Baseline Plasma Tumor DNA (ctDNA) Correlates with PSA Kinetics in Metastatic Castration-Resistant Prostate Cancer (mCRPC) Treated with Abiraterone or Enzalutamide
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Patient and Plasma Sample Characteristics
3.2. Plasma DNA Analysis and Clinical Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Koivisto, P.; Kolmer, M.; Visakorpi, T.; Kallioniemi, O.P. Androgen receptor gene and hormonal therapy failure of prostate cancer. Am. J. Pathol. 1998, 152, 1–9. [Google Scholar] [PubMed]
- Crawford, E.D.; Heidenreich, A.; Lawrentschuk, N.; Tombal, B.; Pompeo, A.C.L.; Mendoza-Valdes, A.; Miller, K.; Debruyne, F.M.J.; Klotz, L. Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate Cancer Prostatic Dis. 2019, 22, 24–38. [Google Scholar] [CrossRef]
- Vlachostergios, P.J.; Puca, L.; Beltran, H. Emerging Variants of Castration-Resistant Prostate Cancer. Curr. Oncol. Rep. 2017, 19, 32. [Google Scholar] [CrossRef] [PubMed]
- Berthold, D.R.; Pond, G.R.; Soban, F.; De Wit, R.; Eisenberger, M.; Tannock, I.F. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: Updated survival in the TAX 327 study. J. Clin. Oncol. 2008, 26, 242–245. [Google Scholar] [CrossRef] [PubMed]
- de Wit, R.; de Bono, J.; Sternberg, C.N.; Fizazi, K.; Tombal, B.; Wülfing, C.; Kramer, G.; Eymard, J.-C.; Bamias, A.; Carles, J.; et al. Cabazitaxel versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer. N. Engl. J. Med. 2019, 381, 2506–2518. [Google Scholar] [CrossRef]
- Miller, K.; Heinrich, D.; O’Sullivan, J.M.; Carles, J.; Wirth, M.; Nilsson, S.; Huang, L.; Kalinovsky, J.; Heidenreich, A.; Saad, F. Radium-223 (Ra-223) therapy after abiraterone (Abi): Analysis of symptomatic skeletal events (SSEs) in an international early access program (iEAP) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). Ann. Oncol. 2018, 29, viii287. [Google Scholar] [CrossRef]
- Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; et al. Abiraterone in Metastatic Prostate Cancer without Previous Chemotherapy. N. Engl. J. Med. 2013, 368, 138–148. [Google Scholar] [CrossRef]
- Ryan, C.J.; Smith, M.R.; Fizazi, K.; Saad, F.; Mulders, P.F.A.; Sternberg, C.N.; Miller, K.; Logothetis, C.J.; Shore, N.D.; Small, E.J.; et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): Final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2015, 16, 152–160. [Google Scholar] [CrossRef]
- de Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B.; Saad, F.; et al. Abiraterone and Increased Survival in Metastatic Prostate Cancer. N. Engl. J. Med. 2011, 364, 1995–2005. [Google Scholar] [CrossRef]
- Beer, T.M.; Armstrong, A.J.; Rathkopf, D.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Evans, C.P.; Kim, C.S.; Kimura, G.; et al. Enzalutamide in Men with Chemotherapy-naïve Metastatic Castration-resistant Prostate Cancer: Extended Analysis of the Phase 3 PREVAIL Study. Eur. Urol. 2017, 71, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; et al. Enzalutamide in Metastatic Prostate Cancer before Chemotherapy. N. Engl. J. Med. 2014, 371, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.; Szabo, S.A.; et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008, 14, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Conteduca, V.; Gurioli, G.; Brighi, N.; Lolli, C.; Schepisi, G.; Casadei, C.; Burgio, S.L.; Gargiulo, S.; Ravaglia, G.; Rossi, L.; et al. Plasma androgen receptor in prostate cancer. Cancers 2019, 11, 1719. [Google Scholar] [CrossRef]
- Watson, P.A.; Arora, V.K.; Sawyers, C.L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 2015, 15, 701–711. [Google Scholar] [CrossRef]
- Ehsani, M.; David, F.O.; Baniahmad, A. Androgen receptor-dependent mechanisms mediating drug resistance in prostate cancer. Cancers 2021, 13, 1534. [Google Scholar] [CrossRef]
- Henzler, C.; Li, Y.; Yang, R.; McBride, T.; Ho, Y.; Sprenger, C.; Liu, G.; Coleman, I.; Lakely, B.; Li, R.; et al. Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nat. Commun. 2016, 7, 13668. [Google Scholar] [CrossRef]
- Kim, E.H.; Cao, D.; Mahajan, N.P.; Andriole, G.L.; Mahajan, K. ACK1-AR and AR-HOXB13 signaling axes: Epigenetic regulation of lethal prostate cancers. NAR Cancer 2020, 2, zcaa018. [Google Scholar] [CrossRef]
- Lakshmana, G.; Baniahmad, A. Interference with the androgen receptor protein stability in therapy-resistant prostate cancer. Int. J. Cancer 2019, 144, 1775–1779. [Google Scholar] [CrossRef]
- Maitland, N.J. Resistance to antiandrogens in prostate cancer: Is it inevitable, intrinsic or induced? Cancers 2021, 13, 327. [Google Scholar] [CrossRef]
- Beltran, H.; Prandi, D.; Mosquera, J.M.; Benelli, M.; Puca, L.; Cyrta, J.; Marotz, C.; Giannopoulou, E.; Chakravarthi, B.V.S.K.; Varambally, S.; et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 2016, 22, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Carreira, S.; Romanel, A.; Goodall, J.; Grist, E.; Ferraldeschi, R.; Miranda, S.; Prandi, D.; Lorente, D.; Frenel, J.S.; Pezaro, C.; et al. Tumor clone dynamics in lethal prostate cancer. Sci. Transl. Med. 2014, 6, 254ra125. [Google Scholar] [CrossRef] [PubMed]
- Prandi, D.; Baca, S.C.; Romanel, A.; Barbieri, C.E.; Mosquera, J.M.; Fontugne, J.; Beltran, H.; Sboner, A.; Garraway, L.A.; Rubin, M.A.; et al. Unraveling the clonal hierarchy of somatic genomic aberrations. Genome Biol. 2014, 15, 439. [Google Scholar] [CrossRef] [PubMed]
- Conteduca, V.; Caffo, O.; Lolli, C.; Aieta, M.; Scarpi, E.; Bianchi, E.; Maines, F.; Schepisi, G.; Salvi, S.; Massari, F.; et al. Long-term clinical impact of PSA surge in castration-resistant prostate cancer patients treated with abiraterone. Prostate 2017, 77, 1012–1019. [Google Scholar] [CrossRef]
- Burgio, S.L.; Conteduca, V.; Rudnas, B.; Carrozza, F.; Campadelli, E.; Bianchi, E.; Fabbri, P.; Montanari, M.; Carretta, E.; Menna, C.; et al. PSA flare with abiraterone in patients with metastatic castration-resistant prostate cancer. Clin. Genitourin. Cancer 2015, 13, 39–43. [Google Scholar] [CrossRef]
- Messiou, C.; Cook, G.; Reid, A.H.M.; Attard, G.; Dearnaley, D.; De Bono, J.S.; De Souza, N.M. The CT flare response of metastatic bone disease in prostate cancer. Acta Radiol. 2011, 52, 557–561. [Google Scholar] [CrossRef]
- Dawson, S.-J.; Tsui, D.W.Y.; Murtaza, M.; Biggs, H.; Rueda, O.M.; Chin, S.-F.; Dunning, M.J.; Gale, D.; Forshew, T.; Mahler-Araujo, B.; et al. Analysis of Circulating Tumor DNA to Monitor Metastatic Breast Cancer. N. Engl. J. Med. 2013, 368, 1199–1209. [Google Scholar] [CrossRef]
- Kim, J.; Coetzee, G.A. Prostate specific antigen gene regulation by androgen receptor. J. Cell. Biochem. 2004, 93, 233–241. [Google Scholar] [CrossRef]
- Kobayashi, T.; Inoue, T.; Kamba, T.; Ogawa, O. Experimental evidence of persistent androgen-receptor-dependency in castration-resistant prostate cancer. Int. J. Mol. Sci. 2013, 14, 15615–15635. [Google Scholar] [CrossRef]
- Xu, X.S.; Ryan, C.J.; Stuyckens, K.; Smith, M.R.; Saad, F.; Griffin, T.W.; Park, Y.C.; Yu, M.K.; Vermeulen, A.; Poggesi, I.; et al. Correlation between prostate-specific antigen kinetics and overall survival in abiraterone acetate-treated castration-resistant prostate cancer patients. Clin. Cancer Res. 2015, 21, 3170–3177. [Google Scholar] [CrossRef]
- Scher, H.I.; Morris, M.J.; Stadler, W.M.; Higano, C.; Basch, E.; Fizazi, K.; Antonarakis, E.S.; Beer, T.M.; Carducci, M.A.; Chi, K.N.; et al. Trial design and objectives for castration-resistant prostate cancer: Updated recommendations from the prostate cancer clinical trials working group 3. J. Clin. Oncol. 2016, 34, 1402–1418. [Google Scholar] [CrossRef] [PubMed]
- Ignatiadis, M.; Sledge, G.W.; Jeffrey, S.S. Liquid biopsy enters the clinic—Implementation issues and future challenges. Nat. Rev. Clin. Oncol. 2021, 18, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, A.W.; Annala, M.; Aggarwal, R.; Beja, K.; Feng, F.; Youngren, J.; Foye, A.; Lloyd, P.; Nykter, M.; Beer, T.M.; et al. Concordance of Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. J. Natl. Cancer Inst. 2017, 109, djx118. [Google Scholar] [CrossRef] [PubMed]
- González-Billalabeitia, E.; Conteduca, V.; Wetterskog, D.; Jayaram, A.; Attard, G. Circulating tumor DNA in advanced prostate cancer: Transitioning from discovery to a clinically implemented test. Prostate Cancer Prostatic Dis. 2019, 22, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Attard, G. Plasma DNA analysis in prostate cancer: Opportunities for improving clinical management. Clin. Chem. 2019, 65, 100–107. [Google Scholar] [CrossRef]
- Kilgour, E.; Rothwell, D.G.; Brady, G.; Dive, C. Liquid Biopsy-Based Biomarkers of Treatment Response and Resistance. Cancer Cell 2020, 37, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Romanel, A.; Tandefelt, D.G.; Conteduca, V.; Jayaram, A.; Casiraghi, N.; Wetterskog, D.; Salvi, S.; Amadori, D.; Zafeiriou, Z.; Rescigno, P.; et al. Plasma AR and abiraterone-resistant prostate cancer. Sci. Transl. Med. 2015, 7, 312re10. [Google Scholar] [CrossRef]
- Annala, M.; Vandekerkhove, G.; Khalaf, D.; Taavitsainen, S.; Beja, K.; Warner, E.W.; Sunderland, K.; Kollmannsberger, C.; Eigl, B.J.; Finch, D.; et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov. 2018, 8, 444–457. [Google Scholar] [CrossRef]
- Conteduca, V.; Wetterskog, D.; Sharabiani, M.T.A.; Grande, E.; Fernandez-Perez, M.P.; Jayaram, A.; Salvi, S.; Castellano, D.; Romanel, A.; Lolli, C.; et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: A multi-institution correlative biomarker study. Ann. Oncol. 2017, 28, 1508–1516. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Moul, J.W.; Carroll, P.R.; Sun, L.; Lubeck, D.; Chen, M.H. Surrogate end point for prostate cancer-specific mortality after radical prostatectomy or radiation therapy. J. Natl. Cancer Inst. 2003, 95, 1376–1383. [Google Scholar] [CrossRef]
- Sengupta, S.; Myers, R.P.; Slezak, J.M.; Bergstralh, E.J.; Zincke, H.; Blute, M.L. Preoperative prostate specific antigen doubling time and velocity are strong and independent predictors of outcomes following radical prostatectomy. J. Urol. 2005, 174, 2191–2196. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.V.; Moul, J.; Carroll, P.R.; Sun, L.; Lubeck, D.; Chen, M.H. Surrogate end point for prostate cancer specific mortality in patients with nonmetastatic hormone refractory prostate cancer. J. Urol. 2005, 173, 1572–1576. [Google Scholar] [CrossRef] [PubMed]
- Daskivich, T.J.; Regan, M.M.; Oh, W.K. Distinct Prognostic Role of Prostate-Specific Antigen Doubling Time and Velocity at Emergence of Androgen Independence in Patients Treated with Chemotherapy. Urology 2007, 70, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Van Allen, E.M.; Wu, Y.M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.M.; Montgomery, B.; Taplin, M.E.; Pritchard, C.C.; Attard, G.; et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef]
- Wyatt, A.W.; Azad, A.A.; Volik, S.V.; Annala, M.; Beja, K.; McConeghy, B.; Haegert, A.; Warner, E.W.; Mo, F.; Brahmbhatt, S.; et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2016, 2, 1598–1606. [Google Scholar] [CrossRef]
- Quigley, D.A.; Dang, H.X.; Zhao, S.G.; Lloyd, P.; Aggarwal, R.; Alumkal, J.J.; Foye, A.; Kothari, V.; Perry, M.D.; Bailey, A.M.; et al. Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell 2018, 174, 758–769.e9. [Google Scholar] [CrossRef]
- De Laere, B.; van Dam, P.J.; Whitington, T.; Mayrhofer, M.; Diaz, E.H.; Van den Eynden, G.; Vandebroek, J.; Del-Favero, J.; Van Laere, S.; Dirix, L.; et al. Comprehensive Profiling of the Androgen Receptor in Liquid Biopsies from Castration-resistant Prostate Cancer Reveals Novel Intra-AR Structural Variation and Splice Variant Expression Patterns. Eur. Urol. 2017, 72, 192–200. [Google Scholar] [CrossRef]
- Tolmeijer, S.H.; Boerrigter, E.; Schalken, J.A.; Geerlings, M.J.; van Oort, I.M.; van Erp, N.P.; Gerritsen, W.R.; Ligtenberg, M.J.L.; Mehra, N. A Systematic Review and Meta-Analysis on the Predictive Value of Cell-Free DNA—Based Androgen Receptor Copy Number Gain in Patients With Castration-Resistant Prostate Cancer. JCO Precis. Oncol. 2020, 4, 714–729. [Google Scholar] [CrossRef]
- Feldman, B.J.; Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer 2001, 1, 34–45. [Google Scholar] [CrossRef]
- Choudhury, A.D.; Werner, L.; Francini, E.; Wei, X.X.; Ha, G.; Freeman, S.S.; Rhoades, J.; Reed, S.C.; Gydush, G.; Rotem, D.; et al. Tumor fraction in cell-free DNA as a biomarker in prostate cancer. JCI Insight 2018, 3, e122109. [Google Scholar] [CrossRef]
- Cha, H.R.; Lee, J.H.; Ponnazhagan, S. Revisiting Immunotherapy: A Focus on Prostate Cancer. Cancer Res. 2020, 80, 1615. [Google Scholar] [CrossRef] [PubMed]
- Rescigno, P.; de Bono, J.S. Immunotherapy for lethal prostate cancer. Nat. Rev. Urol. 2019, 16, 69–70. [Google Scholar] [CrossRef] [PubMed]
- Conteduca, V.; Scarpi, E.; Caroli, P.; Lolli, C.; Gurioli, G.; Brighi, N.; Poti, G.; Farolfi, A.; Altavilla, A.; Schepisi, G.; et al. Combining liquid biopsy and functional imaging analysis in metastatic castration-resistant prostate cancer helps predict treatment outcome. Mol. Oncol. 2022, 16, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Conteduca, V.; Scarpi, E.; Matteucci, F.; Caroli, P.; Ravaglia, G.; Fantini, L.; Gurioli, G.; Schepisi, G.; Wetterskog, D.; Menna, C.; et al. Multimodal Approach to Outcome Prediction in Metastatic Castration-Resistant Prostate Cancer by Integrating Functional Imaging and Plasma DNA Analysis. JCO Precis. Oncol. 2019, 3, 1–13. [Google Scholar] [CrossRef]
- Feng, F.Y.; Thomas, S.; Saad, F.; Gormley, M.; Yu, M.K.; Ricci, D.S.; Rooney, B.; Brookman-May, S.; McCarthy, S.; Olmos, D.; et al. Association of Molecular Subtypes with Differential Outcome to Apalutamide Treatment in Nonmetastatic Castration-Resistant Prostate Cancer. JAMA Oncol. 2021, 7, 1005–1014. [Google Scholar] [CrossRef]
- Saad, F.; Small, E.J.; Feng, F.Y.; Graff, J.N.; Olmos, D.; Hadaschik, B.A.; Oudard, S.; Londhe, A.; Bhaumik, A.; Lopez-Gitlitz, A.; et al. Deep Prostate-specific Antigen Response following Addition of Apalutamide to Ongoing Androgen Deprivation Therapy and Long-term Clinical Benefit in SPARTAN. Eur. Urol. 2022, 81, 184–192. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Tierno, M.; Fisher, V.; Tukachinsky, H.; Alexander, S.; Hamdani, O.; Hiemenz, M.C.; Huang, R.S.P.; Oxnard, G.R.; Graf, R.P. Clinical and pathological features associated with circulating tumor DNA content in real-world patients with metastatic prostate cancer. Prostate 2022, 82, 867–875. [Google Scholar] [CrossRef] [PubMed]
N (%) | |
---|---|
Age, years | |
<74 * | 104 (47.3) |
≥74 | 116 (52.7) |
Prostatectomy | |
No | 119 (55.1) |
Yes | 97 (44.9) |
Unknown/missing | 4 |
Radiotherapy | |
No | 162 (75.0) |
Yes | 54 (25.0) |
Unknown/missing | 4 |
Gleason score | |
6–7 | 80 (40.4) |
≥8 | 118 (59.6) |
Unknown/missing | 22 |
ECOG PS | |
0–1 | 205 (93.2) |
2 | 15 (6.8) |
Sites of metastasis | |
Bone | 190 (86.4) |
Lymph nodes | 129 (58.6) |
Visceral | 31 (14.1) |
Liver | 17 (7.7) |
Lung | 14 (6.4) |
Other | 6 (2.7) |
Number of sites of metastasis | |
1 | 101 (45.9) |
2 | 91 (41.3) |
3 | 11 (5.0) |
4 | 12 (5.5) |
5 | 5 (2.3) |
Prior lines of therapy | |
0 | 60 (27.3) |
1 | 71 (32.3) |
2 | 38 (17.2) |
3 | 41 (18.6) |
4 | 5 (2.3) |
5 | 5 (2.3) |
Prior docetaxel | |
No | 64 (29.1) |
Yes | 156 (70.9) |
PSA, median value (IQR), ng/dL | 36.18 (11.3–154.5) |
ALP, U/L | |
<129 # | 127 (58.8) |
≥129 | 89 (41.2) |
Unknown/missing | 4 |
Albumin, g/dL | |
≥4 | 109 (50.2) |
<4 | 108 (49.8) |
Unknown/missing | 3 |
Hemoglobin, g/dL | |
≥12.5 # | 67 (32.8) |
<12.5 | 137 (67.2) |
Unknown/missing | 16 |
Serum CgA, ng/mL | |
<120 # | 100 (46.5) |
≥120 | 115 (53.5) |
Unknown/missing | 5 |
LDH, U/L | |
<225 # | 156 (71.6) |
≥225 | 62 (28.4) |
Unknown/missing | 2 |
NLR | |
<3 | 115 (52.3) |
≥3 | 105 (47.7) |
ctDNA | |
<0.180 * | 69 (50.0) |
≥0.180 | 69 (50.0) |
Unknown/missing | 82 |
AR CN | |
Normal | 147 (66.8) |
Gain | 73 (33.2) |
ctDNA Low (<0.180) | ctDNA High (≥0.180) | p | |
---|---|---|---|
Baseline PSA (ng/mL) (IQR) | 20.64 (9.25 to 95.0) | 51.79 (13.79 to 158.0) | 0.011 |
PSA response rate (yes vs. no), n (%) | 43 (63.2) vs. 25 (36.8) | 29 (42.7) vs. 39 (57.3) | 0.017 |
Maximum % PSA decline (IQR) | −80.92 (−92.74 to −54.48) | −63.11 (−98.23 to −31.94) | 0.134 |
PSA response rate at week 12 (>30%), n (%) | 45 (83.3) vs. 9 (16.7) | 34 (75.6) vs. 11 (24.4) | 0.340 |
PSA response rate at week 12 (>50%), n (%) | 41 (75.9) vs. 13 (24.1) | 28 (62.2) vs. 17 (37.8) | 0.142 |
PSA response rate at week 12 (>90%), n (%) | 18 (33.3) vs. 36 (66.7) | 8 (17.8) vs. 37 (82.2) | 0.081 |
Nadir PSA value (ng/mL) (IQR) | 3.62 (1.23 to 17.00) | 21.77 (2.69 to 57.32) | 0.0008 |
Time to PSA nadir (months) (IQR) | 3.68 (1.81 to 7.34) | 1.84 (0.92 to 3.39) | 0.012 |
PSA nadir DT (months) (IQR) | −2.26 (−3.81 to −1.00) | −1.39 (−3.15 to −0.77) | 0.007 |
PSA DT velocity from baseline to nadir (ng/mL/month) (IQR) | −2.90 (−1.46 to −11.30) | −11.53 (−2.89 to −2.28) | 0.034 |
PSA DT from nadir (months) (IQR) | 3.80 (2.20–6.20) | 2.50 (1.60–3.80) | 0.024 |
PSA DT velocity from nadir (ng/mL/month) (IQR) | 3.30 (0.9–13.8) | 14.3 (2.7–81.4) | 0.0002 |
Time to PSA PD (months) (IQR) | 9.11 (4.87 to 16.10) | 3.78 (2.76 to 7.00) | <0.0001 |
AR Normal | AR Gain | p | |
---|---|---|---|
Baseline PSA (ng/mL) (IQR) | 20.64 (7.16 to 77.00) | 123.40 (34.69 to 291.0) | <0.0001 |
PSA response rate (yes vs. no), n (%) | 79 (54.5) vs. 66 (45.5) | 21 (28.8) vs. 52 (71.2) | 0.0003 |
Maximum % PSA decline (IQR) | −78.93 (−91.26 to −45.16) | −52.36 (−74.58 to −22.99) | 0.003 |
PSA response rate at week 12 (>30%), n (%) | 91 (81.2) vs. 21 (18.8) | 26 (65.0) vs. 14 (35.0) | 0.037 |
PSA response rate at week 12 (>50%), n (%) | 77 (68.7) vs. 35 (31.3) | 20 (50.0 vs. 20 (50.0) | 0.035 |
PSA response rate at week 12 (>90%), n (%) | 35 (31.2) vs. 77 (68.8) | 4 (10.0) vs. 36 (90.0) | 0.008 |
Nadir PSA value (ng/mL) (IQR) | 3.04 (0.95 to 19.53) | 47.09 (14.85 to 149.30) | <0.0001 |
Time to PSA nadir (months) (IQR) | 2.96 (1.76 to 6.61) | 1.81 (0.92 to 2.55) | 0.0002 |
PSA nadir DT (months) (IQR) | −2.19 (−3.91 to −1.00) | −1.44 (−3.44 to −0.77) | 0.463 |
PSA DT velocity from baseline to nadir (ng/mL/month) (IQR) | −3.02 (−1.43 to −1.26) | −16.68 (−6.47 to −4.06) | 0.001 |
PSA DT from nadir (months) (IQR) | 3.60 (2.10–7.71) | 2.40 (1.40–3.40) | 0.001 |
PSA DT velocity from nadir (ng/mL/month) (IQR) | 2.8 (0.7–14.3) | 27.8 (9.6–116.1) | <0.0001 |
Time to PSA PD (months) (IQR) | 7.07 (3.78 to 13.09) | 3.55 (1.91 to 6.22) | <0.0001 |
PFS | OS | |||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Age (≥74 vs. <74) | 0.98 (0.96–1.01) | 0.218 | 1.01 (0.98–1.04) | 0.394 |
logPSA | 1.07 (0.95–1.21) | 0.254 | 1.06 (0.94–1.20) | 0.342 |
Visceral metastasis (yes vs. no) | 1.22 (0.71–2.09) | 0.476 | 1.85 (1.06–3.23) | 0.029 |
Previous chemotherapy (yes vs. no) | 1.29 (0.85–1.96) | 0.226 | 1.14 (0.74–1.76) | 0.559 |
ECOG PS (2 vs. 0–1) | 1.33 (0.92–1.93) | 0.128 | 1.58 (1.08–2.32) | 0.018 |
ALP (≥129 vs. <129) | 0.98 (0.64–1.51) | 0.933 | 1.02 (0.67–1.56) | 0.933 |
ARCN (Gain vs. Normal) | 1.72 (1.05–2.81) | 0.031 | 1.44 (0.86–2.40) | 0.162 |
ctDNA (>0.180 vs. ≤0.180) | 4.64 (1.53–14.06) | 0.007 | 3.50 (1.14–10.77) | 0.029 |
LDH (≥225 vs. <225) | 2.13 (1.24–3.64) | 0.006 | 1.94 (1.16–3.25) | 0.012 |
PSA DT from nadir (continuous variable) | 0.93 (0.87–0.98) | 0.015 | 0.93 (0.87–0.99) | 0.030 |
PSA DT velocity from nadir (continuous variable) | 1.001 (1.000–1.002) | 0.066 | 1.000 (0.999–1.001) | 0.572 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conteduca, V.; Casadei, C.; Scarpi, E.; Brighi, N.; Schepisi, G.; Lolli, C.; Gurioli, G.; Toma, I.; Poti, G.; Farolfi, A.; et al. Baseline Plasma Tumor DNA (ctDNA) Correlates with PSA Kinetics in Metastatic Castration-Resistant Prostate Cancer (mCRPC) Treated with Abiraterone or Enzalutamide. Cancers 2022, 14, 2219. https://doi.org/10.3390/cancers14092219
Conteduca V, Casadei C, Scarpi E, Brighi N, Schepisi G, Lolli C, Gurioli G, Toma I, Poti G, Farolfi A, et al. Baseline Plasma Tumor DNA (ctDNA) Correlates with PSA Kinetics in Metastatic Castration-Resistant Prostate Cancer (mCRPC) Treated with Abiraterone or Enzalutamide. Cancers. 2022; 14(9):2219. https://doi.org/10.3390/cancers14092219
Chicago/Turabian StyleConteduca, Vincenza, Chiara Casadei, Emanuela Scarpi, Nicole Brighi, Giuseppe Schepisi, Cristian Lolli, Giorgia Gurioli, Ilaria Toma, Giulia Poti, Alberto Farolfi, and et al. 2022. "Baseline Plasma Tumor DNA (ctDNA) Correlates with PSA Kinetics in Metastatic Castration-Resistant Prostate Cancer (mCRPC) Treated with Abiraterone or Enzalutamide" Cancers 14, no. 9: 2219. https://doi.org/10.3390/cancers14092219
APA StyleConteduca, V., Casadei, C., Scarpi, E., Brighi, N., Schepisi, G., Lolli, C., Gurioli, G., Toma, I., Poti, G., Farolfi, A., & De Giorgi, U. (2022). Baseline Plasma Tumor DNA (ctDNA) Correlates with PSA Kinetics in Metastatic Castration-Resistant Prostate Cancer (mCRPC) Treated with Abiraterone or Enzalutamide. Cancers, 14(9), 2219. https://doi.org/10.3390/cancers14092219