.; Berndt, M.C.; Newman, D.K.; Newman, P.J.; Ni, H.; Kenny, D. Cadherin 6 Has a Functional Role in Platelet Aggregation and Thrombus Formation. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1724–1731. [Google Scholar] [CrossRef] [Green Version]
- Plantureux, L.; Mege, D.; Crescence, L.; Carminita, E.; Robert, S.; Cointe, S.; Brouilly, N.; Ezzedine, W.; Dignat-George, F.; Dubois, C.; et al. The Interaction of Platelets with Colorectal Cancer Cells Inhibits Tumor Growth but Promotes Metastasis. Cancer Res. 2020, 80, 291–303. [Google Scholar] [CrossRef]
- Zuo, X.X.; Yang, Y.; Zhang, Y.; Zhang, Z.G.; Wang, X.F.; Shi, Y.G. Platelets Promote Breast Cancer Cell MCF-7 Metastasis by Direct Interaction: Surface Integrin A2β1-Contacting-Mediated Activation of Wnt-β-Catenin Pathway. Cell Commun. Signal. 2019, 17, 142. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Borsig, L.; Varki, N.M.; Varki, A. P-Selectin Deficiency Attenuates Tumor Growth and Metastasis. Proc. Natl. Acad. Sci. USA 1998, 95, 9325–9330. [Google Scholar] [CrossRef] [Green Version]
- Ugen, K.K.; Mahalingam, M.; Klein, P.A.; Kao, K.-J. Inhibition of Tumor Cell-Induced Platelet Aggregation and Experimental Tumor Metastasis by the Synthetic Gly-Arg-Gly-Asp-Ser Peptide. JNCI J. Natl. Cancer Inst. 1988, 80, 1461–1466. [Google Scholar] [CrossRef]
- Bastida, E.; Ordinas, A.; Escolar, G.; Jamieson, G. Tissue Factor in Microvesicles Shed from U87MG Human Glioblastoma Cells Induces Coagulation, Platelet Aggregation, and Thrombogenesis. Blood 1984, 64, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, B.A.; Vales, O. The Adhesion of Thromboplastic Tumour Emboli to Vessel Walls in Vivo. Br. J. Exp. Pathol. 1972, 53, 301–313. [Google Scholar] [PubMed]
- Mezouar, S.; Frère, C.; Darbousset, R.; Mege, D.; Crescence, L.; Dignat-George, F.; Panicot-Dubois, L.; Dubois, C. Role of Platelets in Cancer and Cancer-Associated Thrombosis: Experimental and Clinical Evidences. Thromb. Res. 2016, 139, 65–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hisada, Y.; Mackman, N. Tissue Factor and Extracellular Vesicles: Activation of Coagulation and Impact on Survival in Cancer. Cancers 2021, 13, 3839. [Google Scholar] [CrossRef]
- Zucchella, M.; Dezza, L.; Pacchiarini, L.; Meloni, F.; Tacconi, F.; Bonomi, E.; Grignani, G.; Notario, A. Human Tumour Cells Cultured “in Vitro” Activate Platelet Function by Producing ADP or Thrombin. Haematologica 1989, 74, 541–545. [Google Scholar]
- Thomas, G.M.; Panicot-Dubois, L.; Lacroix, R.; Dignat-George, F.; Lombardo, D.; Dubois, C. Cancer Cell-Derived Microparticles Bearing P-Selectin Glycoprotein Ligand 1 Accelerate Thrombus Formation in Vivo. J. Exp. Med. 2009, 206, 1913–1927. [Google Scholar] [CrossRef] [Green Version]
- Longenecker, G.L.; Beyers, B.J.; Bowen, R.J.; King, T. Human Rhabdosarcoma Cell-Induced Aggregation of Blood Platelets. Cancer Res. 1989, 49, 16–19. [Google Scholar]
- Honn, K.V.; Cavanaugh, P.; Evens, C.; Taylor, J.D.; Sloane, B.F. Tumor Cell-Platelet Aggregation: Induced by Cathepsin B-like Proteinase and Inhibited by Prostacyclin. Science 1982, 217, 540–542. [Google Scholar] [CrossRef]
- Demers, M.; Krause, D.S.; Schatzberg, D.; Martinod, K.; Voorhees, J.R.; Fuchs, T.A.; Scadden, D.T.; Wagner, D.D. Cancers Predispose Neutrophils to Release Extracellular DNA Traps That Contribute to Cancer-Associated Thrombosis. Proc. Natl. Acad. Sci. USA 2012, 109, 13076–13081. [Google Scholar] [CrossRef] [Green Version]
- Cedervall, J.; Zhang, Y.; Huang, H.; Zhang, L.; Femel, J.; Dimberg, A.; Olsson, A.K. Neutrophil Extracellular Traps Accumulate in Peripheral Blood Vessels and Compromise Organ Function in Tumor-Bearing Animals. Cancer Res. 2015, 75, 2653–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, R.L.; Nick, A.M.; McNeish, I.A.; Balkwill, F.; Han, H.D.; Bottsford-Miller, J.; Rupaimoole, R.; Armaiz-Pena, G.N.; Pecot, C.V.; Coward, J.; et al. Paraneoplastic Thrombocytosis in Ovarian Cancer. N. Engl. J. Med. 2012, 366, 610–618. [Google Scholar] [CrossRef] [Green Version]
- Kaser, A.; Brandacher, G.; Steurer, W.; Kaser, S.; Offner, F.A.; Zoller, H.; Theurl, I.; Widder, W.; Molnar, C.; Ludwiczek, O.; et al. Interleukin-6 Stimulates Thrombopoiesis through Thrombopoietin: Role in Inflammatory Thrombocytosis. Blood 2001, 98, 2720–2725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, A.; Takahashi, T.; Nakamura, K.; Tsuyuoka, R.; Okuno, Y.; Enomoto, T.; Fukumoto, M.; Imura, H. Thrombocytosis in Patients with Tumors Producing Colony-Stimulating Factor. Blood 1992, 80, 2052–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, Y.; Takahashi, T.; Miyazaki, H.; Matsumoto, A.; Kato, T.; Nakamura, K.; Iho, S.; Okuno, Y.; Nakao, K. Production of Thrombopoietin by Human Carcinomas and Its Novel Isoforms. Blood 1999, 94, 1952–1960. [Google Scholar] [CrossRef] [PubMed]
- Ryu, T.; Nishimura, S.; Miura, H.; Yamada, H.; Morita, H.; Miyazaki, H.; Kitamura, S.; Miura, Y.; Saito, T. Thrombopoietin-Producing Hepatocellular Carcinoma. Intern. Med. 2003, 42, 730–734. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.E.; Zurakowski, D.; Italiano, J.E.; Michel, L.V.; Connors, S.; Oenick, M.; D’Amato, R.J.; Klement, G.L.; Folkman, J. VEGF, PF4 and PDGF Are Elevated in Platelets of Colorectal Cancer Patients. Angiogenesis 2012, 15, 265–273. [Google Scholar] [CrossRef]
- Nilsson, R.J.A.; Balaj, L.; Hulleman, E.; Van Rijn, S.; Pegtel, D.M.; Walraven, M.; Widmark, A.; Gerritsen, W.R.; Verheul, H.M.; Vandertop, W.P.; et al. Blood Platelets Contain Tumor-Derived RNA Biomarkers. Blood 2011, 118, 3680–3683. [Google Scholar] [CrossRef]
- Plantureux, L.; Mège, D.; Crescence, L.; Dignat-George, F.; Dubois, C.; Panicot-Dubois, L. Impacts of Cancer on Platelet Production, Activation and Education and Mechanisms of Cancer-Associated Thrombosis. Cancers 2018, 10, 441. [Google Scholar] [CrossRef] [Green Version]
- Calverley, D.C.; Phang, T.L.; Choudhury, Q.G.; Gao, B.; Oton, A.B.; Weyant, M.J.; Geraci, M.W. Significant Downregulation of Platelet Gene Expression in Metastatic Lung Cancer. Clin. Transl. Sci. 2010, 3, 227–232. [Google Scholar] [CrossRef]
- Liefaard, M.C.; Lips, E.; Best, M.; Sol, N.; In ’T Veld, S.; Rookus, M.; Sonke, G.S.; Tannous, B.A.; Wesseling, J.; Würdinger, T. RNA Signatures from Tumor-Educated Platelets (TEP) Enable Detection of Early-Stage Breast Cancer. Ann. Oncol. 2019, 30, iii13. [Google Scholar] [CrossRef]
- Zaslavsky, A.; Baek, K.H.; Lynch, R.C.; Short, S.; Grillo, J.; Folkman, J.; Italiano, J.E.; Ryeom, S. Platelet-Derived Thrombospondin-1 Is a Critical Negative Regulator and Potential Biomarker of Angiogenesis. Blood 2010, 115, 4605–4613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, S.; Bronson, S.M.; Pal-Nath, D.; Miller, T.W.; Soto-Pantoja, D.R.; Roberts, D.D. Functions of Thrombospondin-1 in the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 4570. [Google Scholar] [CrossRef] [PubMed]
- Haas, S.; Hansson, J.; Klimmeck, D.; Loeffler, D.; Velten, L.; Uckelmann, H.; Wurzer, S.; Prendergast, Á.M.; Schnell, A.; Hexel, K.; et al. Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors. Cell Stem Cell 2015, 17, 422–434. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Russell, S.; Ware, J. Platelet Glycoprotein VI Facilitates Experimental Lung Metastasis in Syngenic Mouse Models. J. Thromb. Haemost. 2009, 7, 1713–1717. [Google Scholar] [CrossRef]
- Zhang, Y.; Cedervall, J.; Hamidi, A.; Herre, M.; Viitaniemi, K.; D’Amico, G.; Miao, Z.; Unnithan, R.V.M.; Vaccaro, A.; van Hooren, L.; et al. Platelet-Specific PDGFB Ablation Impairs Tumor Vessel Integrity and Promotes Metastasis. Cancer Res. 2020, 80, 3345–3358. [Google Scholar] [CrossRef]
- Coupland, L.A.; Chong, B.H.; Parish, C.R. Platelets and P-Selectin Control Tumor Cell Metastasis in an Organ-Specific Manner and Independently of NK Cells. Cancer Res. 2012, 72, 4662–4671. [Google Scholar] [CrossRef] [Green Version]
- Cedervall, J.; Zhang, Y.; Ringvall, M.; Thulin, Å.; Moustakas, A.; Jahnen-Dechent, W.; Siegbahn, A.; Olsson, A.K. HRG Regulates Tumor Progression, Epithelial to Mesenchymal Transition and Metastasis via Platelet-Induced Signaling in the Pre-Tumorigenic Microenvironment. Angiogenesis 2013, 16, 889–902. [Google Scholar] [CrossRef]
- Labelle, M.; Begum, S.; Hynes, R.O. Direct Signaling between Platelets and Cancer Cells Induces an Epithelial-Mesenchymal-Like Transition and Promotes Metastasis. Cancer Cell 2011, 20, 576–590. [Google Scholar] [CrossRef] [Green Version]
- Gugnoni, M.; Sancisi, V.; Gandolfi, G.; Manzotti, G.; Ragazzi, M.; Giordano, D.; Tamagnini, I.; Tigano, M.; Frasoldati, A.; Piana, S.; et al. Cadherin-6 Promotes EMT and Cancer Metastasis by Restraining Autophagy. Oncogene 2017, 36, 667–677. [Google Scholar] [CrossRef]
- Nieswandt, B.; Hafner, M.; Echtenacher, B.; Männel, D.N. Lysis of Tumor Cells by Natural Killer Cells in Mice Is Impeded by Platelets. Cancer Res. 1999, 59, 1295–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, P. Potential Role of Platelets in the Pathogenesis of Tumor Metastasis. Blood 1984, 63, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, M.R.; Zuka, M.; Lorger, M.; Tschan, M.; Torbett, B.E.; Zijlstra, A.; Quigley, J.P.; Staflin, K.; Eliceiri, B.P.; Krueger, J.S.; et al. Activated Tumor Cell Integrin Avβ3 Cooperates with Platelets to Promote Extravasation and Metastasis from the Blood Stream. Thromb. Res. 2016, 140, S27–S36. [Google Scholar] [CrossRef]
- Cho, M.S.; Bottsford-Miller, J.; Vasquez, H.G.; Stone, R.; Zand, B.; Kroll, M.H.; Sood, A.K.; Afshar-Kharghan, V. Platelets Increase the Proliferation of Ovarian Cancer Cells. Blood 2012, 120, 4869–4872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikami, J.; Kurokawa, Y.; Takahashi, T.; Miyazaki, Y.; Yamasaki, M.; Miyata, H.; Nakajima, K.; Takiguchi, S.; Mori, M.; Doki, Y. Antitumor Effect of Antiplatelet Agents in Gastric Cancer Cells: An in Vivo and in Vitro Study. Gastric Cancer 2016, 19, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Egan, K.; Crowley, D.; Smyth, P.; O’Toole, S.; Spillane, C.; Martin, C.; Gallagher, M.; Canney, A.; Norris, L.; Conlon, N.; et al. Platelet Adhesion and Degranulation Induce Pro-Survival and pro-Angiogenic Signalling in Ovarian Cancer Cells. PLoS ONE 2011, 6, e26125. [Google Scholar] [CrossRef]
- Brockmann, M.A.; Bender, B.; Plaxina, E.; Nolte, I.; Erber, R.; Lamszus, K.; Groden, C.; Schilling, L. Differential Effects of Tumor-Platelet Interaction in Vitro and in Vivo in Glioblastoma. J. Neurooncol. 2011, 105, 45–56. [Google Scholar] [CrossRef]
- Sagawa, T.; Tominaga, A.; Kodama, T.; Okada, M. Cytotoxicity of Unstimulated and Thrombin-Activated Platelets to Human Tumour Cells. Immunology 1993, 78, 650. [Google Scholar]
- He, A.D.; Xie, W.; Song, W.; Ma, Y.Y.; Liu, G.; Liang, M.L.; Da, X.W.; Yao, G.Q.; Zhang, B.X.; Gao, C.J.; et al. Platelet Releasates Promote the Proliferation of Hepatocellular Carcinoma Cells by Suppressing the Expression of KLF6. Sci. Rep. 2017, 7, 3989. [Google Scholar] [CrossRef] [Green Version]
- Ibele, G.M.; Kay, N.E.; Johnson, G.J.; Jacob, H.S. Human Platelets Exert Cytotoxic Effects on Tumor Cells. Blood 1985, 65, 1252–1255. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, H. Platelet-Induced Inhibition of Tumor Cell Growth. Thromb. Res. 2008, 123, 324–330. [Google Scholar] [CrossRef]
- Okada, M.; Sagawa, T.; Tominaga, A.; Kodama, T.; Hitsumoto, Y. Two Mechanisms for Platelet-Mediated Killing of Tumour Cells: One Cyclo-Oxygenase Dependent and the Other Nitric Oxide Dependent. Immunology 1996, 89, 158–164. [Google Scholar] [CrossRef]
- Michael, J.V.; Wurtzel, J.G.T.; Mao, G.F.; Rao, A.K.; Kolpakov, M.A.; Sabri, A.; Hoffman, N.E.; Rajan, S.; Tomar, D.; Madesh, M.; et al. Platelet Microparticles Infiltrating Solid Tumors Transfer MiRNAs That Suppress Tumor Growth. Blood 2017, 130, 567–580. [Google Scholar] [CrossRef] [Green Version]
- Demers, M.; Ho-Tin-Noé, B.; Schatzberg, D.; Yang, J.J.; Wagner, D.D. Increased Efficacy of Breast Cancer Chemotherapy in Thrombocytopenic Mice. Cancer Res. 2011, 71, 1540–1549. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Ren, M.; Chen, N.; Luo, M.; Deng, X.; Xia, J.; Yu, G.; Liu, J.; He, B.; Zhang, X.; et al. Presence of Intratumoral Platelets Is Associated with Tumor Vessel Structure and Metastasis. BMC Cancer 2014, 14, 167. [Google Scholar] [CrossRef] [Green Version]
- Volz, J.; Mammadova-Bach, E.; Gil-Pulido, J.; Nandigama, R.; Remer, K.; Sorokin, L.; Zernecke, A.; Abrams, S.I.; Ergün, S.; Henke, E.; et al. Inhibition of Platelet GPVI Induces Intratumor Hemorrhage and Increases Efficacy of Chemotherapy in Mice. Blood 2019, 133, 2696–2706. [Google Scholar] [CrossRef]
- Haemmerle, M.; Bottsford-Miller, J.; Pradeep, S.; Taylor, M.L.; Choi, H.J.; Hansen, J.M.; Dalton, H.J.; Stone, R.L.; Cho, M.S.; Nick, A.M.; et al. FAK Regulates Platelet Extravasation and Tumor Growth after Antiangiogenic Therapy Withdrawal. J. Clin. Investig. 2016, 126, 1885–1896. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Hisamatsu, T.; Haemmerle, M.; Cho, M.S.; Pradeep, S.; Rupaimoole, R.; Rodriguez-Aguayo, C.; Lopez-Berestein, G.; Wong, S.T.C.; Sood, A.K.; et al. Role of Platelet-Derived Tgfβ1 in the Progression of Ovarian Cancer. Clin. Cancer Res. 2017, 23, 5611–5621. [Google Scholar] [CrossRef] [Green Version]
- Zaslavsky, A.B.; Adams, M.P.; Cao, X.; Maj, T.; Choi, J.E.; Stangl-Kremser, J.; Patel, S.; Putelo, A.; Lee, S.K.; Nallandhighal, S.; et al. Platelet PD-L1 Suppresses Anti-Cancer Immune Cell Activity in PD-L1 Negative Tumors. Sci. Rep. 2020, 10, 19296. [Google Scholar] [CrossRef]
- Wurtzel, J.G.T.; Lazar, S.; Sikder, S.; Cai, K.Q.; Astsaturov, I.; Weyrich, A.S.; Rowley, J.W.; Goldfinger, L.E. Platelet MicroRNAs Inhibit Primary Tumor Growth via Broad Modulation of Tumor Cell MRNA Expression in Ectopic Pancreatic Cancer in Mice. PLoS ONE 2021, 16, e0261633. [Google Scholar] [CrossRef]
- Camez, A.; Dupuy, E.; Bellucci, S.; Calvo, F.; Bryckaert, M.C.; Tobelem, G. Human Platelet-Tumor Cell Interactions Vary with the Tumor Cell Lines. Invasion Metastasis 1986, 6, 321–334. [Google Scholar]
- Fabricius, H.Å.; Starzonek, S.; Lange, T. The Role of Platelet Cell Surface P-Selectin for the Direct Platelet-Tumor Cell Contact During Metastasis Formation in Human Tumors. Front. Oncol. 2021, 11, 716. [Google Scholar] [CrossRef]
- Kassassir, H.; Karolczak, K.; Siewiera, K.M.; Wojkowska, D.W.; Braun, M.; Watala, C.W. Time-Dependent Interactions of Blood Platelets and Cancer Cells, Accompanied by Extramedullary Hematopoiesis, Lead to Increased Platelet Activation and Reactivity in a Mouse Orthotopic Model of Breast Cancer—Implications for Pulmonary and Liver Metastas. Aging (Albany NY) 2020, 12, 5091–5120. [Google Scholar] [CrossRef]
- Schlesinger, M. Role of Platelets and Platelet Receptors in Cancer Metastasis. J. Hematol. Oncol. 2018, 11, 125. [Google Scholar] [CrossRef]
- Katz, R.L.; Zaidi, T.M.; Ni, X. Liquid Biopsy: Recent Advances in the Detection of Circulating Tumor Cells and Their Clinical Applications. In Monographs in Clinical Cytology; Karger: Basel, Switzerland, 2020; Volume Voume 25, pp. 43–66. [Google Scholar]
- Miyashita, T.; Tajima, H.; Makino, I.; Nakagawara, H.; Kitagawa, H.; Fushida, S.; Harmon, J.W.; Ohta, T. Metastasis-Promoting Role of Extravasated Platelet Activation in Tumor. J. Surg. Res. 2015, 193, 289–294. [Google Scholar] [CrossRef]
- Zhang, S.R.; Yao, L.; Wang, W.Q.; Xu, J.Z.; Xu, H.X.; Jin, W.; Gao, H.L.; Wu, C.T.; Qi, Z.H.; Li, H.; et al. Tumor-Infiltrating Platelets Predict Postsurgical Survival in Patients with Pancreatic Ductal Adenocarcinoma. Ann. Surg. Oncol. 2018, 25, 3984–3993. [Google Scholar] [CrossRef]
- Xu, S.S.; Xu, H.X.; Wang, W.Q.; Li, S.; Li, H.; Li, T.J.; Zhang, W.H.; Liu, L.; Yu, X.J. Tumor-Infiltrating Platelets Predict Postoperative Recurrence and Survival in Resectable Pancreatic Neuroendocrine Tumor. World J. Gastroenterol. 2019, 25, 6248–6257. [Google Scholar] [CrossRef]
- Miyashita, T.; Tajima, H.; Gabata, R.; Okazaki, M.; Shimbashi, H.; Ohbatake, Y.; Okamoto, K.; Nakanuma, S.; Sakai, S.; Makino, I.; et al. Impact of Extravasated Platelet Activation and Podoplanin-Positive Cancer-Associated Fibroblasts in Pancreatic Cancer Stroma. Anticancer Res. 2019, 39, 5565–5572. [Google Scholar] [CrossRef]
- Saito, H.; Fushida, S.; Miyashita, T.; Oyama, K.; Yamaguchi, T.; Tsukada, T.; Kinoshita, J.; Tajima, H.; Ninomiya, I.; Ohta, T. Potential of Extravasated Platelet Aggregation as a Surrogate Marker for Overall Survival in Patients with Advanced Gastric Cancer Treated with Preoperative Docetaxel, Cisplatin and S-1: A Retrospective Observational Study. BMC Cancer 2017, 17, 294. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Fushida, S.; Kinoshita, J.; Okazaki, M.; Ishikawa, S.; Ohbatake, Y.; Terai, S.; Okamoto, K.; Nakanuma, S.; Makino, I.; et al. Extravasated Platelet Aggregation Contributes to Tumor Progression via the Accumulation of Myeloid-Derived Suppressor Cells in Gastric Cancer with Peritoneal Metastasis. Oncol. Lett. 2020, 20, 1879–1887. [Google Scholar] [CrossRef]
- Qi, C.; Wei, B.; Zhou, W.; Yang, Y.; Li, B.; Guo, S.; Li, J.; Ye, J.; Li, J.; Zhang, Q.; et al. P-Selectin-Mediated Platelet Adhesion Promotes Tumor Growth. Oncotarget 2015, 6, 6584–6596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoppmann, S.F.; Alidzanovic, L.; Schultheis, A.; Perkmann, T.; Brostjan, C.; Birner, P. Thrombocytes Correlate with Lymphangiogenesis in Human Esophageal Cancer and Mediate Growth of Lymphatic Endothelial Cells In Vitro. PLoS ONE 2013, 8, e66941. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Xu, Z.; Feng, W.; Zheng, M.; Xu, Z.; Gao, H.; Li, W.; Zhang, Y.; Zong, Y.; Lu, A.; et al. Platelet Infiltration Predicts Survival in Postsurgical Colorectal Cancer Patients. Int. J. Cancer 2022, 150, 509–520. [Google Scholar] [CrossRef]
- Qi, C.; Li, B.; Guo, S.; Wei, B.; Shao, C.; Li, J.; Yang, Y.; Zhang, Q.; Li, J.; He, X.; et al. P-Selectin-Mediated Adhesion between Platelets and Tumor Cells Promotes Intestinal Tumorigenesis in Apcmin/+ Mice. Int. J. Biol. Sci. 2015, 11, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Miyashita, T.; Inokuchi, M.; Hayashi, H.; Oyama, K.; Tajima, H.; Takamura, H.; Ninomiya, I.; Ahmed, A.K.; Harman, J.W.; et al. Platelets Surrounding Primary Tumor Cells Are Related to Chemoresistance. Oncol. Rep. 2016, 36, 787–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, M.L.; McFadyen, J.D.; Wang, X.; Zia, N.A.; Hohmann, J.D.; Ziegler, M.; Yao, Y.; Pham, A.; Harris, M.; Donnelly, P.S.; et al. Targeting Activated Platelets: A Unique and Potentially Universal Approach for Cancer Imaging. Theranostics 2017, 7, 2565–2574. [Google Scholar] [CrossRef] [Green Version]
- Costa, B.; Eisemann, T.; Strelau, J.; Spaan, I.; Korshunov, A.; Liu, H.K.; Bugert, P.; Angel, P.; Peterziel, H. Intratumoral Platelet Aggregate Formation in a Murine Preclinical Glioma Model Depends on Podoplanin Expression on Tumor Cells. Blood Adv. 2019, 3, 1092–1102. [Google Scholar] [CrossRef] [Green Version]
- Williamson, S.R.; Mast, K.J.; Cheng, L.; Idrees, M.T. Clear Cell Renal Cell Carcinoma with Intratumoral and Nodal Extramedullary Megakaryopoiesis: A Potential Diagnostic Pitfall. Hum. Pathol. 2014, 45, 1306–1309. [Google Scholar] [CrossRef]
- Cruz, R.J.; Vincenzi, R.; Ketzer, B.M.; Cecilio, A.L.; Cepeda, L.A. Spontaneous Intratumoral Bleeding and Rupture of Giant Gastric Stromal Tumor (>30 Cm) in a Young Patient. World J. Surg. Oncol. 2008, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Wakai, S.; Yamakawa, K.; Manaka, S.; Takakura, K. Spontaneous Intracranial Hemorrhage Caused by Brain Tumor: Its Incidence and Clinical Significance. Neurosurgery 1982, 10, 437–444. [Google Scholar] [CrossRef]
- De Arnaldo Silva Vellutini, E.; De Oliveira, M.F. Intradural Chordoma Presenting with Intratumoral Bleeding. J. Clin. Neurosci. 2016, 25, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Razazi, K.; Parrot, A.; Khalil, A.; Djibre, M.; Gounant, V.; Assouad, J.; Carette, M.F.; Fartoukh, M.; Cadranel, J. Severe Haemoptysis in Patients with Nonsmall Cell Lung Carcinoma. Eur. Respir. J. 2015, 45, 756–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichiki, M.; Nishida, N.; Furukawa, A.; Kanasaki, S.; Ohta, S.; Miki, Y. Imaging Findings of Primary Hepatic Carcinoid Tumor with an Emphasis on MR Imaging: Case Study. Springerplus 2014, 3, 607. [Google Scholar] [CrossRef] [Green Version]
- Petito, E.; Momi, S.; Gresele, P. The Migration of Platelets and Their Interaction with Other Misgrating Cells. In Platelets in Thrombotic and Non-Thrombotic Disorders; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 337–351. ISBN 9783319474625. [Google Scholar]
- Nicolai, L.; Schiefelbein, K.; Lipsky, S.; Leunig, A.; Hoffknecht, M.; Pekayvaz, K.; Raude, B.; Marx, C.; Ehrlich, A.; Pircher, J.; et al. Vascular Surveillance by Haptotactic Blood Platelets in Inflammation and Infection. Nat. Commun. 2020, 11, 5778. [Google Scholar] [CrossRef] [PubMed]
- Gaertner, F.; Ahmad, Z.; Rosenberger, G.; Fan, S.; Nicolai, L.; Busch, B.; Yavuz, G.; Luckner, M.; Ishikawa-Ankerhold, H.; Hennel, R.; et al. Migrating Platelets Are Mechano-Scavengers That Collect and Bundle Bacteria. Cell 2017, 171, 1368–1382.e23. [Google Scholar] [CrossRef]
- Noetzli, L.J.; French, S.L.; Machlus, K.R. New Insights into the Differentiation of Megakaryocytes from Hematopoietic Progenitors. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1288–1300. [Google Scholar] [CrossRef]
- Cho, W.C.; Mandavilli, S. Intratumoral Extramedullary Hematopoiesis in Solitary Fibrous Tumor of the Breast. Breast J. 2020, 26, 755–758. [Google Scholar] [CrossRef]
- Von Schweinitz, D.; Schmidt, D.; Fuchs, J.; Welte, K.; Pietsch, T. Extramedullar Hematopoiesis and Intratumoral Production of Cytokines in Childhood Hepatoblastoma. Pediatr. Res. 1995, 38, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Beckner, M.E.; Lee, J.Y.K.; Schochet, S.S.; Chu, C.T. Intracranial Extramedullary Hematopoiesis Associated with Pilocytic Astrocytoma: A Case Report. Acta Neuropathol. 2003, 106, 584–587. [Google Scholar] [CrossRef]
- Setsu, Y.; Oka, K.; Naoi, Y.; Nagayama, R.; Moriya, T.; Matsumoto, T.; Yatabe, Y.; Mori, N. Breast Carcinoma with Myeloid Metaplasia - A Case Report. Pathol. Res. Pract. 1997, 193, 219–224. [Google Scholar] [CrossRef]
- Gros, A.; Syvannarath, V.; Lamrani, L.; Ollivier, V.; Loyau, S.; Goerge, T.; Nieswandt, B.; Jandrot-Perrus, M.; Ho-Tin-Noé, B. Single Platelets Seal Neutrophil-Induced Vascular Breaches via GPVI during Immune-Complex-Mediated Inflammation in Mice. Blood 2015, 126, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Magnus, N.; D’Asti, E.; Garnier, D.; Meehan, B.; Rak, J. Brain Neoplasms and Coagulation. Semin. Thromb. Hemost. 2013, 39, 881–895. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, M.; Friedman, T.M.; Olson, J.J.; Brat, D.J. Intravascular Thrombosis in Central Nervous System Malignancies: A Potential Role in Astrocytoma Progression to Glioblastoma. Brain Pathol. 2008, 18, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wechman, S.L.; Emdad, L.; Sarkar, D.; Das, S.K.; Fisher, P.B. Vascular Mimicry: Triggers, Molecular Interactions and in Vivo Models. Adv. Cancer Res. 2020, 148, 27–67. [Google Scholar] [CrossRef]
- Feng, W.; Madajka, M.; Kerr, B.A.; Mahabeleshwar, G.H.; Whiteheart, S.W.; Byzova, T.V. Anovel Role for Platelet Secretion in Angiogenesis: Mediating Bone Marrow-Derived Cell Mobilization and Homing. Blood 2011, 117, 3893–3902. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Luan, Y.; Miao, X.; Sun, C.; Li, K.; Huang, Z.; Xu, D.; Zhang, M.; Kong, F.; Li, N. Platelet Releasate Promotes Breast Cancer Growth and Angiogenesis via VEGF-Integrin Cooperative Signalling. Br. J. Cancer 2017, 117, 695–703. [Google Scholar] [CrossRef]
- Ho-Tin-Noé, B.; Goerge, T.; Cifuni, S.M.; Duerschmied, D.; Wagner, D.D. Platelet Granule Secretion Continuously Prevents Intratumor Hemorrhage. Cancer Res. 2008, 68, 6851–6858. [Google Scholar] [CrossRef] [Green Version]
- Ho-Tin-Noé, B.; Carbo, C.; Demers, M.; Cifuni, S.M.; Goerge, T.; Wagner, D.D. Innate Immune Cells Induce Hemorrhage in Tumors during Thrombocytopenia. Am. J. Pathol. 2009, 175, 1699–1708. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liu, J.; Liu, Z.; Chen, G.; Li, X.; Ren, H. Damaging Tumor Vessels with an Ultrasound-Triggered NO Release Nanosystem to Enhance Drug Accumulation and T Cells Infiltration. Int. J. Nanomedicine 2021, 16, 2597. [Google Scholar] [CrossRef]
- Bénézech, C.; Nayar, S.; Finney, B.A.; Withers, D.R.; Lowe, K.; Desanti, G.E.; Marriott, C.L.; Watson, S.P.; Caamaño, J.H.; Buckley, C.D.; et al. CLEC-2 Is Required for Development and Maintenance of Lymph Nodes. Blood 2014, 123, 3200–3207. [Google Scholar] [CrossRef] [Green Version]
- Haining, E.J.; Lowe, K.L.; Wichaiyo, S.; Kataru, R.P.; Nagy, Z.; Kavanagh, D.P.; Lax, S.; Di, Y.; Nieswandt, B.; Ho-Tin-Noé, B.; et al. Lymphatic Blood Filling in CLEC-2-Deficient Mouse Models. Platelets 2021, 32, 352–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayes, J.; Lax, S.; Zuidscherwoude, M.; Wichaiyo, S.; Grygielska, B.; Watson, S.; Watson, S.P. Platelets Modulate the Proinflammatory Phenotype of Macrophages via the Interaction of CLEC- 2 and Podoplanin. Res. Pract. Thromb. Haemost. 2017, 1 (Suppl. 1), 12(ASY 32.1). [Google Scholar]
- Labelle, M.; Begum, S.; Hynes, R.O. Platelets Guide the Formation of Early Metastatic Niches. Proc. Natl. Acad. Sci. USA 2014, 111, E3053–E3061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tumor Type | Platelet Marker | Involved Pathway | Main Observations Pertaining to the Presence of Intratumoral Platelets | Refs. |
---|---|---|---|---|
Pancreatic cancer | CD42b | ND | Extravascular platelets surrounding tumor cells were detected at the tumor invasive front, in association with the expression of epithelial mesenchymal transition markers | [118] |
The presence of intratumoral extravascular and intravascular platelets was associated with poor post-surgical survival and recurrence-free survival | [119,120] | |||
Extravascular platelets were found around cancer-associated fibroblasts in the tumor stroma. Chemotherapy led to a decrease in both cancer-associated fibroblasts and intratumoral platelets. | [121] | |||
Gastric cancer | CD42b | ND | Extravascular platelets were found around cancer-associated fibroblasts. The presence of intratumoral platelets was associated with chemoresistance and poor overall survival. | [122] |
The presence of extravascular platelets around tumor cells and cancer-associated fibroblasts in peritoneal metastatic lesions was associated with poor overall survival. | [123] | |||
CD41 | Extravascular platelets were found accumulating around tumor cells. | [124] | ||
Esophageal cancer | CD61 | ND | The presence of extravascular platelets was associated with shorter disease-free survival and increased lymphangiogenesis and lymphovascular invasion. | [125] |
Colorectal cancer | CD41 CD42b | ND | Intratumoral platelet content increased with tumor stage and lymph node metastasis. Extravascular platelets were found accumulating around tumor cells and tumor vessels. Platelet infiltration is associated with a poor prognosis in postsurgical colorectal cancer patients | [60,124,126,127] |
Breast cancer | CD42b | ND | Extravascular and perivascular platelets were detected at the tumor invasive front, in association with the expression of epithelial mesenchymal transition markers, and their presence was associated with chemoresistance. | [128] |
CD41 | ND | Extravascular platelets were found accumulating around tumor cells. | [124,129] | |
Bowel cancer | CD41 | ND | Extravascular platelets were found accumulating around tumor cells. | [129] |
Lung cancer | CD41 | ND | Extravascular platelets were found accumulating around tumor cells. | [129] |
Increased amount of intratumoral platelets in patients with a positive response to PD-L1 therapy. | [111] | |||
Extravascular platelets were found in PD-L1-negative and -positive lung cancer. | [44] | |||
Hepatocellular cancer | CD41 | ND | Extravascular platelets were found accumulating around tumor cells. | [124] |
Ovarian cancer (mice) | CD42b | ND | Perivascular and extravascular platelets were found in abundance in the tumor stroma. | [74] |
FAK | Platelet-specific deficiency in FAK reduced intratumoral platelet content and tumor growth. | [109] | ||
TGFβ | Platelet-specific deficiency in TGFβ partly reduced intratumoral platelet content. | [110] | ||
Gα13/ Gi | Platelet-specific deficiency in Gα13 or Gi protein reduced intratumoral platelet content and tumor growth. | [96] | ||
Insulinoma and melanoma (mice) | CD42b | P selectin | P-selectin deficiency reduced intratumoral platelet content and tumor growth. | [124] |
Intestinal cancer (mice) | CD41 | P selectin | P-selectin deficiency reduced intratumoral platelet content and tumor growth. | [127] |
Colorectal cancer (mice) | CD42b | ND | Perivascular and extravascular platelets were found in the tumor stroma, preferentially at the tumor periphery. | [60] |
Glioma (mice) | CD41 | Podoplanin | Podoplanin expressed by cancer cells is required for intratumoral platelet infiltration | [130] |
Breast cancer, fibrosarcoma, Burkitt’s lymphoma (mice) | CD41 | ND | Extravascular platelets were found in abundance in the tumor stroma. | [129] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Chapelain, O.; Ho-Tin-Noé, B. Intratumoral Platelets: Harmful or Incidental Bystanders of the Tumor Microenvironment? Cancers 2022, 14, 2192. https://doi.org/10.3390/cancers14092192
Le Chapelain O, Ho-Tin-Noé B. Intratumoral Platelets: Harmful or Incidental Bystanders of the Tumor Microenvironment? Cancers. 2022; 14(9):2192. https://doi.org/10.3390/cancers14092192
Chicago/Turabian StyleLe Chapelain, Ophélie, and Benoît Ho-Tin-Noé. 2022. "Intratumoral Platelets: Harmful or Incidental Bystanders of the Tumor Microenvironment?" Cancers 14, no. 9: 2192. https://doi.org/10.3390/cancers14092192
APA StyleLe Chapelain, O., & Ho-Tin-Noé, B. (2022). Intratumoral Platelets: Harmful or Incidental Bystanders of the Tumor Microenvironment? Cancers, 14(9), 2192. https://doi.org/10.3390/cancers14092192